
Beyond Simulation: Large-Scale Distributed Emulation of P2P Protocols

Nathan S. Evans
Technische Universität München, Munich, Germany

Email: evans@net.in.tum.de

Christian Grothoff
Technische Universität München, Munich, Germany

Email: grothoff@net.in.tum.de

Abstract
This paper presents details on the design and imple-
mentation of a scalable framework for evaluating peer-
to-peer protocols. Unlike systems based on simulation,
emulation-based systems enable the experimenter to ob-
tain data that reflects directly on the concrete implemen-
tation in much greater detail. This paper argues that em-
ulation is a better model for experiments with peer-to-
peer protocols since it can provide scalability and high
flexibility while eliminating the cost of moving from ex-
perimentation to deployment. We discuss our unique ex-
perience with large-scale emulation using the GNUnet
peer-to-peer framework and provide experimental results
to support these claims.

1 Introduction

The outcome of a network security experiment can vary
significantly depending on whether the experiment was
based on simulation or emulation [5]. While both meth-
ods can provide new insights, there is a dearth of scalable
approaches for assessing large-scale peer-to-peer (P2P)
networks using emulation. While some studies [9] have
run attacks against deployed P2P networks, there is a
clear benefit to being able to run large-scale experiments
without potentially negatively impacting actual users.

This paper presents a design and implementation for
large-scale experiments with P2P protocols using dis-
tributed emulation. The key insight behind this paper is
that while simulators can achieve significant scalability
by abstraction, emulators for P2P networks can achieve
comparable scalability through parallelization and distri-
bution. By distributing computations, a modest computer
laboratory can achieve performance gains of an order of
magnitude over a single machine for suitable problems.
Similarly, due to the advent of many-core processors, lo-
cal computational resources are often only limited by the
amount of parallelism in the problem. While paralleliza-

tion and distribution of simulators can be difficult, distri-
bution is inherent in P2P networking, making it easier to
create distributed P2P emulators.

Emulation has many advantages over simulation: the
code used for an experiment can be the same code used
for deployment, and programming an appropriate model
with abstractions is unnecessary. The emulator can be
used to easily evaluate the entire system, not just individ-
ual components; as a result, the experimental setup can
be used to evaluate performance and security issues as
well as serving as an integration testbed. Given problems
on a deployed system, modifying experiments using em-
ulation to reproduce, measure and evaluate the undesired
behavior is generally easier than doing the same using
experiments through simulation. In fact, depending on
the abstractions chosen, a simulation may fail to model
observed real-world problems. This is even more appli-
cable for security assessments as abstraction eliminates
implementation details, and thereby sources of vulnera-
bilities.

P2P simulators typically simulate tens of thousands to
hundreds of thousands of peers [11,16,20,23], with some
distributed simulators reportedly scaling up to 80 million
peers [6]. While distributed emulation may be the nat-
ural choice for experiments with distributed systems, it
is still not at all obvious that emulation actually would
scale to the desired problem sizes. Previous work on em-
ulation falls far short of the scale managed by simula-
tions; the best-performing previous emulation setup that
we are aware of has been reported to scale to only 4,096
peers [26].

This paper details our design and experiences in pro-
viding a scalable system for evaluating P2P protocols us-
ing emulation in the context of the GNUnet framework1.
We did experiments running a 80,000 peer Kademlia-
style DHT (with link-encrypted P2P communication) us-
ing a small cluster of 32 machines with 7 GB of memory

1https://gnunet.org/

https://gnunet.org/

each; our results indicate that with proper tuning, emu-
lation can be scaled to much larger sizes than previously
achieved without sacrificing the ability to run realistic
experiments.

Section 2 describes our high-level design goals, de-
limiting the scope for our design. Key design proper-
ties of the GNUnet P2P framework are described in Sec-
tion 3 including extensions made to GNUnet for large-
scale emulation presented in Section 3.4, followed by
the lessons we learned tuning the system in Section 4.
Section 5 presents some of the results obtained from our
experiments. Finally, Section 6 compares our setup with
other emulators and simulators for P2P networks.

2 Design Goals

The primary requirement for our experimentation frame-
work is that it must be distributed, taking advantage of
the inherent properties of P2P networks to spread com-
putational load. Additionally, we require the ability to
run many peers on the same host, making use of multi-
ple cores and taking into account the fact that a single
peer would rarely use the entire computational or storage
resources of an individual computer.

We run the original P2P software directly on top of the
operating system. Instead of providing an operating sys-
tem and network abstraction layer below the application,
our design is to issue commands to the various layers
of the P2P software to achieve the desired environmen-
tal constraints (Figure 1). In order to achieve reasonable
performance, we run peers as independent processes and
assume no control over when the operating system gives
CPU time to peers. As a result, a major limitation of
our design is that our emulator cannot produce timing-
accurate results. Similarly, our current framework does
not directly support emulation of network delays.

Given that an emulation is executed using a cluster
(or single host) with universal connectivity, an important
feature for realistic experiments is the ability to impose
restrictions on which peers should be able to communi-
cate directly. Existing P2P network simulators often only
allow topology configuration at very low levels [17] such
as configuring AS links or link delays. None of the DHT-
capable simulators [1,2,20] that we have encountered al-
low user defined underlay topology restrictions, such as
those which result from firewalls, network address trans-
lation (NAT) or topologies based on personal trust rela-
tionships, like those extracted from Facebook [30]. In
contrast, our system can be configured to impose con-
straints on underlay topologies; we also provide vari-
ous algorithms to construct common topologies such as
cliques, Small-World networks and Internet-like graphs.

A primary goal of any experiment is to collect relevant
data. Our system supports adding custom instrumenta-

OS

E
m
u
l
a
t
i
o
n

L
i
b
r
a
r
y

Profiling
Driver

starts

calls

gen
era

tes
config

uses

Peer B

CORE

TCP
GNUnet

WLANDV HTTPUDP
GNUnet GNUnet GNUnet GNUnet

TRANSPORT

DHT

SUPERVISOR

calls

s
t
a
r
t
s

generates

Peer A

CORE

TCP
GNUnet

WLANDV HTTPUDP
GNUnet GNUnet GNUnet GNUnet

TRANSPORT

DHT

SUPERVISOR

calls

starts

callss
t
a
r
t
s

config

uses

Figure 1: Design of the emulation system (key compo-
nents only). A driver for the experiment uses the em-
ulation library to issue commands to the various layers
or the GNUnet framework to achieve the desired exper-
imental setup and to obtain performance metrics. Many
GNUnet peers run as independent process groups on the
same host.

tion to log results to a file or to a database. However,
given a sufficiently large number of data points, such log-
ging activities can become the bottleneck for an experi-
ment. To mitigate this potential issue, we provide a scal-
able integrated facility to log, accumulate and store sim-
ple numeric values collected during an experiment using
a single function call. Collection of these statistics can
be performed in a distributed or centralized manner.

Finally, one common criticism of most P2P network
simulators and emulators is their steep learning curve,
which can lead to strange results. The authors of [21]
note that two different simulators running the same ex-
periment on a five node Chord network produced inex-
plicably different results. Using emulation shifts this
problem from understanding the simulator to understand-
ing the underlying implementation, written as part of the
GNUnet P2P framework. The next section will describe
key features of GNUnet, arguing why we believe that this
will ease usability problems.

3 The GNUnet P2P Framework

The GNUnet framework is a GNU software package for
secure P2P networking. The package integrates about
a dozen different services for building P2P applications.
A GNUnet service consists of a client API and a server
process. The client API uses a service-specific proto-
col to access the server that keeps the global state for
the service and provides the respective functions to many
clients.

New services and P2P applications can be built by

either accessing the APIs of existing services or re-
implementing the client-side of the respective service-
specific protocol. Extensible services use user-defined
protocol numbers to channel requests to client(s) respon-
sible for the extension. Messages that no client has
claimed responsibility for are discarded.

A result of this architecture is that each individual peer
typically consists of roughly a dozen processes that make
extensive use of interprocess messaging. Each peer’s
process group is coordinated using a supervisor service
which is primarily responsible for starting and stopping
other service processes. Services can be started auto-
matically on-demand by the GNUnet supervisor service.
As a result, functionality that is not needed for a partic-
ular application or experiment requires no run-time re-
sources.

3.1 Services in GNUnet
Important general-purpose services in the GNUnet
framework include the transport service (which provides
direct, unencrypted P2P communication), the core ser-
vice (which provides direct, encrypted P2P communi-
cation), the statistics service (which tracks performance
metrics), the peer information service (which tracks peer
addresses), and the distributed hash table service (for dis-
tributed storage of key-value pairs).

GNUnet provides some basic level of security for all
applications using the core service. Each peer is identi-
fied via a public-private key pair (using 2048-bit RSA).
Connections between peers are link-encrypted and au-
thenticated using AES-256 and SHA-512. On the link-
layer, the transport service signs network addresses, en-
suring that peers do not send (encrypted) traffic to ad-
dresses other than those controlled by the intended desti-
nation.

The transport service also communicates and — as
much as technically feasible — enforces bandwidth lim-
itations as set by the user, and assigns bandwidth based
on preferences as determined by the P2P applications us-
ing GNUnet. The transport service also allows applica-
tions (and the emulation library) to impose arbitrary re-
strictions on direct connections between peers. It is also
possible to restrict connections between peers to particu-
lar transports, which is useful when emulating transport
constraints on P2P communication. As a result, the trans-
port service of the GNUnet framework allows our emu-
lation library to exert control over P2P communications
that other emulation designs typically enforce via virtual
network interfaces and virtual machines.

3.2 The gnunetutil Library
All components of the framework build on top of the
shared gnunetutil library which provides a portable

event-loop as the key execution driver. Blocking op-
erations are generally only allowed in dedicated pro-
cesses; APIs typically provide asynchronous calls in-
stead of blocking and the use of continuation passing is
common. The gnunetutil library also provides portable
hardened wrappers around common libc operations,
common data structures, cryptographic primitives, log-
ging operations, network and interprocess communica-
tion and configuration management functions.

3.3 Scalability Benefits of the GNUnet Ar-
chitecture

Minimization of memory consumption is critical for our
system to scale. GNUnet is implemented in C, avoid-
ing the large memory footprint of systems written using
managed languages. C code is compiled prior to execu-
tion; hence, the operating system can use the same pages
in real memory for the respective read-only code and data
segments of different processes. Because only the re-
quired service processes are started, it is typical that less
than half of the binary code in the framework is loaded
into memory at run-time. Furthermore, memory con-
sumption for the heap is reduced by avoiding garbage
collection overheads.

This architecture has several key advantages. First,
it isolates faults within components, making it easier to
diagnose problems. Second, each peer can make use
of many cores. Given that we run thousands of peers
per host resulting in tens of thousands of processes, this
architecture is suited to modern-day many-core proces-
sors [24]. Finally, a major advantage of the multi-process
architecture is that new components can, in theory, be
written in other languages. While certain other languages
may incur significant performance penalties for large-
scale experiments, this facility may still be beneficial
from a usability perspective.

3.4 The Emulation Library

We control large-scale emulation experiments using an
experiment-specific driver that is linked against our
GNUnet emulation library; the library is used by the
driver to set up the testbed. The emulation library is ac-
cessed via a layered API. The low-level API provides
functions to start and stop individual peers, to explicitly
connect pairs of peers, and to change the configuration
of running peers. For P2P security evaluations, the abil-
ity to dynamically reconfigure peers at runtime can be a
valuable tool: in some of our experiments, we use it to
configure a subset of the peers to become adversaries and
start executing different attack vectors. The high-level
API allows groups of peers to be started across multiple

hosts, automatic generation of a range of network topolo-
gies and induction of network-wide churn at configurable
rates. The API also provides means for accessing the
state of each individual peer, including access to the cur-
rent network topology and statistics logged by peers.

The high-level API is given a configuration file as a
template for generating an initial configuration for each
emulated peer. The library itself primarily adjusts op-
tions such as port numbers that must be unique per peer.
ssh is then used to copy configuration files to execution
hosts and to start peers on those systems. Hostnames or
IP addresses of hosts which are to be used for emulation
are also specified in this high-level configuration. Peers
run on these hosts use this hostname or IP address for
connections; virtual networks are not supported by our
framework. Of course, utilizing other virtual network en-
vironments underneath our emulation framework is pos-
sible.

3.4.1 Network Topologies

Our emulation library can connect peers using a di-
verse set of specific topologies. The library distin-
guishes between the underlay topology, which speci-
fies transport-level connections, and the overlay topol-
ogy, which specifies peer-level connections. Whitelist-
ing connections (explicitly allowing particular peers to
connect) and blacklisting connections (explicitly disal-
lowing particular connections) is also supported. Fi-
nally, the emulation API allows specification of an ini-
tial set of connections that peers should have at the be-
ginning of the experiment in lieu of executing the net-
work’s ordinary bootstrapping phase. In the emulation
API, these different requirements on network topologies
are reflected by allowing the user to specify the different
graphs or constraints for each of these topologies.

Our framework supports specification of each of the
topologies listed in Table 1. Our intent is to provide
well-known topology generators for experiments involv-
ing both highly structured and random topologies. Note
that some of the supported topology generation algo-
rithms require specification of arguments to control their
construction. For example, randomized graph construc-
tion requires an argument indicating the probability for
establishing a link.

The “file” topology is the most expressive option sup-
ported. This topology requires an argument indicating
the path to a topology specified in the METIS [15] file
format. We allow topologies to be specified in these files
both for easy import from other topology generators and
for consistency in testing. The emulation library pro-
vides utility functions to export the topology of an active
peer group to a file. This file can be used to recreate the
exact same topology during subsequent experiments, or
repetitions of the same experiment.

Table 1: Built-in generators that can be used for sup-
ported topologies.

Topology Description
Clique Connects all peers
Line Connect peers in line
Ring Connects peers in line with wraparound
2d-Torus 2d-grid with wraparound
Erdos-Renyi Random graph construction
Small World
(ring)

Ring topology with additional, random-
ized long distance connections

Small World
(2d-torus)

2d-torus topology with additional, ran-
domized long distance connections

Scale-Free Scale-free topology
InterNAT Clique with some peers restricted to

outgoing connections (similar to un-
punched NAT)

File Read topology from file

3.4.2 Executing Experiments

In order to use our emulation library for experiments, a
P2P algorithm designer would first implement their ap-
plication as a GNUnet service. The implementation bur-
den is eased by the large amount of low-level P2P func-
tionality provided by extant services and the gnunetu-
til library. Next, an application specific profiling driver
which utilizes the emulation library would need to be
created, again with the benefit of building on existing
profiling and testing drivers. While implementers would
have to learn the GNUnet framework (as they would have
to learn a simulation framework), the benefits of services
provided by GNUnet and a single usable implementation
likely outweigh this overhead.

Execution of an experiment using the library via the
high-level API typically proceeds in six phases. During
the first phase, a hostkey is generated for each peer; at
this time, the emulation driver is optionally notified of
the identity (the hash of the public key) of each peer. This
allows the controlling process to keep track of peer iden-
tities for later peer identification and lookup in the peer
group. In the second phase, the desired network topol-
ogy is computed and per-peer configuration files that
specify the desired topological constraints are created.
These constraints specify which connections are allowed
at both the underlay and overlay level, but not which
connections will actually be used. Peers are started in
the third phase, and connected using the so-called ini-
tial network topology in the fourth phase. After all of
these initial topology connections have been established,
in the fifth phase, the driver performs actions specific to
the experiment, during which time the network topology
may evolve, configurations for individual peers can be

modified, churn can be induced, and benchmarks may be
executed. In the final phase, the emulation library is used
to shut down all of the peers. Peers are shut down using
(fresh) ssh connections to the execution hosts.

3.4.3 Limitations

The emulation library exerts only very limited control
over the execution of the processes in the testbed. Thus,
the results are generally not timing-accurate, especially
if the execution hosts run large-scale experiments. Using
a virtual machine (VM) per peer with quality-of-service
guarantees enabled at the VM level would eliminate this
restriction; however, this would also greatly reduce the
scalability of our approach.

While our design may not provide timing accuracy,
we believe this is unnecessary for many important ex-
periments. In P2P networks, individual peers often have
unpredictable and highly variable amounts of resources
at their disposal. A robust design should thus be able to
deal with such fluctuations and not fail (for example due
to timeouts) due to minor timing variation. In terms of
security experiments, practical denial-of-service attacks
should still show their impact on system behavior even
with slight timing deviation. Many other attacks, such
as those on data integrity, are also typically not impacted
by changes in the timing of events. Finally, even for ex-
periments that are inherently sensitive to timing (such as
traffic analysis for deanonymization), increased fluctua-
tions may in some cases support the robustness of the
technique.

In terms of the ability to observe details of emulation
execution, the emulation library provides functions to
manage the experiment at the level of peers (configure,
start, connect, stop) and the level of the peer group (iter-
ate topology, gather statistics). These functions are used
in concert with high-level API interactions with the ser-
vice that is the subject of the experiment. However, some
experiments may require more specific insights into the
behavior of the network, especially at the lower layers.
This can be achieved by directly connecting to the re-
spective service APIs for the lower layers. For example,
the core service provides an API for notification of ev-
ery message that is sent prior to encryption or received
after decryption. Similarly, encrypted traffic can be in-
tercepted from the transport service API.

For our experiments with the DHT (Section 5.1), the
DHT service API (with its purposely simple PUT/GET
abstractions) did not provide the desired data collection
capabilities. Here, we directly instrumented the DHT for
data collection (Section 5.2). This is likely better for de-
signers of new P2P applications; as we discuss in Sec-
tion 6, it can be problematic to have the framework gather
data that is not specific to the application.

4 Lessons Learned

The development process for our system was iterative:
as we scaled up the network size, new bottlenecks would
emerge and had to be dealt with before we were able
to increase the size again. This section summarizes the
most salient lessons learned about emulating large-scale
P2P networks.

4.1 Cryptography

Cryptographic operations, in general, can be expensive,
and given that many modern P2P networks use asymmet-
ric key pairs for host identification and other core func-
tionality, repeated calls to cryptographic functions (e.g.
key generation) can have significant overhead.

Our experience during development was that the cre-
ation of strong private keys, even for a few dozen peers,
virtually always depleted the entropy pool of the sys-
tem, causing excessive delays. Our initial response was
to disable entropy gathering; however, creating tens of
thousands of 2048-bit RSA keys for each experiment still
took a significant amount of time, even using a cluster.

We solved this problem by pre-computing a large
number of public-private key pairs and reusing them be-
tween experiments. Despite the use of rather expensive
cryptographic primitives, we did not have to simplify
or eliminate other cryptographic operations. This also
serves to make our emulations more realistic.

For emulating P2P systems that require cryptography,
there are two lessons to be learned here. First, strong
key-generation operations (which generally have little
impact for end-users in terms of system performance)
need to be simplified even for small-scale emulation ex-
periments. Second, assuming protocols are reasonably
well-designed, other typical cryptographic operations do
not need to be simplified even for large-scale emulation
experiments.

4.2 Execution time

One important discovery we made was that when run-
ning tests at a large scale, tasks scheduled to run at a
fixed frequency are problematic, especially if their num-
ber increases with an experimental variable.

As a concrete example, when crossing the 5,000 peer
threshold, our experiments were stuck at a total of 200K
connections or less; any increase caused the connection
process (and our test host) to grind to a halt. The rea-
son, we discovered, was that the CPU became pegged
processing latency estimation tasks. These tasks were
initially set to run at a seemingly harmless frequency
of once per minute per connection. With around 40

connections per peer and 5,000 peers, these tasks be-
came backed up, effectively taking over the system. In
this case, our simple solution was to decrease the fre-
quency of the latency measurements when testing, which
is harmless as our emulation setup does not model net-
work latencies (thus, these measurements would not be
accurate anyway).

The overall issue is that in a general-purpose frame-
work, virtually any hard coded value will eventually
cause problems. As such, the solution is to either make
the code adaptive — for example, our system uses ex-
ponential back-offs in many places instead of fixed retry
frequencies — or at least configurable by users (prefer-
ably with clearly marked default configuration values).

4.3 Latency

One important general lesson we learned in this endeavor
is that while parallelism is important for avoiding idle
waiting and efficient utilization of available resources, it
must always be bounded and balanced in order to avoid
overly negative impacts on latency. More specifically, we
discovered that once we moved to distributed operations,
the latency of starting peers over the network quickly be-
came a major bottleneck, as creating an ssh connection
and waiting for complete startup of a single peer took up
to a second — even without key generation.

To solve this issue, we first reduced the startup delay
by launching only the master process (Section 3), and not
waiting until the peer fully initialized. Interactions with
individual peers were deferred until after all peers had
been launched. Still, having to interact with each exe-
cution host for each peer created unacceptable delays of
many network round-trip times. Ultimately, the latency
issue for starting peers was resolved by creating a helper
script that starts all the necessary peers on a particular
host; using this script, we only require one ssh interac-
tion per host instead of one per peer.

Additionally, because the creation of an initial set of
connections between peers requires the driver to commu-
nicate the desired initial connections to those peers, an-
other general latency issue we discovered was attempting
to establish too many simultaneous connections at once.
In the case of initial connection setup by the driver, we
cannot fully parallelize this step, as the driver would run
out of file handles. Furthermore, in general, trying to es-
tablish too many connections at a single host in parallel
can peg the CPU on that host while other hosts remain
idle. To solve this, our driver currently imposes config-
urable limits on the number of concurrent connection at-
tempts per peer and per host; this ensures that all hosts
are utilized until all connections are established.

By bounding and balancing our use of parallelism and
by reducing the overall number of round-trip times dur-

ing network operations (in our case, done by introduc-
ing the helper script), it is possible to effectively control
many of the latency issues introduced by distribution.

4.4 Sockets
Attempts to maintain network transparency also created
issues. As we scaled our implementation, we repeatedly
ran into socket limitations. First, we ran out of TCP ports
because each peer used a TCP port for every service. Af-
ter switching to UNIX domain sockets for each peer’s
internal interprocess communication, we were still ex-
ceeding operating system limits when creating hundreds
of thousands of TCP connections between peers on the
same host. We had initially expected that UDP would
be a good alternative, but we quickly discovered that
UDP becomes highly unreliable even over loopback once
the kernel’s UDP buffer becomes too small to handle all
queued messages.

As a result, our large-scale experiments are typically
configured to use UNIX domain sockets for all inter-
peer communication on the same host and UDP or TCP
for intra-peer communication. Furthermore, TCP-based
control connections between the driver and peers are
only established on-demand.

The lesson we learned here is that while network trans-
parency is nice (and in fact sometimes required for in-
teractions with the driver), using UNIX domain sockets
instead of TCP/UDP wherever possible is important for
scalability. Being able to choose the communication do-
main is important, and the most scalable end-result is
typically a mixture of UNIX, UDP and TCP.2

4.5 Memory
When running tens of thousands of peers, every single
additional private page in memory is costly; as such, a
repeatedly recurring bottleneck was memory consump-
tion. While many specific changes to data structures
were made to reduce memory consumption, the single
biggest improvement was obtained by changing the de-
fault size of our communication buffers from a static 64k
bytes to a minimum initial size of 4 bytes, which is then
re-allocated to a larger size as necessary. Most messages
passed between services and peers are much smaller than
64k, so this change resulted in significant memory reduc-
tions for most services.

Per design, each of our peers is comprised of a number
of services implemented as independent processes. De-
pending on the nature of the experiment, some of these
service processes can be shared between peers. For ex-
ample, sharing the DNS resolution service is typically

2Unless it is germane to the experiment, whereas the emulation li-
brary can be configured to only use particular transports.

unproblematic as it has no state. We typically share
one instance of such services among every 100 peers.
This reduces the overall memory footprint without turn-
ing these shared processes into bottlenecks.

The general conclusion here is that being able to share
memory between peers is critical for large-scale emula-
tion, and that any non-shared memory (including heap,
stack and pages for global variables) must be closely in-
spected. We have been able to push the amount of mem-
ory shared between peers to about 80%, which represents
an improvement in scalability by a factor of five.

5 Experimental Results

We have tested our emulation framework extensively on
various architectures under numerous configurations. In
this section we present some basic performance data for
the framework as well a small selection of the results ob-
tained from our experiments.

Table 2 shows the results of our framework in terms of
scalability (measured in the total number of peers emu-
lated) and topology setup times for various architectures
and system configurations. In terms of time, the most
costly part of the emulation setup is typically the peer
connection phase, as it requires cryptographic key ex-
change and often network communication. The speed at
which connections can be established is therefore an im-
portant metric.

Table 2: Relevant performance details of our framework
on various architectures.

Architecture # Hosts Cores Memory # Peers Connections Time to
(Total) (Total) (Total) per second start peer

Cortex-A8 1 1 512 MB 100 ∼ 1 ∼ 206 ms
Xeon W3505 1 2 12 GB 2,025 ∼ 60 ∼ 12 ms
Xeon W3520 1 8 12 GB 2,025 ∼ 188 ∼ 5 ms
Opteron 8222 1 16 64 GB 10,000 ∼ 327 ∼ 27 ms
Opteron 850 31 124 217 GB 80,000 ∼ 559 ∼ 1 ms

The data shows that our framework is quite scalable,
running up to 100 peers on an (embedded) ARMv7 de-
vice and 80,000 on a small cluster. As one would expect,
the number of peers we can emulate correlates closely
with the total amount of system memory, and the con-
nection speed relates to the processor speed. In general,
peer startup time is reduced as more cores are added, ex-
cept for in the case of the 16-core host. We believe this
is due to I/O limitations; starting each peer requires peer-
specific file accesses to the configuration and private key
files.

The most important factor in terms of scalability of
our framework is the memory footprint of the processes
that make up each individual peer. Table 3 shows how
memory is used by the various processes that each of our
peers typically uses.

Table 3: Breakdown of memory usage for the relevant
services extant in our framework. Each process uses an
additional 84 KB for the stack. P2P connections require
about 6 KB memory with the transport service, 7 KB
with the core service and an additional 1 KB if the DHT
is using the connection. Our code was compiled on a
64-bit Linux system using GNU GCC version 4.3.2 op-
timized for size (“gcc -Os”).

Service Non-shared Heap Shared
supervisor 228 KB 32 KB 2,364 KB
transport 359 KB 99 KB 2,888 KB

core 300 KB 84 KB 2,428 KB
dht 536 KB 240 KB 3,684 KB
total 1,424 KB 456 KB 11,364 KB

5.1 DHT Testing Example

We implemented a recursive implementation of the
Kademlia DHT [18] as an example for using the emu-
lation library. DHTs are suitable for large-scale experi-
ments since they provide efficient routing in large-scale
networks with a moderate number of connections, selec-
tively choosing peers to connect to based on their loca-
tion in a global address space. In Kademlia, this peer se-
lection is performed iteratively by repeatedly searching
the network for each peer’s unique identifier. To illus-
trate the effects of this process, we provide an example
where peers are initially connected in a 2d-torus over-
lay topology (the underlay topology is unrestricted). We
then show snapshots of the peer connections over time
(Figure 2). This use of our emulation library demon-
strates how access to the overlay topology can be used to
gain insight into the state of the network.

We also implemented a variation of Kademlia that
uses randomization to enhance resilience, for example
against Sybil [7] attacks. Figure 3 shows experimental
results comparing Kademlia against randomized Kadem-
lia with an increasing number of malicious sybil peers
being added to the network. These results were obtained
running a total of 20,000 total peers on the 32-node clus-
ter described previously. This experiment utilizes many
facets of our emulation framework, including its topol-
ogy generation and logging facilities, the ability to mod-
ify peers to run attacks, and the ability to easily distribute
execution to run large-scale experiments.

As mentioned previously, we expect P2P applications
written in the GNUnet framework to have diverse data
logging requirements depending on the purpose of the
application. For instance, in our DHT implementations
we added various levels of logging. Data which can be
logged in the DHT includes hop-by-hop records of mes-

(a) Initial (b) N Minutes

(c) N Minutes (d) Final

Figure 2: Topology evolution from a highly structured
2d-torus into one suitable for Kademlia. As find peer
requests are sent, the torus collapses into itself.

sages, average path length for successful and failed re-
quests, number of data replicas in the network, and myr-
iad other data items. We chose to integrate this logging
with a database; as we felt this was the best way to main-
tain the large amount of data. However, these metrics and
data formats are quite specific to the DHT; other applica-
tions would likely prefer different data. Even somewhat
common metrics such as hop counts can be interpreted
differently; does “hop count” include paths through the
network which failed, or only the hops from source to
destination? Requiring application creators to implement
specific metrics reduces the ambiguity of these metrics,
and forces the experimenter to understand their data.

5.2 DHT-Related Performance Issues

There were two specific performance bottlenecks which
caused problems for our experiments with the DHT.
First, we had to throttle the initial exchange of “find
peer” messages (which the DHT uses to build the over-
lay routing tables). Then, convergence of the DHT over-
lay was still a time consuming process. In the end,
we used the topology capture functionality to store con-
verged topologies to disk. Subsequent runs can then load
the converged topology, eliminating this costly phase for
variations of the experiment.

The second bottleneck related to logging operations.
Our DHT instrumentation supports detailed logging of
routing operations. Directly logging each routing opera-

 0

 20

 40

 60

 80

 100

 0 0.005 0.01 0.015 0.02 0.025 0.03

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

Randomized Kademlia Round 10
Randomized Kademlia Round 5
Randomized Kademlia Round 1

Kademlia all rounds

(a) Erdos-Renyi Topology

 0

 20

 40

 60

 80

 100

 0 0.005 0.01 0.015 0.02 0.025 0.03

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

Randomized Kademlia Round 10
Randomized Kademlia Round 5
Randomized Kademlia Round 1

Kademlia all rounds

(b) Small-World Topology

Figure 3: Comparison of Kademlia vs. Randomized
Kademlia in restricted underlay topologies as the num-
ber of Sybil nodes are increased in the network.

tion to a central database is often too expensive. Writing
the information to a peer-specific log file and importing
the logs into the database in bulk after the experiment is
much more scalable.

6 Related Work

Large-scale testbeds such as DETER [19], GENI [8],
SecSI [3], and Emulab [12] provide realistic network
conditions and operating systems for security testing.
Typically this research focuses on application level tests
running full VMs [12] or OSes [5], revealing high-level
performance and security [4] issues. In contrast, our de-
sign focuses specifically on P2P implementations, allow-
ing security design issues to be discovered which may
only be present at large scale. However, our emulation
framework can be deployed on such testbeds to incorpo-
rate the effects of differences in the underlying platforms

into results. We have used our emulation library on Plan-
etLab; however, the instability and limited resources of
PlanetLab nodes made it more useful for us to run ex-
periments on the cluster at our disposal. Deployment on
more stable testbeds such as DETER and Emulab should
work with the emulation library “as-is”.

6.1 Simulation
The prevailing method for testing and verifying new P2P
designs is simulation [2, 6, 10, 20, 22, 25, 27, 31].

Chunksim [14] and the Query Cycle Simulator [25]
are domain-specific discrete event simulators focusing
on BitTorrent and content distribution, respectively. Both
were created with the assumption that real-world experi-
ments require the ability to model at least 20K peers and
the presumption that this size of network could not be
emulated or deployed for experiments. Furthermore, it
was thought that malicious peers could not be adequately
studied in deployed networks of this size. This paper
shows that such limitations no longer hold.

OverSim [2] and PlanetSim [1] are discrete event sim-
ulators for overlay protocols. Both use a layered struc-
ture to provide a common API for application develop-
ment. Overlay applications are written in a domain spe-
cific dialect of C++ (OverSim) or Java (PlanetSim); this
high level of abstraction makes simulation implementa-
tions quite different from their counterpart real-world im-
plementations. Building upon OMNet++ [28], OverSim
is able to simulate down to the network level, achieving
high realism. PlanetSim allows the networking layer to
be switched out, allowing the use of a NetworkSimula-
tor for simulation, and a NetworkWrapper for emulation
or deployment. Simulations of up to 100K peers are re-
ported, but we are not aware of any detailed studies that
were performed at this scale.

Some effort has recently been made to distribute the
tasks of existing simulators [6, 17, 27]. PeerSim and
dPeerSim (the distributed version of PeerSim) are cur-
rently the most scalable P2P discrete event simulators
with simulations of tens of millions of peers. While this
is significantly larger than what we can do with emu-
lation, the realism and freedom of implementation pro-
vided by our framework makes it complementary to these
large-scale simulators.

6.2 Emulation
Emulation frameworks [13, 23, 26, 29] are less common.
While emulators are typically better at testing real-world
implementations and capture more realistic data, they do
so at the expense of scalability. None of the existing em-
ulation frameworks have been used for experiments of
the scale presented in this paper.

Contrary to our focus on high-level operations, Mod-
elNet [29] is a distributed emulation environment aimed
at capturing network delays, cross traffic and congestion
due to underlay network configuration. In ModelNet,
each emulated peer is executed with precise control over
their network interactions. The largest ModelNet emu-
lation included 10K Gnutella peers in a cluster of 100
physical nodes, though full details of this particular ex-
periment were not given.

6.3 Combining Simulation and Emulation
Some projects try to overcome the scalability limitations
of emulators and the undesirable effects of abstraction
from simulators by mixing both techniques.

MACEDON [23] is a framework for the design, sim-
ulation and emulation of P2P algorithms. MACEDON
requires that applications are written in a specific lan-
guage; from this specification, code is generated for the
simulator or emulator. MACEDON relies on ModelNet
for underlay specification, and the largest reported ex-
periment was less than 1K peers in total. We found no
instances of MACEDON-generated code actually being
used as a real-world implementation.

Other mixed simulation/emulation systems include
Overlay Weaver [26] and RealPeer [13]. Overlay Weaver
has been scaled up to 4K total peers on a 200 PC cluster.
RealPeer is a framework and methodology for creating a
P2P implementation in phases which include simulation
and emulation. The Java-based implementation could
conceivably be used as a real-world implementation. The
authors successfully simulated a 20K node Gnutella net-
work; however, no results were provided on testing the
emulation or real-world implementation.

7 Conclusion

Simulation is often not suitable for security evaluations
and existing emulation environments for P2P networks
generally lack scalability. We believe that this is largely
because they are implemented in high-level languages
and often focus too much on packet-level details. We
have presented a range of techniques we used to en-
gineer our emulation framework for high performance.
The GNUnet P2P framework with the emulation library
exceeds previous emulators in terms of scalability and
provides a comprehensive framework for large-scale ex-
periments with P2P protocols.

Acknowledgments
This work was funded by the Deutsche Forschungsge-
meinschaft (DFG) under ENP GR 3688/1-1. The authors
thank Krista Grothoff for extensive editing.

References
[1] AHULL, J. P., AND LPEZ, P. G. Planetsim: An extensible simu-

lation tool for peer-to-peer networks and services. In Peer-to-Peer
Computing (2009), pp. 85–86.

[2] BAUMGART, I., HEEP, B., AND KRAUSE, S. Oversim: A flex-
ible overlay network simulation framework. In IEEE Global In-
ternet Symposium, 2007 (May 2007), pp. 79 –84.

[3] CALVET, J., DAVIS, C. R., FERNANDEZ, J. M., GUIZANI, W.,
KACZMAREK, M., MARION, J.-Y., AND ST-ONGE, P.-L. Iso-
lated virtualised clusters: testbeds for high-risk security experi-
mentation and training. In Proceedings of the 3rd international
conference on Cyber security experimentation and test (Berkeley,
CA, USA, 2010), CSET’10, USENIX Association, pp. 1–8.

[4] CALVET, J., DAVIS, C. R., FERNANDEZ, J. M., MARION, J.-
Y., ST-ONGE, P.-L., GUIZANI, W., BUREAU, P.-M., AND SO-
MAYAJI, A. The case for in-the-lab botnet experimentation: cre-
ating and taking down a 3000-node botnet. In Proceedings of the
26th Annual Computer Security Applications Conference (New
York, NY, USA, 2010), ACSAC ’10, ACM, pp. 141–150.

[5] CHERTOV, R., FAHMY, S., AND SHROFF, N. B. Fidelity of
network simulation and emulation: A case study of tcp-targeted
denial of service attacks. ACM Transactions on Modeling and
Computer Simulation 19, 1 (2008), 4:1–4:29.

[6] DINH, T. T. A., THEODOROPOULOS, G., AND MINSON, R.
Evaluating large scale distributed simulation of p2p networks.
In Proceedings of the 2008 12th IEEE/ACM International Sym-
posium on Distributed Simulation and Real-Time Applications
(2008), IEEE Computer Society, pp. 51–58.

[7] DOUCEUR, J. R. The sybil attack. In IPTPS ’01: Revised Papers
from the First International Workshop on Peer-to-Peer Systems
(London, UK, 2002), Springer-Verlag, pp. 251–260.

[8] ELLIOTT, C., AND FALK, A. An update on the geni project.
SIGCOMM Comput. Commun. Rev. 39 (June 2009), 28–34.

[9] EVANS, N. S., DINGLEDINE, R., AND GROTHOFF, C. A prac-
tical congestion attack on tor using long paths. In 18th USENIX
Security Symposium (2009), USENIX, pp. 33–50.

[10] GIULI, T. J., AND BAKER, M. Narses: A scalable flow-based
network simulator. CoRR cs.PF/0211024 (2002), 1–6.

[11] HE, Q., AMMAR, M., RILEY, G., RAJ, H., AND FUJIMOTO,
R. Mapping peer behavior to packet-level details: a framework
for packet-level simulation of peer-to-peer systems. In Modeling,
Analysis and Simulation of Computer Telecommunications Sys-
tems 11th IEEE/ACM International Symposium (2003), pp. 71 –
78.

[12] HIBLER, M., RICCI, R., STOLLER, L., DUERIG, J., GU-
RUPRASAD, S., STACK, T., WEBB, K., AND LEPREAU, J.
Large-scale virtualization in the emulab network testbed. In
USENIX 2008 Annual Technical Conference (2008), USENIX,
pp. 113–128.

[13] HILDEBRANDT, D., BISCHOFS, L., AND HASSELBRING, W.
Realpeer–a framework for simulation-based development of
peer-to-peer systems. Parallel, Distributed, and Network-Based
Processing, Euromicro Conference on 0 (2007), 490–497.

[14] KANGASHARJU, J., SCHMIDT, U., BRADLER, D., AND
SCHRÖDER-BERNHARDI, J. Chunksim: simulating peer-to-peer
content distribution. In Proceedings of the 2007 spring simulation
multiconference (2007), Society for Computer Simulation Inter-
national, pp. 25–32.

[15] KARYPIS, G., AND KUMAR, V. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci. Com-
put. 20 (December 1998), 359–392.

[16] KOTILAINEN, N., VAPA, M., KELTANEN, T., AUVINEN, A.,
AND VUORI, J. P2prealm - peer-to-peer network simulator. In
Proc. 11th International Workshop on Computer-Aided Model-
ing, Analysis and Design of Communication Links and Networks
(2006), pp. 93–99.

[17] KOZLOVSZKY, M., BALASKO, A., AND VARGA, A. Enabling
omnet++-based simulations on grid systems. In Proceedings of
the 2nd International Conference on Simulation Tools and Tech-
niques (2009), Simutools, pp. 67:1–67:7.

[18] MAYMOUNKOV, P., AND MAZIÈRES, D. Kademlia: A peer-to-
peer information system based on the xor metric. In Revised Pa-
pers from the First International Workshop on Peer-to-Peer Sys-
tems (2002), Springer-Verlag, pp. 53–65.

[19] MIRKOVIC, J., BENZEL, T., FABER, T., BRADEN, R., WRO-
CLAWSKI, J., AND SCHWAB, S. The deter project: Advancing
the science of cyber security experimentation and test. In Tech-
nologies for Homeland Security (HST), 2010 IEEE International
Conference on (2010), pp. 1 –7.

[20] MONTRESOR, A., AND JELASITY, M. Peersim: A scalable
p2p simulator. In Peer-to-Peer Computing, 2009. P2P ’09. IEEE
Ninth International Conference on (2009), pp. 99–100.

[21] NAICKEN, S., LIVINGSTON, B., BASU, A., RODHETBHAI, S.,
WAKEMAN, I., AND CHALMERS, D. The state of peer-to-peer
simulators and simulations. SIGCOMM Comput. Commun. Rev.
37 (March 2007), 95–98.

[22] The Network Simulator NS-2. http://www.isi.edu/
nsnam/ns/.

[23] RODRIGUEZ, A., KILLIAN, C., BHAT, S., KOSTIĆ, D., AND
VAHDAT, A. Macedon: methodology for automatically creating,
evaluating, and designing overlay networks. In Proceedings of
the 1st conference on Symposium on Networked Systems Design
and Implementation (2004), USENIX, pp. 20–20.

[24] SALIHUNDAM, P., JAIN, S., JACOB, T., KUMAR, S., ERRA-
GUNTLA, V., HOSKOTE, Y., VANGAL, S., RUHL, G., AND
BORKAR, N. A 2 tb/s 6 x 4 mesh network for a single-chip
cloud computer with dvfs in 45 nm cmos. Solid-State Circuits,
IEEE Journal of 46, 4 (2011), 757–766.

[25] SCHLOSSER, M., CONDIE, T., AND KAMVAR, S. Simulating
a file-sharing p2p network. Technical Report 2003-28, Stanford
InfoLab, 2003.

[26] SHUDO, K., TANAKA, Y., AND SEKIGUCHI, S. Overlay weaver:
An overlay construction toolkit. Computer Communications 31,
2 (2008), 402 – 412. Special Issue: Foundation of Peer-to-Peer
Computing.

[27] SIOUTAS, S., PAPALOUKOPOULOS, G., SAKKOPOULOS, E.,
TSICHLAS, K., AND MANOLOPOULOS, Y. A novel distributed
p2p simulator architecture: D-p2p-sim. In Proceeding of the
18th ACM conference on Information and knowledge manage-
ment (2009), ACM, pp. 2069–2070.

[28] VARGA, A. The omnet++ discrete event simulation sys-
tem. Proceedings of the European Simulation Multiconference
(ESM’2001) (June 2001).

[29] VISHWANATH, K., GUPTA, D., VAHDAT, A., AND YOCUM, K.
Modelnet: Towards a datacenter emulation environment. In Peer-
to-Peer Computing, 2009. P2P ’09. IEEE Ninth International
Conference on (2009), pp. 81–82.

[30] VISWANATH, B., MISLOVE, A., CHA, M., AND GUMMADI,
K. P. On the evolution of user interaction in facebook. In Pro-
ceedings of the 2nd ACM workshop on Online social networks
(New York, NY, USA, 2009), WOSN ’09, ACM, pp. 37–42.

[31] YANG, W., AND ABU-GHAZALEH, N. GPS: a general peer-to-
peer simulator and its use for modeling BitTorrent. pp. 425–432.

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

	Introduction
	Design Goals
	The GNUnet P2P Framework
	Services in GNUnet
	The gnunetutil Library
	Scalability Benefits of the GNUnet Architecture
	The Emulation Library
	Network Topologies
	Executing Experiments
	Limitations

	Lessons Learned
	Cryptography
	Execution time
	Latency
	Sockets
	Memory

	Experimental Results
	DHT Testing Example
	DHT-Related Performance Issues

	Related Work
	Simulation
	Emulation
	Combining Simulation and Emulation

	Conclusion

