
Can DREs Provide Long-
Lasting Security?

The Case of Return-Oriented
Programming and the AVC Advantage

Stephen Checkoway,* Ariel J. Feldman,† Brian Kantor,*

J. Alex Halderman,‡ Edward W. Felten,† Hovav Shacham*

*UCSD, †Princeton, ‡U Michigan

1Monday, August 10, 2009

Long Lasting Security: EVT’09

Voting System Studies

Study Vendors Year
Appel et al. Sequoia 2008

EVEREST ES&S, Hart, Premier 2007

California TTBR Hart, Premier, Sequoia 2007

Feldman et al. Diebold 2006

Hursti Diebold 2006

Kohno et al. Diebold 2003

2Monday, August 10, 2009

Long Lasting Security: EVT’09

The proposed 'red team' concept also
contemplates giving attackers access to source
code, which is unrealistic and dangerous if not
strictly controlled by test protocols. It is the
considered opinion of election officials and
information technology professionals that ANY
system can be attacked if source code is made
available. We urge the Secretary of State not
to engage in any practice that will jeopardize
the integrity of our voting systems.

– California Association of Clerks and
Election Officials, 2007

Response

3Monday, August 10, 2009

Long Lasting Security: EVT’09

The proposed 'red team' concept also
contemplates giving attackers access to source
code, which is unrealistic and dangerous if not
strictly controlled by test protocols. It is the
considered opinion of election officials and
information technology professionals that ANY
system can be attacked if source code is made
available. We urge the Secretary of State not
to engage in any practice that will jeopardize
the integrity of our voting systems.

– California Association of Clerks and
Election Officials, 2007

By any standard – academic or common sense
– the study is unrealistic and inaccurate.

– Diebold Election Systems, 2006

Your guidelines suggest that you will provide
source code to an expert and ask that person
to subvert the system. It is almost certain that
would be possible under these conditions.
However, these are extreme circumstances, not
taking into consideration real world use cases.

– Hart InterCivic, 2007

Letting the hackers have the source codes, operating
manuals and unlimited access to the voting machines “is
like giving a burglar the keys to your house.”

– Contra Costa County Clerk-recorder and head of
the state Association of Clerks and Election Officials

Steve Weir, quoted by sfgate.com, 2007

Response

In short, the Red Team was able to, using a financial
institution as an example, take away the locked
front door of the bank branch, remove the security
guard, remove the bank tellers, remove the panic
alarm that notifies law enforcement, and have only
slightly limited resources (particularly time and
knowledge) to pick the lock on the bank vault.

– Sequoia Voting Systems, 2007Company officials have said the researchers
were given unusual access to the machines that
real-world hackers could never gain.

– Mercury News, 2007

Putting isolated technology in the hands of computer
experts in order to engage in unrestricted, calculated,
advanced and malicious attacks is highly improbable
in a real-world election.

– Hart InterCivic, 2007

No computer system could pass the assault made by
your team of computer scientists. In fact, I think my
9 and 12-year-old kids could find ways to break into
the voting equipment if they had unfettered access.

– Santa Cruz County Clerk Gail Pellerin, 2007

3Monday, August 10, 2009

Long Lasting Security: EVT’09

Is it practical to hack a
voting machine without
“unreasonable” access?

Hint: Yes

4Monday, August 10, 2009

Long Lasting Security: EVT’09

AVC Advantage

Best-case to study

Only does one thing:
count votes

Defenses against code
injection

5Monday, August 10, 2009

Long Lasting Security: EVT’09

Challenges

1. Understand how the machine works without
source code or documentation by reverse-
engineering

2. Find an exploitable bug

3. Defeat code-injection defense using recently
developed techniques from system security

6Monday, August 10, 2009

Long Lasting Security: EVT’09

Reverse-Engineering

Z80

ROMs

7Monday, August 10, 2009

Long Lasting Security: EVT’09

Artifacts Produced

Hardware Functional Specifications

Hardware Simulator

Initial version by Joshua Herbach

Exploit developed on the simulator —
tested on machine, worked first try

8Monday, August 10, 2009

Long Lasting Security: EVT’09

Exploit

Classic stack-smashing buffer overflow

Roughly a dozen bytes overwritten

Exploit code needs to be in memory

For now, assume we can inject code

9Monday, August 10, 2009

Long Lasting Security: EVT’09

Vote-Stealing Attack

Gain physical access

Malicious auxiliary cartridge

Trigger exploitable bug

Follow instructions

10Monday, August 10, 2009

Long Lasting Security: EVT’09

Vote-Stealing Attack

Gain physical access

Malicious auxiliary cartridge

Trigger exploitable bug

Follow instructions

10Monday, August 10, 2009

Long Lasting Security: EVT’09

Vote-Stealing Program

Survives turning
power switch to off

Runs election as
normal

Silently shifts votes

11Monday, August 10, 2009

Long Lasting Security: EVT’09

Vote-Stealing Program

Survives turning
power switch to off

Runs election as
normal

Silently shifts votes

11Monday, August 10, 2009

Long Lasting Security: EVT’09

Code Injection?

Earlier, we assumed we could inject code

Hardware interlock prevents fetching
instructions from RAM

Program code in read-only memory

12Monday, August 10, 2009

Long Lasting Security: EVT’09

Harvard Architecture

Program in
read-only
memory +

Nonexecutable,
writable data

memory

No code injection

13Monday, August 10, 2009

Long Lasting Security: EVT’09

Return-Oriented
Programming

14Monday, August 10, 2009

Long Lasting Security: EVT’09

Return-Oriented
Programming

Arbitrary behavior without code injection

Combine snippets of existing code

Requires control of the call stack

Processor/program specific

15Monday, August 10, 2009

Long Lasting Security: EVT’09

Return-Oriented
Programming

Arbitrary behavior without code injection

Combine snippets of existing code

Requires control of the call stack

Processor/program specific

Instructions
movl $0x006f6d2e,(%eax,%ebx)
movl 0xd4(%ebp),%eax
movl %eax,(%esp)
calll 0x0008ba11
addl $0x1f,%eax
andl $0xf0,%eax
subl %eax,%esp
leal 0x20(%esp),%edx
movl %edx,0xb4(%ebp)
jmp 0x0006d8b4
incl 0xd4(%ebp)
movl 0xd4(%ebp),%eax
movzbl (%eax),%ecx
cmpb $0x3a,%cl
je 0x0006d8b1
testb %cl,%cl
movl 0xb4(%ebp),%ebx
jne 0x0006d8db
movb $0x43,(%ebx)
movb $0x00,0x01(%ebx)
jmp 0x0006d90d
movb %cl,(%ebx)
incl %ebx
incl 0xd4(%ebp)
movl 0xd4(%ebp),%eax
movzbl (%eax),%ecx
testb %cl,%cl
setne %dl
cmpb $0x3a,%cl
setne %al
testb %al,%dl
jne 0x0006d8cf
movb $0x00,(%ebx)
cmpl $0x01,0x0008a780
jne 0x0006d90d
movl 0xb4(%ebp),%edx
movl $0x0000002f,0x04(%esp)
movl %edx,(%esp)
calll 0x0008b9e9
testl %eax,%eax
jne 0x0006d8b4
movl 0xb4(%ebp),%esi
movl $0x00000002,%ecx
movl $0x0007e270,%edi
cld
repz/cmpsb (%esi),(%edi)
movl $0x00000000,%eax
je 0x0006d92e
movzbl 0xff(%esi),%eax
movzbl 0xff(%edi),%ecx
subl %ecx,%eax
testl %eax,%eax
jel 0x0006da53
movl 0xb4(%ebp),%esi
movl $0x00070bbb,%edi
movl $0x00000006,%ecx
repz/cmpsb (%esi),(%edi)
movl $0x00000000,%edx
je 0x0006d956
movzbl 0xff(%esi),%edx
movzbl 0xff(%edi),%ecx
subl %ecx,%edx
testl %edx,%edx

15Monday, August 10, 2009

Long Lasting Security: EVT’09

Return-Oriented
Programming

Arbitrary behavior without code injection

Combine snippets of existing code

Requires control of the call stack

Processor/program specific

Instructions
movl $0x006f6d2e,(%eax,%ebx)
movl 0xd4(%ebp),%eax
movl %eax,(%esp)
calll 0x0008ba11
addl $0x1f,%eax
andl $0xf0,%eax
subl %eax,%esp
leal 0x20(%esp),%edx
movl %edx,0xb4(%ebp)
jmp 0x0006d8b4
incl 0xd4(%ebp)
movl 0xd4(%ebp),%eax
movzbl (%eax),%ecx
cmpb $0x3a,%cl
je 0x0006d8b1
testb %cl,%cl
movl 0xb4(%ebp),%ebx
jne 0x0006d8db
movb $0x43,(%ebx)
movb $0x00,0x01(%ebx)
jmp 0x0006d90d
movb %cl,(%ebx)
incl %ebx
incl 0xd4(%ebp)
movl 0xd4(%ebp),%eax
movzbl (%eax),%ecx
testb %cl,%cl
setne %dl
cmpb $0x3a,%cl
setne %al
testb %al,%dl
jne 0x0006d8cf
movb $0x00,(%ebx)
cmpl $0x01,0x0008a780
jne 0x0006d90d
movl 0xb4(%ebp),%edx
movl $0x0000002f,0x04(%esp)
movl %edx,(%esp)
calll 0x0008b9e9
testl %eax,%eax
jne 0x0006d8b4
movl 0xb4(%ebp),%esi
movl $0x00000002,%ecx
movl $0x0007e270,%edi
cld
repz/cmpsb (%esi),(%edi)
movl $0x00000000,%eax
je 0x0006d92e
movzbl 0xff(%esi),%eax
movzbl 0xff(%edi),%ecx
subl %ecx,%eax
testl %eax,%eax
jel 0x0006da53
movl 0xb4(%ebp),%esi
movl $0x00070bbb,%edi
movl $0x00000006,%ecx
repz/cmpsb (%esi),(%edi)
movl $0x00000000,%edx
je 0x0006d956
movzbl 0xff(%esi),%edx
movzbl 0xff(%edi),%ecx
subl %ecx,%edx
testl %edx,%edx

15Monday, August 10, 2009

Long Lasting Security: EVT’09

Return-Oriented
Programming

Arbitrary behavior without code injection

Combine snippets of existing code

Requires control of the call stack

Processor/program specific

Instructions
movl $0x006f6d2e,(%eax,%ebx)
movl 0xd4(%ebp),%eax
movl %eax,(%esp)
calll 0x0008ba11
addl $0x1f,%eax
andl $0xf0,%eax
subl %eax,%esp
leal 0x20(%esp),%edx
movl %edx,0xb4(%ebp)
jmp 0x0006d8b4
incl 0xd4(%ebp)
movl 0xd4(%ebp),%eax
movzbl (%eax),%ecx
cmpb $0x3a,%cl
je 0x0006d8b1
testb %cl,%cl
movl 0xb4(%ebp),%ebx
jne 0x0006d8db
movb $0x43,(%ebx)
movb $0x00,0x01(%ebx)
jmp 0x0006d90d
movb %cl,(%ebx)
incl %ebx
incl 0xd4(%ebp)
movl 0xd4(%ebp),%eax
movzbl (%eax),%ecx
testb %cl,%cl
setne %dl
cmpb $0x3a,%cl
setne %al
testb %al,%dl
jne 0x0006d8cf
movb $0x00,(%ebx)
cmpl $0x01,0x0008a780
jne 0x0006d90d
movl 0xb4(%ebp),%edx
movl $0x0000002f,0x04(%esp)
movl %edx,(%esp)
calll 0x0008b9e9
testl %eax,%eax
jne 0x0006d8b4
movl 0xb4(%ebp),%esi
movl $0x00000002,%ecx
movl $0x0007e270,%edi
cld
repz/cmpsb (%esi),(%edi)
movl $0x00000000,%eax
je 0x0006d92e
movzbl 0xff(%esi),%eax
movzbl 0xff(%edi),%ecx
subl %ecx,%eax
testl %eax,%eax
jel 0x0006da53
movl 0xb4(%ebp),%esi
movl $0x00070bbb,%edi
movl $0x00000006,%ecx
repz/cmpsb (%esi),(%edi)
movl $0x00000000,%edx
je 0x0006d956
movzbl 0xff(%esi),%edx
movzbl 0xff(%edi),%ecx
subl %ecx,%edx
testl %edx,%edx

Stack

15Monday, August 10, 2009

Long Lasting Security: EVT’09

The Usual Method

if arnold ≤ washington:
amount = (washington - arnold)/2 + 1
arnold = arnold + amount
washington = washington - amount

High-level specification

16Monday, August 10, 2009

Long Lasting Security: EVT’09

The Usual Method

if arnold ≤ washington:
amount = (washington - arnold)/2 + 1
arnold = arnold + amount
washington = washington - amount

High-level specification Assembly

movl ..., %edx
movl ..., %ecx
compl %ecx, %edx
jg winning
movl %ecx, %eax
subl %edx, %eax
shrl %eax
incl %eax
addl %eax, %edx
movl %edx, ...
subl %eax, %ecx
movl %ecx, ...
winning:

16Monday, August 10, 2009

Long Lasting Security: EVT’09

The Usual Method

if arnold ≤ washington:
amount = (washington - arnold)/2 + 1
arnold = arnold + amount
washington = washington - amount

High-level specification Assembly

movl ..., %edx
movl ..., %ecx
compl %ecx, %edx
jg winning
movl %ecx, %eax
subl %edx, %eax
shrl %eax
incl %eax
addl %eax, %edx
movl %edx, ...
subl %eax, %ecx
movl %ecx, ...
winning:

Binary
00000000 55 89 e5 53 e8 00 00 00 00 5b 8b 93 2f 00 00 00
00000010 8b 8b 2b 00 00 00 39 ca 77 17 89 c8 29 d0 d1 e8
00000020 40 01 c2 89 93 2f 00 00 00 29 c1 89 8b 2b 00 00
00000030 00 5b c9 c3

16Monday, August 10, 2009

Long Lasting Security: EVT’09

The ROP Method

if arnold ≤ washington:
amount = (washington - arnold)/2 + 1
arnold = arnold + amount
washington = washington - amount

High-level specification

17Monday, August 10, 2009

Long Lasting Security: EVT’09

The ROP Method

if arnold ≤ washington:
amount = (washington - arnold)/2 + 1
arnold = arnold + amount
washington = washington - amount

High-level specification Pseudo-assembly

ld t1, 0(A)
ld t2, 2(A)
slt t3, t2, t1
btr t3, winning
sub amt, t2, t1
srl amt, amt, 1
inc amt
sub t2, t2, amt
add t1, t1, amt
st t1, 0(A)
st t2, 2(A)
winning:

17Monday, August 10, 2009

Long Lasting Security: EVT’09

The ROP Method

if arnold ≤ washington:
amount = (washington - arnold)/2 + 1
arnold = arnold + amount
washington = washington - amount

High-level specification Pseudo-assembly

ld t1, 0(A)
ld t2, 2(A)
slt t3, t2, t1
btr t3, winning
sub amt, t2, t1
srl amt, amt, 1
inc amt
sub t2, t2, amt
add t1, t1, amt
st t1, 0(A)
st t2, 2(A)
winning:

(data)

(data)
(data)

insns...ret
insns...ret

insns...ret

insns...ret
insns...ret

Stack Program Code

Gadgets

17Monday, August 10, 2009

Long Lasting Security: EVT’09

The Usual Method

Sequence of instructions: %eip

Execute instruction, update %eip

Control flow by changing %eip

movl ..., %edx
movl ..., %ecx
compl %ecx, %edx
jg winning
movl %ecx, %eax
subl %edx, %eax
shrl %eax
incl %eax
addl %eax, %edx
movl %edx, ...
subl %eax, %ecx
movl %ecx, ...
winning:

%eip

18Monday, August 10, 2009

Long Lasting Security: EVT’09

The Usual Method

Sequence of instructions: %eip

Execute instruction, update %eip

Control flow by changing %eip

movl ..., %edx
movl ..., %ecx
compl %ecx, %edx
jg winning
movl %ecx, %eax
subl %edx, %eax
shrl %eax
incl %eax
addl %eax, %edx
movl %edx, ...
subl %eax, %ecx
movl %ecx, ...
winning:

%eip

18Monday, August 10, 2009

Long Lasting Security: EVT’09

The Usual Method

Sequence of instructions: %eip

Execute instruction, update %eip

Control flow by changing %eip

movl ..., %edx
movl ..., %ecx
compl %ecx, %edx
jg winning
movl %ecx, %eax
subl %edx, %eax
shrl %eax
incl %eax
addl %eax, %edx
movl %edx, ...
subl %eax, %ecx
movl %ecx, ...
winning:%eip

18Monday, August 10, 2009

Long Lasting Security: EVT’09

The ROP Method

Sequence of Gadgets: %esp

Pointers to instructions

Data

Execute Gadget

ret increments %esp

Control flow by changing %esp

(data)

(data)

(data)

insns...ret

insns...ret

insns...ret

insns...ret

insns...ret
%esp

19Monday, August 10, 2009

Long Lasting Security: EVT’09

The ROP Method

Sequence of Gadgets: %esp

Pointers to instructions

Data

Execute Gadget

ret increments %esp

Control flow by changing %esp

(data)

(data)

(data)

insns...ret

insns...ret

insns...ret

insns...ret

insns...ret
%esp

%eip

19Monday, August 10, 2009

Long Lasting Security: EVT’09

The ROP Method

Sequence of Gadgets: %esp

Pointers to instructions

Data

Execute Gadget

ret increments %esp

Control flow by changing %esp

(data)

(data)

(data)

insns...ret

insns...ret

insns...ret

insns...ret

insns...ret

%esp

%eip

19Monday, August 10, 2009

Long Lasting Security: EVT’09

ROP Example 1:
No-op

nop

Usual ROP
ret

Just advances %eip Just advances %esp

Pointer to ret instruction

%esp
%eip

20Monday, August 10, 2009

Long Lasting Security: EVT’09

ROP Example 2:
Immediate Constants

movl $0xdeadbeef, %eax
movl $0xcafebabe, %ebx

Usual ROP

0xcafebabe

0xdeadbeef popl %eax
popl %ebx
ret

Set %eax to 0xdeadbeef

Set %ebx to 0xcafebabe

Put constants on stack

Pop them into registers

%esp

%eip

21Monday, August 10, 2009

Long Lasting Security: EVT’09

Update %eip Update %esp

Conditional branch
possible

ROP Example 3:
Control Flow

jmp +16

Usual ROP

...

popl %esp
ret

%esp

%eip ...
ret

22Monday, August 10, 2009

Long Lasting Security: EVT’09

ROP Wrap-Up

Use stack for program (%esp vs. %eip)

Gadgets

Multiple instruction sequences & data

Chained together by ret

Turing-complete

No code injection!

23Monday, August 10, 2009

Long Lasting Security: EVT’09

SP

SP

0xFFFE

0x0000

0x000C

d

pop hl, de

bc ← (hl)

pop hl

(de) ← hl + bc

pop hl

sp ← sp + hl

pop bc

(de) ← hl + bc

pop hl

sp ← sp + hl

ROP On The
AVC Advantage

Extended ROP to Z80

16 kB instruction corpus

Turing-complete gadget set

Some automation

sp

24Monday, August 10, 2009

Long Lasting Security: EVT’09

Challenges Overcome

1. Reverse-engineered hardware and software

2. Found an exploitable bug in the code

3. Defeated code-injection defense using
return-oriented programming

25Monday, August 10, 2009

Long Lasting Security: EVT’09

Thank you

26Monday, August 10, 2009

