
Access Control for Federation of Emulab-based Network Testbeds*

Ted Faber
USC/ISI

faber@isi.edu

John Wroclawski
USC/ISI

jtw@isi.edu

Abstract
This paper describes a resource access control system for
federation of Emulab-based testbeds within the DETER federation
architecture. The system is based on three levels of principals and
uses generalizations of the Emulab project system to assign access
rights. A prototype implementation is described.

Introduction
This paper lays out a model for granting experimenters
controlled access to multiple Emulab [White02]-based
testbeds in order to establish federated experiments, and
describes a prototype. The model generalizes the single-
emulab resource access mechanisms to a federated
environment. Access decisions are based on the identity of
the requesting experimenter as well as projects or testbeds
associated with that experimenter. The prototype uses several
extensible technologies and is in use federating experiments.

Network testbeds are invaluable for modern research, making
experiments more realistic and reliable. They can be used to
confirm the dynamics of simulations of networks and
distributed systems, to evaluate the behavior of existing
network artifacts (viruses, worms) under controlled
conditions, and to examine the interactions between a
proposed system and existing infrastructure. Doing this work
on physical hardware in a laboratory environment to which
others have access improves the quality of research.

Federation – combining the resources of more than one
independently controlled testbed – enhances the utility of
testbeds significantly. First, experimenters can simply access
more resources, increasing the scale of their experimentation.
Furthermore, individual testbeds may include unique
hardware or configuration properties that allow
experimenters to embark on new kinds of experiments.
Finally, because testbeds act as gathering points for
experimenters in a given field, combining testbed resources
can promote collaboration between those groups. Security
experts and malware architects can test each other’s work in
a testbed built partially from each group's home testbed. Such
collaboration can be cooperative or competitive.

Federation resource management has two complimentary
requirements: testbeds make resources available to
experimenters without abdicating control. Resources are
subject to the policies and constraints of the testbed that
shares them. It is this second constraint that both makes
federation difficult and provides its power. Our access
control enables this controlled sharing.

Federation Basics
This section describes the basic model and workflow of our
federation architecture. An experimenter creates an
experiment using whatever domain-specific experiment
creation tools are available. Should the experimenter or the
tools decide that the experiment needs more resources than
one testbed can provide or that properties generated by
federation are key to the outcome, the tools will invoke the
federation system. After evaluating experimenter
requirements and available resources, the federation system
will divide the experiment among testbeds subject to His or
her constraints, create sub-experiments on each and then
interconnect them to form the federated experiment. The
instantiation and interconnection will be transparent to the
user, unless there is a reason to expose it.

After the federation tools have split the experiment, the first
phase of embedding the sub-experiments is gaining access to
remote resources. Though testbeds have made a decision to
allow their resources to be shared, individual access control
decisions are made for each experiment. The model and
mechanism for this access control negotiation is the subject
of this work.

Access control to federated testbeds is difficult because of
the very loose affiliation of the testbeds and the expectation
of very large scale. Because testbeds are individually
managed and their independence generates their unique
properties, the factors considered in their access control
decisions may be similarly independent. Two testbeds whose
resources are being shared in the same experiment may have
very different access control criteria.

Federating a few large testbeds is an easy way to create large

*This material is based upon work supported by the Department of Homeland Security, and Space and Naval Warfare Systems Center, San Diego, under
Contract No. N66001-07-C-2001. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Department of Homeland Security for the Space and Naval Warfare Systems Center, San Diego.

experiments, but the choice of federating many smaller
testbeds is also attractive. A federation system that allows
many 10-15 computer testbeds to come together may
accumulate more resources than one that supports only a few
large testbeds. Avoiding centralization and global naming or
trust authorities removes key scaling barriers.

Any federation access control mechanism must address three
areas. It must establish a namespace for requesters and
providers of service so that they can communicate and reason
about access control decisions. It must define a model for
testbeds to control access to their resources, including the
types and granularity of access controls. It must define an
access protocol and interchange format that is clear and
extensible.

We have developed an approach for federation within
Emulab-based testbeds, called herein the DETER Federation
Architecture. This paper describes the resource access control
aspect of that architecture. Our design is based on
generalizing the controls in a single Emulab while supporting
scale and customization. The system defines principals
generalized from the Emulab notions of experiment, user,
project, and testbed. Principals can join the federation
universe without consulting or coordinating with a central
authority.

Granularity of access control is based on Emulab's
mechanism of granting access to testbed resources through
projects. Within a single Emulab, a federated experiment is
represented as a project that has appropriate access
permissions. Such projects may be created on the fly in
response to federation requests, or a static collection of
access classes may be maintained. When allocating an
experiment to an access project, the hosting testbed bases its
decision on the user, project, and testbed names (credentials)
that the experimenter asserts. This allows the same
experimenter to acquire different access levels depending on
the credentials presented.

The access request protocol is expressed in the Web Service
Description Language (WSDL)[wsdl] and is extensible at
several points. Transport Layer Security (TLS)[rfc4346] is
used for mutual authentication and encryption. Standard tools
can generate code to make and serve requests across this
interface using a variety of implementation languages.

In the remainder of the paper we briefly describe the DETER
federation architecture, then discuss in more detail the access
control model and how it fits in that architecture, together
with our prototype implementation, fedd.

The DETER Federation Architecture
The DETER project has created a federation architecture that
frames the various components needed to interconnect
testbeds. The architecture is designed to scale to hundreds of
testbeds and thousands of machines. The immediate goal of
the architecture is to guide the interconnection of Emulab-
based testbeds.

The full federation architecture must meet three goals. First,

it must provide experimenters and their tools with sufficient
information to guide the process of decomposing
experiments into testbeds. To accomplish this the architecture
must provide scalable channels for testbeds to advertise or
respond to queries about the resources they permit to be
federated; this information may be filtered based on the
identity of the experimenter or abstracted for scaling.
Secondly, experiments must be decomposed and embedded
into federated testbeds – we focus on this below. Finally the
architecture must support experimentation across the
federated experiment. Part of this goal is to generate a
cohesive, scalable experimental environment that may be
represented differently to different experimenters. For
example, experimenters representing attackers and defenders
in a competitive experiment may be provided limited
knowledge of their opponents' topology. This paper focuses
on the decomposition and embedding facets of the
architecture – specifically the access control.

The experiment decomposition and embedding phase of the
DETER federation architecture can be viewed from several
perspectives – experimenters, the federation system, and the
federants all see the architecture differently. We discussed the
experimenters' view of federation in the introduction, and
focus on the system and federants viewpoints here.

For the system implementers the centerpiece of the
federation system is the federator. It takes input from
experimenters or their tools and creates an experimental
environment split across federant testbeds. Specifically, the
federator decomposes an experimenter's annotated topology
into federable sub-experiments, acquires access to
appropriate federants, embeds the sub-experiments in
federants, and then connects them into a shared environment.
Figure 1 illustrates this architecture.

Figure 1: DETER Federation Architecture

The architecture is partitioned to separate concerns of the
various players. The partitioning of the experiment into
pieces suitable to federation depends on the nature of the
experiment. This split must be guided by the experimenter
using knowledge of the resources provided by the federation
system. For example, an experiment used to study throughput
of a new protocol must be aware which links are inside a
testbed and completely controlled and which are not, to
ensure that the unpredictable link performance does not
invalidate the results. Collaborative or adversarial
experiments will divide along the lines of visibility and
testbed administrative boundaries.

The output of this splitting step is an annotated topology
description in a standard language, annotated to facilitate the

decomposition. The federator accepts these experiment
topology descriptions. Currently this language is the Emulab
topology description language, based on the ns simulator
language. Each node is annotated to indicate the testbed in
which it should be embedded. This is a standard but low-
level format: we assume that in most cases this description
will be generated by higher-level, more sophisticated tools.
The division allows development of domain-specific
annotation tools to proceed at the same time as the federator
is advanced.

On the other end, the federator must communicate with
federant testbeds for two basic operations: requesting
resource allocation within the federant and embedding a
topology subgraph on that federant. Emulab-based testbeds
have interfaces for embedding topologies remotely, and the
DETER architecture uses those interfaces directly. Resource
allocation and management is provided by our software.

Once the embedded experiments have been formed into a
cohesive environment, the federator makes the environment
available to experimenters. The federator may present
different views of the environment to different experimenters
as we described above, though the details are beyond the
scope of this paper.

We are in the process of instantiating this architecture on
DETER and other testbeds. Experiment creation is
operational, and higher level functions are being developed.

Access Control Model
The federation access control system is faced with three
design problems: the granularity and mechanism of granting
access, the naming and validation of principals, and the
protocol for requesting and granting access. In addressing
each of these problems we followed three tenets: that the
system should minimize scaling bottlenecks, that the
independence of federants be preserved, and that the system
be applicable to federating Emulab-based testbeds.

Emulab-based testbeds control resource access primarily
through the collection of projects established on the testbed.
Each user is a member of one or more projects and each
experiment is associated with a project when it is created.
When a user creates an experiment, the rights to access
restricted resources are based on the project rights. Users can
only instantiate experiments from projects to which they
belong. (Users also authenticate themselves to gain access to
the testbed as a whole and vary in their ability to create
experiments, but the project system controls resource access.)

We extend this model directly. When the federator requests
access to an Emulab-based federant, it is granted the right to
instantiate an experiment under a project in the federant. The
federant may instantiate a new project to house the federated
experiment or it may provide access to an existing project
with an appropriate set of rights. Creating a new project for
each experiment provides the finest control over the access
granted; the new project has exactly the rights requested. A
testbed operator may also choose to select classes of access
that the testbed will allow and create static projects with

those permissions, assigning individual access requests to the
appropriate project. Dynamic projects are more expensive at
access time, static projects are more coarse. Neither choice
requires operator intervention when access is granted.
Dynamic projects are created automatically within the
bounds set by the operator.

Directly extending the project-based access control
minimizes the changes needed for a testbed to join the pool
of available federants, however resource management
capabilities are limited to the node-based Emulab controls.
Some testbed resources are difficult to control with the
existing project-based access control – for example switch
capacity. However, the federant retains the same control over
resources that it exerted in an unfederated world, using the
same mechanisms.

Principals
Single-site Emulabs characterize users both by their
username and by their project memberships, though the
project membership is the primary access control
mechanism. In order to be more flexible in controlling
remote access, we export users, projects, and testbeds into a
global set of principals. These principals are expressed in a
global format, but are not allocated from a central system.

We define three kinds of principals: users, projects, and
testbeds. Access may be granted to any of these principals,
based in part on their kind. In a federated environment, users
are a more prominent feature than within a single testbed and
we recognize this by making them principals.

Aside from allowing access rights to be conferred directly on
users, user principals allow the system to express anonymous
users or users unaffiliated with any testbed. Testbeds as
principals allow us to express both the interests of federable
testbeds as a whole and to express the connections between
users and testbeds. “Peering Agreements” between testbeds
are a common scalable way of allocating access; testbed
principals reflect this directly. Finally, because projects are
the basis of current Emulab node access control, we also
expose them as principals. It is convenient to be able to
allocate access to groups working on the same experiments,
and projects allow us to express this concept.

Our decision to add users and testbeds to the project-driven
access control broadens the domain of discourse with respect
to resource access in a federated world. Having defined the
kinds of principals, we define a name space to allow testbeds
to collect and share data about them.

Naming Principals
An effective system of naming principals for federation must
support several properties to promote scalability. Some form
of shared naming semantics is convenient so that testbeds can
agree on principal identities and reason about their rights.

In particular, we advocate simple global names that:

 Can be authenticated without requiring a third party

 Impose minimal constraints on additional access

control information

 Can be created without recourse to a third party

The first of these allows the system to operate without the
performance or scalability bottleneck of a central
authentication point. More to the point, each authentication
becomes a local discussion between the parties involved,
reducing dependencies and complexity. Finally, it avoids the
thorny problem of authenticating names between parts of the
system that do not agree on a third party they trust for
authentication.

Testbeds will independently determine and manage their
access strategies. Though our system of principals
encourages access controls that similar to current strategies,
that structure is not required. The urge to tie naming and
access rights is strong and we specifically avoid it for
flexibility and growth.

The argument for being able to create names without third
party entanglement includes the arguments for independent
validation, but more importantly enables anonymous names.
If some third party must create a name, it creates a potential
privacy leak. Autonomous naming enables anonymity. We
believe that autonomous names can be implemented
efficiently.

One form of naming that meets these criteria are self-
certifying names as used in the Self-certifying File System
[Kaminsky03]. We use a simpler version in fedd.

Proxy Requests and Attestation
Being able to assert an identity is the basis for federated
access control decisions. The federator can make access
requests directly on behalf of experimenters with their
credentials, or it may ask a proxy for the local testbed to
attest to credentials for the experimenter.

The federator may initially make a request for resources
using the experimenter's global user name. If the remote
testbed knows and trusts the user, this may be sufficient. A
more likely situation is that the operators of two testbeds
have worked out a federation agreement and that they honor
requests attested by testbeds.

The federator can contact a local proxy that trusts the user
and is empowered to speak as the testbed principal. The
proxy can amplify the user's request by including information
about the user's testbed or project affiliation and send it to the
remote testbed. Trust between the user and testbed allows the
user to combine their rights with those of the testbed.

This amplification uses the same access control mechanisms,
but creates a new credential. Principals can use this
mechanism to cooperate and generate requests that combine
the rights of both parties. Credential amplification uses of
existing code and Emulab configuration for easy deployment
on existing testbeds.

Request Protocol
When requesting resources a federator, acting on behalf of

some principal, creates a set of assertions about the request
and sends it to the potential federant. This exchange includes
a mutual authentication of the principal names so both are
certain of the identity of the other end. The assertions include
information about the resources to be requested, the access
time and duration, additional principal information (e.g.,
project and user information from a testbed requester), and a
mechanism to be used for access. The federant evaluates the
request in light of the local information it has about the
principal. For example, a user may not be allowed to make
assertions about testbed or project affiliations. Principals that
the testbed has no previous arrangement with may be denied
access entirely. No explicit principal type information is
passed, so a principal may be treated as a testbed by one
testbed and as a user by another. Table 1 lists request fields.

Field Purpose

Testbed Originating testbed

Project Originating project

User Originating user

Allocation ID Name of the federated experiment

Resources Characterization of nodes and capacity to
be requested

Access info Authentication information for access,
e.g., a public key

Timing info Predicted embedding time and duration

Though resource and access time information is included,
this is an access request. A successful reply from the testbed
indicates that the federator has permission to acquire the
resources from this federant, not that the resources will be
available at the request time. The protocol acquires
permission to embed an experiment, it does not allocate
resources.

Assuming that the requested access is granted, the federant
will establish or arrange access to a project with the relevant
rights and return the information necessary to access the
project. This includes the local project and user names to use
as well as the internal names of the various Emulab service
sites within the local testbed. These services are necessary to
establish the federated environment.

Simplicity has led us to a request/response protocol rather
than a complex negotiation. A federator may have to make
several requests using different user, project, or testbed
credentials until it finds the set that a remote federant will
accept. Local data can be used to guide this search.

The simple request/response can be used to build up more
complex negotiation strategies, but defining a complex
negotiation protocol at this stage may lock us into a wrong
paradigm.

Model Summary
The model we described provides a request/response

mechanism for an experimenter to acquire access to an
Emulab-based testbed to create a federated experiment on it.
The experimenter has self-certifying names that characterize
it to a remote testbed as a user, member of a project, and/or
as a user of a particular testbed. A request is made by one of
those principals, perhaps asserting additional identity
information, to the candidate testbed. Based on local
information about the requesting principal an the content of
the request, the candidate either grants the request using the
local Emulab's project system to grant resource access, or
rejects the request.

We have implemented a prototype of this system, which we
describe below.

Fedd: a Federation Access Control
Daemon
Fedd instantiates the architecture above including the global
names and multi-level access controls. It runs on the control
or boss node of an Emulab testbed, responding to access
requests and creating the necessary dynamic projects or
configuring existing ones for remote access.

It provides a Web Services Description Language (WSDL)
specification of the access request interface with integrated
TLS encryption and authentication. Dynamic project creation
is supported. We describe the implementation in detail below.

X.509 Certificates and Global Names
One implementation for global names is to tie the identity of
a principal to the possession of a public key. The public key
becomes the principal's name. A principal can prove their
identity by responding to a challenge encrypted in the public
key. If keysize is sufficiently large it is extremely unlikely
that two principals will generate the same public key.

The current implementation of fedd uses a hash of the public
key as the federated identity (fedID) and communicates
identities using X.509 certificates [x509] [rfc3280]. Fedd
ignores the principal and issuer names and uses the
certificates as a mechanism to pass keys. Existing TLS code
authenticates federators and federants.

By using the hash of the public key as the fedID, fedd gets a
uniform representation of identity while allowing principals
to create whatever format key is acceptable to their security
concerns and sensibilities. There are standard TLS routines to
hash public keys and therefore create federation identifiers.

The simplest way for a testbed operator to list the federators
or testbeds with which it will communicate is to put self-
signed certificates from each of them into the file fedd uses
to authenticate certificates. This is the equivalent of listing
their federated identifiers in a flat file. In addition to the
certificate file, each fedID has an assigned type with respect
to this fedd.

Fedd uses X.509's certificate chains to allow introductions. A
principal that presents a certificate and responds correctly to
a challenge is accepted as a user principal even if fedd has no

certificate for it, if the certificate presented is signed by a
testbed that fedd trusts. This allows the testbed to introduce
remote testbeds to users. This introduction capability can be
restricted to certain principals or disabled altogether.

Access Control Specifications
Fedd allows testbed administrators to describe their access
control decisions in terms of the three-layer principal model
above. A triple of (testbed, project, user) in the federated
name space is mapped into a (project, user) pair in the local
name space. Any component of the triple can be wildcarded
to match any incoming value. The components can also
specifically be marked to only match empty values. This
allows one to specify that a given user is mapped one way
when presented by any testbed in any project (<any>, <any>,
user) and another way when acting on their personal
credentials (<none>, <none>, user).

All the names in the triple can be given as federated
identifiers, but for clarity it is sometimes helpful to use local
human-readable names. This also allows testbeds to expose
parts of their internal name spaces to one another without
generating and exposing fedIDs for the internal names. An
example is a testbed that attests that a request is made on
behalf of a user in the “emulab-ops” project on its local
testbed. This project is present on all Emulab-based testbeds
and is a convenient conventional marker for testbed staff.

The local pair may indicate an existing project to which
matching requesters are granted access, or that a project is to
be allocated dynamically. Either the user or the project may
be marked as <dynamic> meaning that the relevant entity
will be created. The current implementation only supports the
creation of dynamic users in dynamic projects, but the more
complex functions are being added.

The pair of local user and local project is also annotated with
the node access abilities of that project. In the case of a
request mapping to an existing project, the annotation
describes the existing access capabilities of that project; in
the case of a dynamic project, the annotation represents the
access capabilities granted to the new project. In either case,
fedd is able to compare the access power of the local project
with the resources requested in the access request and deny
requests that would access forbidden resources.

Below is an example access specification that maps users
from the local emulab-ops group on a requesting testbed to a
user with the same name in the DETER1 project on the local
testbed and that maps a user identified by a fedID to the
DETER project, faber user on the local testbed. The DETER
project has access to nodes of type pc3000, which the
DETER1 project does not.

(<any>, emulab-ops, <any>) -> (DETER1, <same>)

(<none>, <none>, fedid:12ecc7415746281efa0ed58e180c51a5cba13a57) ->
(DETER:pc3000, faber)

Request Protocol Details and Specification
Fedd's request/response protocol is specified in a WSDL
document at http://www.isi.edu/~faber/fedd/fedd.wsdl and

http://www.isi.edu/~faber/fedd/fedd.wsdl

contains the fleshed out details of the protocol described
above.

The contents of the request are as described above.
Alternative representations for most names are supported, as
are several varieties of key formats for access information.
As a practical matter, the current implementation uses fedIDs
and SSH keys for the names and access keys, but there is
room for expansion.

In the request, resources are characterized in Emulab terms.
Node counts are given for each type/image pair of nodes.
This section is used by fedd to confirm both that the testbed
supports these node types and images and that the user
making the request can access them. Additionally the
network capacity required by the experiment is given as
either a peak or average value. No attempt is made to fully
characterize topology here in the access phase.

On return, access information is annotated with attributes that
the federator can use when establishing the shared
environment.

For testbeds that do not dynamically instantiate projects for
access control, fedd can run remotely, and the DETER
project uses it that way on occasion. In general, fedd should
run on the boss node of the controlled testbed.

Proxy Requests
As part of their internal operation, Emulab-based testbeds
assign each user an X.509 certificate signed by a certificate
authority based at the testbed. Our system handles proxy
requests by running a per-testbed instance of fedd that is
willing to attest to valid user requests using testbed
credentials for users holding a valid local testbed certificate.
Of course, when the user makes claims to be part of a given
project, the fedd validates such assertions before forwarding
them.

In cases where project credentials have meaning beyond a
single testbed, a natural implementation is to run separate
fedds on their behalf, unless the project members were
willing to accept credential replication. If the project exists
on a single testbed, that testbed's fedd can simply provide the
project credential instead of a testbed credential, should the
user request that.

Fedd is an operational federated access control daemon built
on existing technologies and integrated with current emulab
configurations. It is in current use creating federated
experiments across DETER and other testbeds.

Conclusions & Future Work
This paper has described a federation access control system
for federating Emulab-based testbeds. Individual testbeds
control access to resources through the existing Emulab
projects system, dynamically adding projects when it is
convenient to do so. System principals are testbeds, projects,
and users which are generalizations of the Emulab constructs
of the same name. The principal identifiers are drawn from a
self-certifying name space for scalability and flexibility.

We have implemented a prototype of this system based on
existing technology and compatible with Emulab
configuration conventions. That system has proved useful in
practice in creating federated experiments.

Though the access model ties to Emulab by adopting the
three-level principal system and in expressing allocations in
Emulab terms, these are customizations rather than central
features. The three levels of aggregation reflect generic
testbed organization and are applicable in non-Emulab
environments. When a testbed grants an allocation, the
current protocol describes that allocation in Emulab terms,
but that response description is typed and isolated in the
message. The protocol is designed to support other
allocation descriptions.

As the DETER federation architecture in general expands to
interoperate with more kinds of federants, the access control
system will also be extended. DETER is investigating
federations with provisioned access interconnection networks
as well as traditional testbeds.

We believe that the fundamentals of the access control
system are sound and extensible enough to operate in a more
general federation environment than inter-Emulab federation.
Extending the protocols to support more general resource
descriptions and the model to accept other principals are
natural ways to extend into those domains.

References
[Benzel06] Experience with DETER: A Testbed for Security

Research, Terry Benzel, Robert Braden, Dongho Kim, Clifford
Neuman, Anthony Joseph, Keith Sklower, Ron Ostrenga and
Stephen Schwab. In Proceedings of Tridentcom (International
Conference on Testbeds and Research Infrastructures for the
Development of Networks & Communities), March 2006.

[Kaminsky03]Decentralized user authentication in a global file*
system, Michael Kaminsky, George Savvides, David Mazières,
and M. Frans Kaashoek. Proceedings of the 19th ACM
Symposium on Operating Systems Principles, October 2003.

[rfc3280] Internet X.509 Public Key Infrastructure Certificate and
Certificate revocation List (CRL) Profile, Russel Housley,
Warwick Ford, Tim Polk, David Solo, RFC 3280, ISOC, April
2002.

[rfc4346] The Transport Layer Security (TLS) Protocol Version
1.1, T.Dierks, E. Rescorla, RFC4346, ISOC, April 2006.

[White02] An Integrated Experimental Environment for
Distributed Systems and Networks, by White, Lepreau, Stoller,
Ricci, Guruprasad, Newbold, Hibler, Barb, and Joglekar,
appeared at OSDI 2002, December 2002.

[wail] http://wail.cs.wisc.edu/projects.html

[wsdl] Web Services Description Language (WSDL) 1.1, Erik
Christensen, Francisco Curbera, Greg Meredith, Sanjiva
Weerawarana, http://www.w3.org/TR/wsdl

[x509] ITU-T Rec. X.509: Information Technology Open Systems
Interconnection – The Directory: Interconnection framework,
June 1997.

http://www.w3.org/TR/wsdl
http://wail.cs.wisc.edu/projects.html

	Introduction
	Federation Basics
	The DETER Federation Architecture
	Access Control Model
	Principals
	Naming Principals
	Proxy Requests and Attestation
	Request Protocol
	Model Summary

	Fedd: a Federation Access Control Daemon
	X.509 Certificates and Global Names
	Access Control Specifications
	Request Protocol Details and Specification
	Proxy Requests
	Conclusions & Future Work

