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Abstract
Ballot secrecy, while essential, is difficult to achieve with
any voting system cryptographic or otherwise. Moreover,
the majority of cryptographic voting systems introduce
new ballot secrecy problems. In encrypt-on-cast voting
systems, like that of Benaloh [1, 2], a malicious voting
machine can use the encrypted votes that it posts to the
public bulletin board as a subliminal channel to convey in-
formation about voters’ choices to a coercer. Although it
was known that a machine could manipulate the random-
ness used to encrypt the votes to leak information [14], we
show that this threat is more severe than previously recog-
nized and that existing mitigations may be ineffective. A
compromised machine may only need to leak a few bits
and modify only a handful of ballots in order to coerce
most of the voters in a polling place. In light of this threat,
we propose an extension to the Benaloh scheme that al-
lows anyone to verify that every ciphertext on the bulletin
board uses the right randomness. Finally, we show that
even without manipulating the randomness, a machine
can still use the ciphertexts to leak a small, but potentially
dangerous, number of bits by strategically flipping a few
votes. Overall, we show that while subliminal channels in
encrypt-on-cast voting systems can be partially mitigated,
they cannot yet be eliminated completely.

1 Introduction

Ballot secrecy is essential because without it, vote-buying
and voter coercion are possible, and elections cannot be
trusted to reflect the will of the voters. Even if a voter’s
choices may only be disclosed to a coercer with a small
probability, that may be enough to influence his or her
behavior. Unfortunately, ballot secrecy is very difficult to
achieve with any voting system. Ubiquitous cell-phone
cameras allow voters to capture themselves in the act
of voting, absentee voting allows coercers to be present
while voters cast their ballots, and paper ballots can be

uniquely identified by distinguishing marks added by the
voter or by paper fingerprinting techniques [9]. In addi-
tion, any voting machine such as a DRE or an optical
scanner that is given the plaintext votes in the order that
they are cast can record this information and leak it to a
malicious poll worker or to a malicious voter in response
to a “secret knock.”

End-to-end cryptographic voting systems promise to
improve the accuracy of elections considerably by making
the vote-tallying process publicly verifiable. But not only
do such systems generally suffer from many of the ballot
secrecy problems listed above, the majority of them also
introduce new ones of their own.

Most recent cryptographic voting systems fall into two
categories: those that use pre-encrypted paper ballots and
those which encrypt each vote as it is cast. In systems
that employ pre-encrypted paper ballots, such as Prêt
à Voter [8], PunchScan [19], and Scantegrity I [7] and
II [6], every ballot has a secret mapping between the
ovals that the voter marks and the candidates in each race.
Unfortunately, anyone with access to these mappings,
including the election trustees who initially chose them,
anyone involved in printing the ballots, and, in some cases,
anyone who handled the ballots before the election, can
reconstruct how every voter voted.

In encrypt-on-cast systems such as those proposed by
Benaloh [1, 2], Neff [17], and Sandler et al. [22], the vot-
ing machines in the polling place accept voters’ choices
either through a touchscreen interface or though an opti-
cal scanner, encrypt them, and then post the ciphertexts to
a public bulletin board. The problem is that a malicious
voting machine can use the ciphertexts it posts to the bul-
letin board as a subliminal channel to leak information
about voters’ choices [14]. It can do this by repeatedly
running the encryption function with different inputs until
the resulting ciphertext has the desired properties (e.g.
that the low order bits of the HMAC of the ciphertext
have certain values).

In this paper, we examine the threat posed by sublimi-
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nal channels to encrypt-on-cast voting systems and how it
can be partially mitigated. Our primary contributions are:

• We discuss the possibility that a compromised vot-
ing machine could undermine ballot secrecy by ma-
liciously choosing the random values used in the
randomized encryption of the votes. Although this
attack was first recognized in [14], we show that it is
more severe than previously recognized. An attacker
may only need to leak a small number of bits and
only modify a handful of ballots in order to coerce
most of the voters in a polling place. As a result,
we demonstrate that an existing proposal [11] for
mitigating this problem may be insufficient.

• We present an enhancement to the Benaloh [1, 2]
voting scheme that mitigates the threat posed by
maliciously chosen randomness. In our protocol, as
in [11], all of the randomness used to encrypt the
votes is generated prior to the election by a set of
mutually-independent trustees. But, unlike previous
approaches, our protocol makes it possible for any
interested party to verify that the right random values
were used to encrypt every vote on the bulletin board.

• Finally, we show that even if a malicious voting
machine cannot control the randomness used in the
encryption of the votes, it can still use the ciphertexts
on the bulletin board to leak information by manip-
ulating the plaintext votes themselves on a small
number of ballots. Although the subliminal channel
created by such vote-flipping is low bandwidth, it is
still potentially dangerous and difficult to mitigate.

2 Ciphertexts as a Subliminal Channel

To achieve semantic security, encrypt-on-cast voting ma-
chines use a randomized encryption scheme, often El
Gamal, of the form Epk(r, v) where pk is the public key
of the election, v is the vote, and r is a random value
ordinarily chosen by the machine. As Karlof et al. [14]
explain, a malicious voting machine can leak b bits for
each ciphertext with expected O(2b) work simply by try-
ing to encrypt the plaintext multiple times with different
values of r until the low order b bits of the hash1 of the
ciphertext have the desired values.

2.1 Exploiting the Subliminal Channel
An attacker trying to coerce voters by compromising bal-
lot secrecy can simplify his task considerably by making
two simple observations. First, he does not necessarily
need to leak information about every race on the ballot.

1To better conceal the attack, a malicious machine could use an
HMAC with a key known only to the adversary instead of a hash.

To compromise the secrecy of a single ballot, he may only
need to leak a single bit indicating whether the voter has
complied fully with his requirements. Second, he does
not need to compromise the secrecy of every ballot in
order to coerce most of the voters. He need only violate
the privacy of enough voters to scare the majority into
compliance. As a result, he may only need to leak a small
number of bits in order to accomplish his objective.

Consider a polling place with 1000 voters and a single
precinct-count optical scan voting machine that produces
ciphertexts along the lines of the system described in [2].
A coercer could compromise the privacy of a fraction p
of the voters as follows. Prior to the election, the coercer
would share a seed s with the compromised voting ma-
chine. Then, as each ballot was cast, the machine would
decide to violate the current voter’s privacy with proba-
bility p using a pseudorandom generator seeded with s.
Next, the machine would manipulate a small number of
the ciphertexts that it provided to the bulletin board in
order to leak a bit vector containing a bit for each of the
selected voters. A one would indicate that the voter com-
plied with the coercer, and a zero would indicate that the
voter did not. After the election, since the coercer would
know s, he would be able to replicate the pseudorandom
choices that the machine made and connect each bit of
the vector to an individual voter. Using this strategy, a
coercer could make it so that there is a 10% chance that
any voter’s vote would be revealed by leaking just 100
bits.

Alternatively, a coercer could make it known that, after
the election, he would reveal the identity of one non-
compliant voter who would then be punished severely. He
could accomplish this by having the voting machine leak
an integer corresponding to the target voter’s place in the
line of voters who voted on the malicious voting machine.
In general, this strategy can identify k voters out of a total
of n using k log n bits. Thus, for the example polling
place, it would require as little as 10 bits.

Which strategy is preferable depends on the percentage
of voters who attempt to defy the coercer. If a large per-
centage try, the first is preferable, whereas if only a small
percentage try and the coercer merely has to maintain
obedience by singling out the few resisters, the second is
preferable. Of course, the malicious voting machine can
reserve a bit of leaked data to indicate which strategy it is
using and pick the one that will reveal the most resisters.

2.2 Avoiding Detection

In an attempt to eliminate the subliminal channel provided
by ciphertexts on the bulletin board, Gardner et al. [11]
propose a scheme in which the choice of the random val-
ues used in the encryption of the votes is taken away from
the voting machine. In their scheme, a group of mutually-
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independent election trustees each provide every voting
machine with a tamper-resistant smart card containing
a secret key. Every time that a voting machine encrypts
a vote, the pseudorandom value that it uses is derived
deterministically from the secret keys of all of the trustees
and the ballot serial number. The serial number is public
and chosen by a means outside of the machine’s control
(e.g. preprinted on the paper that will become the voter’s
receipt).

To check whether the machine is using the right ran-
dom values, the Gardner proposal relies on voter-initiated
audits. All voting schemes that encrypt votes as they are
cast offer each voter the option to audit her ballot after
it has been encrypted in order to verify that the machine
has encrypted the votes that she intended. In the Benaloh
voting system, a voter audits her ballot by having the
machine open the encryptions of her votes. In so doing,
she spoils her ballot, but she is allowed to vote again in
order to cast a ballot that counts. In the Gardner proposal,
which builds on the Benaloh scheme, auditing a ballot
not only opens the encryption of each of the votes, it also
reveals the components of the pseudorandom value used
in the encryption that came from each trustee. The voter,
or her chosen representative, can then use the trustees’
public keys to verify that the components are correct and
that, when combined, they form the right pseudorandom
value.

The problem with relying on voter-initiated audits is
that if the percentage of voters who currently check the
paper audit trails produced by today’s DREs is any guide,
the percentage of voters who would audit their ballots
in a cryptographic voting system is likely to be very low
(perhaps less than 5%)2. Such low audit rates can be
sufficient to catch a malicious voting machine that is
trying to directly alter the votes because, in order to have
a meaningful impact on the vote total in all but the closest
elections, the machine would have to corrupt enough
ballots that even a very low audit rate would catch it
with high probability [16]. But, given how few bits need
to be leaked in order to carry out the coercion attacks
described in previous subsection, voter-initiated audits
may be insufficient.

Returning to the example of the 1000 voter polling
place, suppose that a coercer wanted to intimidate 10%
of the voters by leaking 100 bits, that there are 10 races
on the ballot, and that each voter’s choice in each race

2In a study conducted by Selker and Cohen [23], only 3 out of 108
voters in a simulated election noticed a discrepancy between the paper
trail and the DRE’s screen. Although Norden et al. [18] think that
this figure is an underestimate, we believe that the audit rate with a
cryptographic voting system would remain quite low because voter-
initiated audits are more cumbersome than checking a DRE’s paper trail.
The Neff scheme requires the voter to engage in a relatively complex
interactive proof, while the Benaloh scheme requires the voter to fill out
a second ballot.

is encrypted separately3. A malicious voting machine
could leak all 100 bits through a single pseudorandomly
chosen ballot by leaking 10 bits through the ciphertext of
each race with expected O(210) work per race (an easily
manageable amount). Thus, if 5% of voters chose to audit
their ballots, the coercer would have a 95% chance of
avoiding detection.

To further reduce the chances of detection, a coercer
could program the compromised voting machine to accept
a “secret knock” so that when a malicious voter chooses a
certain pattern of candidates, the machine knows that the
voter will not audit the ballot and that it can safely use
the ballot’s ciphertexts to leak bits. Of course, in many
cases, a corrupted machine could just leak information
directly to the malicious voter via the machine’s display
or printer.

In sum, an attacker who is willing to risk detection
by corrupting some fraction of the ballots may be more
likely to succeed if his goal is to leak bits and perform a
coercion attack than if his goal is to directly change the
tally because he does not need to alter nearly as many
ballots.

3 Minimizing the Subliminal Channel

In this section we describe our approach to preventing a
malicious voting machine from compromising ballot se-
crecy via its choice of the random values used to encrypt
the votes. Like Gardner et al. [11], we propose to take the
choice of the randomness out of the hands of a potentially
compromised voting machine, and instead have it be gen-
erated by a set of mutually-independent trustees such as
political parties or non-governmental organizations. But,
in light of the attacks that we describe in Section 2, our
approach differs in that it allows any interested member
of the public to verify that the right random values (i.e.
those that came from the trustees) were used to encrypt
every vote, not just those that individual voters decided to
audit.

3.1 Definition
More formally, the ciphertexts that our protocol produces
have the following property:

Definition 1. The ciphertexts that a voting system pro-
duces are subliminal channel minimizing if, for a given
election public key pk, for any sequence of cast, audited,

3Encrypting and tallying each race separately prevents a different
kind of coercion attack: a voter can make her ballot identifiable to a
coercer by voting in a certain pattern in the races on the ballot [20]. If
a voter’s choices in all of the races were encrypted together in a single
ciphertext, the number of bits that a malicious voting machine could
leak per ballot would be lower, but would still be enough to carry out
the attacks we describe.
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and canceled ballots B = b0, b1, . . . , bm comprised of
any sequence of votes V = v0, v1, . . . , vn, there is exactly
one valid sequence of ciphertexts C = c0, c1, . . . , c`.

Letting a voting machine choose the random parame-
ters to the encryptions of the votes creates a subliminal
channel because it allows there to be many valid cipher-
texts corresponding to each plaintext vote, and the ma-
chine’s choice of which of these ciphertexts to publish
can convey information. Intuitively, a voting system that
produces subliminal channel minimizing ciphertexts pre-
vents this attack by ensuring that for any given sequence
of votes, there is only one valid way to encrypt it. This
definition does not rule out the use of a semantically se-
cure encryption scheme because it only requires that the
there be a single combined ciphertext for each possible
sequence of votes. It does not require the same vote on
two different ballots to have the same encryption.

This property is called subliminal channel minimizing
rather than subliminal channel eliminating because, as
explained in Section 5, even without control of the ran-
domness, a malicious voting machine can still leak some
bits.

3.2 Description of our Protocol
Our protocol builds on the Benaloh [1, 2] voting scheme.
But although the Benaloh scheme allows votes to be en-
crypted using a variety of encryption schemes and allows
tallying to be done using either homomorphic encryption
or a reencryption mixnet, our protocol requires the use El
Gamal encryption and a reencryption mixnet.

Our protocol has three phases. Prior to the election, the
trustees generate the random values that all of the voting
machines will use, and the random values are probabilisti-
cally checked for validity. Then, during the election, each
voting machine uses the random values that it was given
in the proper order to encrypt the votes. Finally, after
polls close and the encrypted cast votes are put through
a reencryption mixnet and decrypted, interested parties
check to make sure that the right randomness was used
for every encryption.

3.2.1 Definitions

• LetG be a multiplicative cyclic group of prime order
q with generator g.

• Let h be the public key of the election that is used to
encrypt the votes posted to the bulletin board.

• Let T = t0, t1, . . . , tk be the set of trustees that
supply shares of the randomness that will be used for
encryption. These may be the same as or different
from the trustees who hold shares of the key needed
to decrypt the votes.

• Let each trustee t ∈ T have a public key pkt and
a secret key skt that it uses to sign the random val-
ues that it produces. Many widely-used signature
schemes could be used for this purpose including
DSA and RSA.

• Let M be the set of voting machines.

• Let each voting machine m ∈M have a public key
hm = gxm where xm is the corresponding secret
key chosen randomly from [0, q − 1].

3.2.2 Prior to the Election

1. For each voting machine m ∈ M , each trustee
t ∈ T generates a long list of random values
rt,m,0, rt,m.1, . . . , rt,m,n such that 0 ≤ rt,m,i ≤
q − 1. The number of values should be more than
twice the number of encryptions that any single vot-
ing machine will ever need to perform in the course
of a single election.

2. For each random value rt,m,i, the trustee t publishes
the triple at,m,i = (i, grt,m,i , σt,m,i) where i is the
index of the random value and σt,m,i is t’s signature
on the first two elements of the triple with skt.

3. Also for each random value rt,m,i, the trustee t pub-
lishes the triple bt,m,i = (i, E(rt,m,i), σ′t,m,i). E(.)
is El Gamal encryption with the machine’s public
key hm and with the random value wt,m,i and σ′t,m,i
is t’s signature on the first two elements of the triple
with skt.

4. For each voting machinem ∈M , each trustee t ∈ T
is challenged in public to open the encryptions of
half of the random values. The encryptions to be
opened can be selected using the Fiat-Shamir heuris-
tic [10] by computing the hash of bt,m,0, . . . , bt,m,n
where the hash function is modeled as a random
oracle and then using the hash to seed a pseudo-
random generator that is used to pick the indices
of the encryptions to be opened. A trustee opens
the encryption in the triple bt,m,i by revealing the
randomness wt,m,i used to encrypt it.

5. Any interested party can verify the signature on every
triple at,m,i and bt,m,i. He can also verify that every
opened triple bt,m,i matches its corresponding triple
at,m,i. Let (α, β) be the El Gamal encrypted random
value in bt,m,i. The interested party first computes
r = β

h
wt,m,i
m

and verifies that α = gwt,m,i . Then, he
can verify that gr is equal to the second element of
the triple at,m,i.

6. Once every trustee has produced its output and been
challenged, for each voting machine m ∈M , each

4



trustee t ∈ T gives each of its remaining unopened
triples bt,m,i to m along with the corresponding
triple at,m,i.

3.2.3 During the Election

Every time a voting machine m encrypts a vote it does
the following:

1. For each trustee t ∈ T , m selects the next triples
at,m,i and bt,m,i from the list that it received from t.
The lists of triples are ordered by increasing values
of i, and m must use the next triples on the lists.

2. For each triple at,m,i and bt,m,i, m verifies that it
has been signed by trustee t and then decrypts the
encrypted random value rt,m,i in bt,m,i using its
private key.

3. To encrypt a vote v, m first creates a message
µ = (v, f(v)) where f is a hash function modeled
as a random oracle. Then, m produces the El Gamal
ciphertext pair y = (α, β) = (gr0,m,i · gr1,m,i · . . . ·
grk,m,i , hr0,m,i+r1,m,i+...+rk,m,i ·µ). Finally, m pro-
duces the ciphertext c = (y, z) where z is a hash
chain value. For the first El Gamal ciphertext y0, the
corresponding hash chain value z0 = h(y0) where
h is a collision-resistant hash function. For a subse-
quent El Gamal ciphertext yj , zj = h(h(yj), zj−1).

4. All encrypted votes, whether they are ultimately cast,
audited, or canceled, are posted to the bulletin board
in the order that they are generated by m. As far the
bulletin board is concerned, the only difference be-
tween cast and audited and canceled votes, is that for
audited and canceled votes, the vote v and the ran-
dom values r0,m,i, . . . , rk,m,i are posted in addition
to the ciphertext c.

3.2.4 After the Election

1. For each voting machine m ∈ M , any interested
party can verify that the first half of every El Gamal
ciphertext y = (α, β) posted to the bulletin board is
correct by verifying that α = gr0,m,i · gr1,m,i · . . . ·
grk,m,i for the appropriate values of grt,m,i . He can
also recompute every hash chain value z. In addition,
he can verify that the correct random values were
used for each audited or canceled vote. Let v be the
vote and let s0, s1, . . . , sk be the random values that
were posted to bulletin board as part of the opened
encryption. Also, let ρ be the race to which v belongs
and let Vρ be the set of possible choices in ρ. The
interested party can verify that v is correctly formed
by verifying that v ∈ Vρ. He then can recompute

µ = (v, f(v)) and verify that β
µ = hs0+s1+...+sk

and that gs0 · gs1 · . . . · gsk = α.

2. All of the cast votes on the bulletin board are put
through a reencryption mixnet and then the outputs
of the mixnet are decrypted by the election trustees.

3. For each decrypted message µ that came through
the mixnet, any interested party can verify that µ
is correctly formed by verifying that µ = (v, f(v))
and that v ∈ Vρ where Vρ is the set of valid values
for v.

4 Security Analysis

4.1 Proof Sketch
Claim 1. The ciphertexts that the protocol presented in
Section 3.2 produces will either be subliminal channel
minimizing or will be detected as invalid with high proba-
bility.

If the sequence of ciphertexts C = c0, . . . , c` on the
bulletin board is created according to the protocol, it will
be subliminal channel minimizing because the ciphertexts
are posted in the order that they are created and every
ciphertext c = (y, z) on the bulletin board is derived
completely deterministically. The hash chain value z is
determined solely by the sequence of ciphertexts that pre-
ceded c. Moreover, the El Gamal ciphertext y = (α, β)
is derived deterministically from the vote v, the elec-
tion public key h, and the values r0,m,i, . . . , rk,m,i and
gr0,m,i , . . . , grk,m,i provided to the voting machine by the
trustees.

If a malicious voting machine does not follow the pro-
tocol, the invalid ciphertexts that it produces will be de-
tected with high probability by the post-election verifica-
tion steps described in Section 3.2.4. For every ciphertext,
any interested party can verify z and α by just recom-
puting them from public values. For an audited or can-
celed vote, he can recompute β as well because v and
r0,m,i, . . . , rk,m,i are available in the clear.

For a cast vote, verifying that the decrypted message
µ is well formed is sufficient to verify c. To see why,
consider a malicious voting machine that is trying to get
away with posting an invalid ciphertext c′ 6= c. Since the
z and α values of every ciphertext on the bulletin board
can be easily checked, c′ must be of the form ((α, β′), z)
where β′ 6= β. But then, β′ = hr0,m,i+...+rk,m,i · µ′
where µ′ 6= µ. In other words, c′ is the encryption of
some new message µ′. Thus, when c′ is decrypted, there
are three possibilities for µ′:

1. µ′ is not of the form (v′, f(v′)) for some v′ 6= v,
and the machine will be caught cheating. Since f is
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modeled as a random oracle, this is by far the most
likely outcome if β′ is an arbitrarily-chosen element
of G.

2. µ′ is of the form (v′, f(v′)) for some v′ 6= v, but
v′ /∈ Vρ, and the machine will still be caught cheat-
ing.

3. µ′ is of the form (v′, f(v′)) for some v′ 6= v, and
v′ ∈ Vρ. In this case, c′ is just encryption of a
different valid vote, and what the machine did is
equivalent to flipping the vote.

A malicious machine cannot publish ciphertexts out
of order because the ciphertext cj must use the jth set
of random values from the trustees. Otherwise, when an
interested party tries to recompute the α component of
cj , it will fail. The machine could, however, swap votes
between ciphertexts. For example, it could put vote vj
inside ciphertext cj+δ and vj+δ inside cj . In that case,
the voter who casts vj would need to get a receipt with a
commitment to cj+δ. But, since the machine would not
yet have generated cj , cj+1, . . . , cj+δ−1, it would not yet
know the correct hash chain value zj+δ , and the commit-
ment on the voter’s receipt would be wrong. Thus, if the
voter or her chosen representative compared her receipt to
the bulletin board, the machine would be caught cheating.

4.2 Threats and Mitigations
4.2.1 Malicious Voting Machine

Since the output of our protocol is subliminal channel
minimizing, a voting machine cannot maliciously choose
the random values used in the encryption of the votes
to leak bits to the bulletin board. A machine could still
attempt to flip votes, but the voter-initiated auditing pro-
cess prevents the machine from cheating on more than a
few votes. Vote-flipping does have implications for ballot
secrecy, however, as discussed in Section 5.

Since each voting machine accepts votes as input in the
clear, it could disclose them in the order they are cast to a
malicious voter or poll worker. But, this vulnerability is
present in every voting system in which a machine accepts
plaintext votes, whether it is cryptographic or not.

4.2.2 Malicious Trustee

A malicious trustee that is supplying random values to
voting machines could disclose its values to an adversary,
but if there is at least one honest trustee, the adversary
would not be able to gain any information about the votes.
To see why, suppose that for a given vote v, there is
one honest trustee that has supplied the random value r
and suppose that the adversary knows the sum s of the
rest of the random values supplied by the other trustees.

Then, from adversary’s standpoint, (gs+r, hs+r ·v) is still
uniformly distributed in the group G.

A malicious trustee could also launch a denial of ser-
vice attack by giving the voting machine the random value
r, but publishing gr

′
where r 6= r′. The trustee’s corrupt

output would cause the voting machine to produce in-
valid ciphertext and to be blamed for cheating. Step 4 in
Section 3.2.2 prevents this attack with high probability
by challenging each trustee to reveal half of the random
values it has released.

5 Vote-flipping as a Subliminal Channel

As we alluded to in the previous sections, although the
protocol we present in Section 3 removes a significant
subliminal channel, there is still a way for the machine to
leak some bits via the ciphertexts on the bulletin board.
Even without controlling the random values used in the
encryption of the votes, a malicious voting machine can
still control a ciphertext c on the bulletin board to a certain
extent by ignoring the voter’s choices and trying every
possible valid vote until the low order bits of HMACk(c)
have the desired values where k is a secret key known
only to the adversary. Of course, if enough voters choose
to audit their ballots, the malicious machine will be caught
cheating. But as before, we will show that if the machine
only alters a few ballots, its attack can succeed.

Assuming, as before, that each race on a ballot is en-
crypted separately, the number of bits that a malicious
machine can leak through a given ciphertext is not limited
by the amount of work that the machine is able to do, but
by the number of valid choices there are in the given race.
As a result, the subliminal channel created by flipping
votes has much lower bandwidth than the channel created
by manipulating the randomness, but it still poses a threat.
In general, the probability p that a malicious machine can
leak b bits using the ciphertext of a race withm candidates
is:

p = (1− (1− 1
2b

)m+1)

(The exponent is m+ 1 as opposed to m because leav-
ing the race blank is generally a valid choice.) Table 1
lists values of p for various values of m and b.

5.1 Exploiting the Vote-flipping Channel
Returning the example of the 1000 voter polling place
from Section 2, suppose a coercer wants to leak 10 bits in
order to reveal the identity of a single voter who voted the
“wrong” way. Once again, the coercer will try to leak these
10 bits by altering one or more pseudorandomly chosen
ballots posted to the bulletin board. However, unlike the
previous example, the coercer’s task is complicated by
the fact that, as Table 1 illustrates, for a given ciphertext,
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there is some probability that the coercer will not be
able to leak the bits that he wants. He can minimize
the chances of failure by only trying to leak bits in races
which have enough choices that the probability of success
is sufficiently high. Nevertheless, there will still likely
be races where he fails to leak the desired bits. To deal
with these cases, he can treat failures as bit errors in his
message and employ an error-correcting code.

Suppose that the coercer limits himself to leaking bits
on races in which he has ≥ 93.75% chance of success
(i.e. leaking 1 bit of races with ≥ 3 choices and leak-
ing 2 bits on races with ≥ 9 choices). He can then en-
code the 10 bits he wants to leak with an Extended BCH
code [24] that is 30 bits long and can correct up to 5 errors
(n = 30, k = 10, d = 11) [12]. Given the bit error rate
of ≤ 1 − 0.9375 = 0.625, by the Chernoff bound, the
probability that there will be more than 5 errors in the
30 bits is less than 0.1688. Assuming that there are 10
races on the ballot, each with fewer than 9 choices, the
coercer would need to alter 3 pseudorandomly selected
ballots out of 1000. Thus, if 1% of the voters audit their
ballots, the coercer has an over 97% chance of avoiding
detection, and if 5% audit, he still has an over 85% chance
of success [16].

5.2 Factors that Exacerbate the Threat

Although the subliminal channel created by vote-flipping
is low bandwidth, there are several factors that can exac-
erbate the threat that it poses:

• Write-in votes. Races that allow write-in votes
greatly increase the number of bits that a malicious
voting machine can leak because the write-in field
gives the machine much greater latitude in choosing
the message to be encrypted. The only limit on the
message is that it would have to be a name that a

m
b

1 2

1 0.7500 0.4375
2 0.8750 0.5781
3 0.9375 0.6836
4 0.9688 0.7627
5 0.9844 0.8220
6 0.9922 0.8665
7 0.9961 0.8999
8 0.9980 0.9249
9 0.9990 0.9437

10 0.9995 0.9578

Table 1: The probability of leaking b bits using the cipher-
text of a race with m choices

voter might plausibly write.

• Secret knocks. As in the previous attack, a “secret
knock” from a malicious voter could tell the machine
that the voter will not audit the ballot and that it can
safely use the ballot’s ciphertexts to leak bits.

• A single ciphertext for all races on the ballot. If
all of the races on the ballot are encrypted as a single
ciphertext, the number of possible messages that a
malicious machine can choose from is equal to the
product of the number choices in each of the races on
the ballot. If this number is large, as it often would
be, the number of bits that the machine would be
able to leak per ballot would be more limited by the
amount of work that the machine is able to do than
by the size of the message space.

5.3 Mitigation
Preventing a malicious voting machine from leaking bits
by flipping votes seems to be difficult because the gen-
eral strategy that we employ in Section 3 does not apply.
The votes, unlike the randomness, obviously cannot be
decided in advance of the election by a set of trustees. As
a result, it currently seems that the only available mitiga-
tion is to rely on a relatively high rate of voter-initiated
audits. But, we are skeptical of assuming a high audit
rate because voter-initiated audits are cumbersome even
for the Benaloh scheme, which is designed to make them
relatively easy.

Benaloh [1] and others have proposed boosting the
audit rate artificially by having election officials or rep-
resentatives of political parties or non-governmental or-
ganizations encrypt extra ballots that are never cast for
the sole purpose of auditing them. Unfortunately, since
the number of corrupted ballots needed for a subliminal
channel attack is so small, the non-voting auditors would
have to audit an impractically large number of additional
ballots in order to have a reasonable chance of detecting
an attack. For example, to have a nearly 50% chance of
detecting the attack described in Section 5.1 in which 3
ballots are corrupted out of 1000, the audit rate would
need to be 20%. If 5% of the voters chose to audit on
their own, the non-voting auditors would have to encrypt
an extra 188 ballots in order to boost the audit rate to the
required level.

In addition, the use of non-voting auditors suffers from
many of the same weaknesses as parallel testing [18]. Ma-
licious auditors can use a “secret knock” to tell compro-
mised voting machines to refrain from corrupting ballots
while audits are taking place. Moreover, if there is any
difference in voting behavior between auditors and real
voters (e.g. in the distribution of votes, the time taken
to vote, or the time between votes), then a compromised
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voting machine could use this discrepancy to decide when
not to cheat. Thus, finding an effective mitigation to the
vote-flipping subliminal channel seems to require future
work.

6 Related Work

Although cryptographic voting systems have been re-
searched and refined since Chaum’s initial work in
1981 [4], the issue of coercion was not addressed until
much later. The early expectation was that voters would
simply use their own trusted devices, or trusted devices
supplied by others, to encrypt their votes.

Benaloh and Tuinstra [3] developed the first crypto-
graphic voting system that was receipt-free (i.e. it pre-
vented voters from proving how they voted to a coercer).
However, their approach was cumbersome and did not
scale well to elections with many races and candidates.
Moreover, although one variant of their protocol was
receipt-free, their full protocol was not [13].

Chaum [5] and Neff [17] proposed voting systems with
creative user interfaces that allowed voters to verify that
their votes were correctly recorded without the aid of a
computer in the voting booth. Karlof et al. [14] described
several vulnerabilities in these schemes and also explained
how the randomness used to encrypt votes could be ma-
nipulated in order to compromise ballot secrecy.

More recent systems have user interfaces that are even
easier for unaided voters to use. Most of these systems
fall into two categories: those that use pre-encrypted pa-
per ballots, such as Prêt à Voter [8], PunchScan [19], and
Scantegrity I [7] and II [6], and encrypt-on-cast voting
systems, such as those proposed by Benaloh [1, 2], and
Sandler et al. [22]. Systems that employ pre-encrypted
paper ballots have the weakness that anyone involved
in creating or possibly handling the ballots before the
election can compromise ballot secrecy. Encrypt-on-cast
systems have the subliminal channel vulnerabilities dis-
cussed in this paper.

Several systems attempt to provide greater privacy at
the expense of increased complexity for both voters and
election officials. Moran and Naor [15] proposed a paper-
based scheme in which every ballot is comprised of two
halves, and the halves come from mutually-independent
trustees. A coercer cannot compromise a voter’s privacy
unless he sees both halves of her ballot before the election.
Unfortunately, this approach results in a complicated bal-
lot layout and requires voters to make random choices.
Riva and Ta-Shma [21] suggested a scheme in which the
voter does not reveal her plaintext votes to the voting
machine. But, the voter is required to use a computer to
encrypt her votes before arriving at the polling place.

Gardner et al. [11] proposed a scheme aimed at pre-
venting a malicious voting machine from compromising

ballot secrecy by manipulating the random values used to
encrypt the votes. But, in Section 2, we argue that their
protocol may be insufficient to mitigate the threat. They
also provided a definition of coercion resistance. Roughly
speaking, they claimed that a coercion resistant system is
one in which a coercer cannot tell whether a given cipher-
text contains his chosen vote or a different vote as long as
the ciphertext is ultimately audited. While this definition
has some intuitive appeal, we choose not to use it because
it only holds for the minority of ballots that are audited.
Moreover, it does not rule out certain attacks that we de-
scribe such as using one ciphertext to leak information
about the votes contained in other ciphertexts.

7 Conclusion

Among end-to-end cryptographic voting systems, encrypt-
on-cast systems like that of Benaloh are appealing because
they can provide voters with DRE and optical scan user in-
terfaces that closely resemble those of non-cryptographic
voting systems. However, like most other cryptographic
voting schemes, they introduce new threats to ballot se-
crecy. In particular, a malicious voting machine can use
the encrypted votes that it posts to the public bulletin
board as a subliminal channel to convey information about
voters’ choices to a coercer. In this paper, we have shown
that this threat is more severe than previously recognized,
and that voter-initiated audits, while sufficient to prevent
significant vote-flipping, may not be effective at miti-
gating subliminal channels. But, we have presented a
protocol that partially mitigates the threat by preventing a
compromised voting machine from maliciously manipu-
lating the random values used to encrypt the votes in order
to leak information. The protocol allows any interested
party to verify that the right randomness was used in the
encryption of every vote, not just those on ballots that
voters have chosen to audit. Unfortunately, our approach
does not completely solve the problem because, as we
have shown, just by flipping a handful of votes, a mali-
cious machine can leak a small, but potentially dangerous
number of bits to the bulletin board. Consequently, it
seems that more work will be necessary to completely
mitigate the unique ballot secrecy threats that encrypt-on-
cast voting systems face.
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