
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

GBDE - GEOM Based Disk Encryption

Poul-Henning Kamp
The FreeBSD Project
phk@FreeBSD.org

Abstract
The ever increasing mobility of computers has made protection of data on digital storage media an important

requirement in a number of applications and situations. GBDE is a strong cryptographic facility for denying unau-
thorised access to data stored on a ‘‘cold’’ disk for decades and longer. GBDE operates on the disk(-partition) level
allowing any type of file system or database to be protected. A significant focus has been put on the practical

aspects in order to make it possible to deploy GBDE in the real world. 1

1. Losing data left and right
In the last couple of years, gentlemen of the press

have repeatedly been able to expose how laptop com-
puters containing highly sensitive or very valuable
information have been lost to carelessness, theft and in
some cases espionage. [THEREG]

The scope of the problem is very hard to gauge, since it
is not a subject which the involved persons and, in par-
ticular, institutions are at all keen on having exposed.
However, a few data points have been uncovered,
revealing that the U.S. Federal Bureau of Investigation
loses, on average, one laptop every three days.
[DOJ0227]

When a computer is lost, stolen or misplaced, it is very
often the case that the computer hardware represents a
value which is insignificant compared to the value of
the disk contents. More often than not, the only reason
the press heard about it was that the material on the
disk was ‘‘hot’’ enough to make the loss of control rat-
tle people at government level.

While it is easy to blame these incidents on ‘‘user
error’’, as is generally done, doing so makes it a very
hard problem to fix. Human nature being what it is,
seems to remain just that.

In the absence of technical counter measures, adminis-
trative measures have been applied, generally with
abysmal results. In one case, a bureaucracy has han-
dled the problem according to what could easily be

1 This software was developed for the FreeBSD Project by
Poul-Henning Kamp and NAI Labs, the Security Research Division
of Network Associates, Inc. under DARPA/SPAWAR contract
N66001-01-C-8035 (‘‘CBOSS’’), as part of the DARPA CHATS re-
search program.

mistaken for the plot from a classic Buster Keaton
movie:

First a laptop was forgotten and lost in a taxi-cab.
New policy: always drive your own car if you
bring your laptop. Then a car was stolen, includ-
ing the laptop in the trunk. New policy: always
bring your laptop with you. The next laptop was
stolen from a pub while the owner was bowing to
the pressures of nature. New policy: employees
are not to carry their own laptops outside the office
at any time. Laptops will be transported from and
to the employees home address by the agency se-
curity force and will be chained and locked to a
ring in the wall installed by the company janitors.
All requests must be filed 3 days in advance on
form ##-#. [PRIV]

2. Protecting disk contents
Protecting the contents of a computer’s disk can

in practice be done in two ways: by physically securing
the disk or by encrypting its contents.

Physical protection is increasingly impossible to imple-
ment. It used to be that disk drives could only be
moved by forklift, but these days a gigabyte disk is the
size, but not quite yet the thickness, of a postage stamp.
While computers can be tied down with wires and bars
can be put in front of windows, such measures are gen-
erally not acceptable, or at least not judged economi-
cally justified in any but the most sensitive operations.

That leaves encryption of the disk contents as the only
practical and viable mode of protection, and both the
practicality and the viability has been somewhat in
doubt.

Until recently, nearly all aspects of cryptography were a
highly political issue, this has eased a lot in the last
couple of years and there now ‘‘only’’ remain a number

of rather fundamental questions in the area of law
enforcement and human rights, which are still unset-
tled.

With the political issues mostly out of the way, the next
roadblock is practical: While use of cryptography can
never be entirely transparent, the overhead and work-
load it brings must be reasonable.

2.1. Application level encryption
Encryption at the application level has been

available for a number of years, primarily in the form
of the PGP [PGP] program. This is about as intrusive
and demanding as things can get: the user is explicitly
responsible for doing both encryption and decryption

and must enter the pass-phrase for every operation. 2

Apart from the inconvenience of this extra workload,
many org anisations would trust their users neither to
get this right nor even to want to get it right. From an
institutional point of view it is important that crypto-
graphic data protection can be made mandatory.

2.2. Filesystem level encryption
Encryption at the file system level is a tried and

acknowledged method of providing protection, but it
suffers from a number of drawbacks, mainly because
no mainstream file systems offer encryption.

Encrypting file systems are speciality items, which
means increased cost and system administration prob-
lems of all sorts.

And since practically all operating systems use their
own file system format, cross platform fully functional
file systems are very rare. This means that a typical
organisation will have to operate with a handful of dif-
ferent methods of encryption, which translates to sys-
tem administration overhead, user confusion and extra
effort to pass security and ISO9000 audits.

A secondary, but increasingly important issue is that
data which are stored in databases on raw disk, operat-
ing system paging areas and other such data are not
protected by a cryptographic file system. To protect
these would mean adding yet another set of encryption
methods, which leads to a situation which is very hard
to handle practically and administratively.

Finally, file systems have a complex programming
interface to the operating system, which traditionally

2 Interestingly, this is so impractical in real world use that vari-
ous applications with PGP support resort to caching the pass-phrase
at the application level, thereby weakening the protection a fair bit.

has been subject to both version skew and compatibility
problems.

2.3. Disk level encryption
Encryption at the disk level can protect all data,

no matter how they are stored, file system, database or
otherwise.

To a user, encryption at the disk level would require
authentication before the computer can be used, every-
thing functioning transparently thereafter, with all disk
content automatically protected.

Given that the programming interface for a disk device
is very simple and practically identical between operat-
ing systems, there are no technical reasons why the
same implementation could not be used across several
operating systems.

All in all this is a close to ideal solution from an opera-
tional point of view.

There are significant implementation issues however.
In difference from the higher levels, encryption at the
disk level has no way of knowing a priori which sectors
contain data and which sectors do not; neither is knowl-
edge available about access patterns or relationships
between individual sectors.

Where application level or file system based encryption
schemes can key each file individually, a disk based
encryption must key each and every sector individually,
ev en if it is not currently used to hold data.

It has been argued that the encryption ideally should
happen in the disk-drive, and while there are steps in
this direction, they do unfortunately seem to have been
made for the wrong reasons by the wrong people
[CPRM], and have consequently not gained acceptance.

Provided the owner of the computer remains in control
of the encryption, I see no reason why encryption in the
disk drives should not gain acceptance in the future.

3. Why this is not quite simple
Several implementations have been produced

which implement a disk encryption feature by running
the user provided passphrase through a good quality
one-way hash function and used the output as a key to
encrypt all the sectors using a standard block cipher in
CBC mode. A per sector IV for the encryption is typi-
cally derived from the passphrase and sector address
using a one-way hash function. Tw o typical examples
are [CGD] and [LOOPAES].

Unfortunately this approach suffers from a number of
significant drawbacks, both in terms of cryptographic

strength and deployability.

For data to stay protected for decades or even lifetimes,
sufficient margin must exist not only for technological
advances in brute force technology, but also for theoret-
ical advances in cryptoanalytical attacks on the algo-
rithms used.

Protecting a modern disk, typically having a few hun-
dred millions of sectors, with the same single 128 or
256 bits of key material offers an incredibly large
amount of data for statistical, differential or probabilis-
tic attacks in the future.

Worse, because the sectors contain file system or data-
base data and meta data which are optimised for speed,
the plaintext sector data typically have both a high
degree of structure and a high predictability, offering
ample opportunities for statistical and known plaintext
attacks.

This author would certainly not trust data so protected
to be kept secret for more than maybe fiv e or ten years
against a determined attacker.

But far more damning to this method is that there can
only be one single passphrase for the disk. This effec-
tively rules out the ability for an organisation to imple-
ment any kind of per-user or multilevel key manage-
ment scheme: the only possible scheme is ‘‘one key per
disk’’.

Add to this that to change the passphrase the entire disk
would have to be decrypted and re-encrypted, and we
have a model which may work in theory, and can be
made to work in practice for a determined individual,
but which would fast become an operational liability
for any org anisation.

4. Designing GBDE
The initial design phase of GBDE focused on

determining a set of features which would make it both
possible and practical for people and organisations to
deploy GBDE in routine use.

The first decision has already been described and
argued for: Encryption must happen at the sector or
‘‘raw disk’’ lev el, in order to be comprehensive, univer-
sal and portable.

The second decision was dictated by the fact that all
security policies we have ever seen, contain a rule
which says ‘‘passwords must be changed every N
{days,weeks,months}’’. This is sound thinking, and
GBDE should support it. While changing the
passphrase does not necessarily have to be instanta-
neous, decrypting and re-encrypting an entire disk
would likely take more than a day with currently

available hardware, and is consequently out of the
question.

The third design criterion came from the fact that peo-
ple forget passphrases, and while loosing the entire
content of the disk as punishment could be seen as a
large-calibered educational device, it is not acceptable
from a real world perspective: there must be some kind
of multiple access paths.

Given that GBDE is open source software, there is little
more than symbolic value in a hierarchical set of
passphrases: changing the source code to bypass the
hierarchy cannot trivially be prevented. It is also not
clear what the hierarchy would control in the first
place. Since all sectors are treated the same, it cannot
be used to implement hierarchical access levels, and
implementing a hierarchy which only affects the key
hierarchy would be silly. It was therefore decided that
GBDE would support a number of parallel key paths,
and four was chosen as the default number which can
be changed at compile time.

The fifth usability criterion was that GBDE should be
able to use any byte string as passphrase, and not be
limited to NUL terminated text strings. In many set-
tings, the necessary key strength cannot be derived
from a keyboard entered text string, and therefore it
should be possible to use storage devices like USB-
keys or smart cards to contain or contribute to the
passphrase.

The final usability criterion was that GBDE should
offer the best possible protection also for the user. This
might require some explanation:

4.1. Protecting the user
The weakest link in any cryptographic deploy-

ment is almost always the users and their handling of
key material.

As an example of this, most banks use two-man proce-
dures to protect their vaults. Not because this prevents
their employees from embezzling money — there are
plenty of ways they can do that — but because it pro-
tects the employee from being a weak link which could
be broken by means of physical violence, blackmail or
hostage taking.

These kinds of situations mandate that analysis treat the
user as a component, something which have become
routine by now.

Unfortunately it is still a relatively common mistake to
either leave the attacker out of the analysis, or to
assume a very weak or even stupid attacker.

An example of this, is the ‘‘The Steganographic File
System’’ [STEGFS], which provides a facility where a
hierarchy of passphrases protect data at different levels.

The argumentation more or less goes ‘‘protect a couple
of unimportant files at the lowest level, and your impor-
tant files at higher levels. When captured, give them
the lowest level key and deny that any more keys
exist.’’

If we include the attacker in the analysis, she will soon
know that the facility used is STEGFS, and conse-
quently that multiple levels of keys are not only a possi-
bility but to be expected: Why else would people use
STEGFS in the first place ?

A user caught with a STEGFS encrypted set of data,
will therefore likely be subject to pressure to release
keys until the attacker is satisfied that there are no more
keys. If the attacker is the police, this can now land the
user in jail for up to fiv e years in certain countries.

But even worse: if the attacker has her own ideas of
what is to be found in the protected data, for instance
information on weapons of mass destruction, but no
such information is on the protected set, there is no way
the user can ‘‘get off the hook’’ and prove his inno-
cence: STEGFS provides no way of proving the nonex-
istence of any further keys.

If one studies the evidence of a real-world scenario: the
plight of the junior CIA operative resident and later
hostage at the Tehran embassy [IRAN], a couple of
interesting insights emerge.

Very often, the user will have a tiny window in time
during which it may be possible to manually activate
data destruction mechanisms, or alternatively, be able
to out-wait a specific timeout after which automatic
mechanisms will have destroyed the data if they are not
rearmed correctly.

For such a feature to offer the user effective protection
it must provide a tangible feedback to the attacker that
the user has destroyed the data, and can not bring it
back. Effective feedback has been smoking piles of
ash, but not, as related in the narrative from Tehran,
piles of shredded documents.

The final GBDE design criterion was therefore that
GBDE should be able to rapidly destroy key material in
such a way that it can be proven that there is no hope to
recover the data short of very expensive brute force
methods.

5. What GBDE does not do
With any cryptographic facility, it is as important

to know what it does as what it does not, this section

will describe a couple of major issues which GBDE
leaves to the user to solve.

5.1. Key management
It has been said that there is only one really hard

problem in cryptography: the problem of key manage-
ment. GBDE does not try to address that.

In all of the following we will assume that the
passphrases and other key material have been handled
in a sensible manner, fitting the importance of the data
they are used to protect. If you put a yellow sticky note
with the passphrase on a disk, no amount of crypto-
graphic code will offer any protection.

5.2. No protection for ‘‘hot’’ disks
GBDE is only designed to protect data on a

‘‘cold disk’’. A cold disk is defined as a disk disassoci-

ated from the keys which provide access to the disk. 3

If the GBDE protected device has been ‘‘attached’’ on a
running system, parts of the key material will be
present in memory and therefore GBDE’s crypto-
graphic protection is no stronger than the protection the
operating system gives to those data.

If the protected device is not ‘‘attached’’, there is no
key-material present in RAM and the disk is fully pro-
tected by GBDE.

A disk on a shelf or in a courier bag is obviously also a
cold disk.

It is important to note that disks in laptop computers
which are only ‘‘suspended’’ can not be be considered
cold if they are attached in the kernel, because the key
material is present in RAM or possibly in the ‘‘suspend

to disk’’ partition on the disk. 4

While most computers offer facilities for password pro-
tection when leaving suspend mode, it should be noted
that modern hardware facilities may contain wide open
back doors around that protection.

For instance, FireWire/IEEE1394 capable devices are
mandated to have hav e built in ‘‘OHCI’’ facilities
which allow direct access to the entire memory space
without the CPU being involved or aware of this. We

3 Under carefully controlled circumstances GBDE can also be
used as a component to build protection for ‘‘hot disks’’; that is dis-
cusse later.

4 Interestingly, if GBDE was implemented in the disk drive and
the BIOS handled the pass-phrase entry, the suspend-to-disk partition
would also be protected.

estimate that using this method it would be possible to
undetectably grab a snapshot of all RAM on a typical
notebook computer in a few minutes. A great tool for
debugging, a nightmare tool for security.

6. Cryptographic design
The usability requirements produces the overall

layout of the GBDE cryptographic design which the
cryptographic design must respect: A passphrase gives
access to a copy of the master-key material, which
again gives access to the protected sector contents.

From a cryptographic point of view, the requirements
are very simple: make it as strong as possible using as
few resources as possible.

While we currently have great faith in algorithms like
the Rijndael/AES, and it is generally accepted that
128bit symmetric keys offer practically impenetrable
security, the history of the cryptography has shown that
significant weaknesses take long time to uncover.

Since the aim is that GBDE be able to protect a cold
disk for a decade or more, it would be unwise to rely on
our current understanding of the subject and the algo-
rithms to remain unchallenged for the lifetime of the
data.

A number of defensive measures have therefore been
been included in the design criteria, in order to put suf-
ficient margin into the cryptographic strength of
GBDE.

The first criterion is that plaintext sector data should be
encrypted with one-time-use (pseudo-)random keys.
This measure, while relatively expensive, effectively
stops differential plain-text attacks.

This forces yet a design decision since the PRN sector-
keys obviously must be encrypted and stored on the
disk with the encrypted plain-text. The second criterion
is that these sector-keys are encrypted with a per sector
‘‘key-key’’ derived from only a fraction of a very large
master key.

By only allowing a fraction of the master-key into the
calculation, a penetration which manages to find the
key-key for a given sector will not expose the master
key, and since the sector key which the key-key
encrypts is (pseudo-)random, no differential leverage
exists at this level either.

The third cryptographic criterion was that a remapping
of sectors should happen, so that the location of a par-
ticular plain-text sector on the encrypted volume is not
predictable. Many file systems have well defined and
easily predictable ‘‘super blocks’’ and allocation bit-
maps which have well defined sector addresses. By

mapping the locations on the disk, these sectors offer
no leverage for attacks, until their encrypted location
has been found by some other means.

The final cryptographic criterion was to use only stan-
dard cryptographic algorithms in good standing: Rijn-
dael/AES as block cipher, RSA2/512 as strong one way
hash and MD5 as ‘‘bit blender’’.

7. The GBDE algorithm
As can be seen from the above, the a priori

requirements have closely circumscribed the solution
space for GBDE, and the algorithms four steps follows
more or less directly from the design.

7.1. From passphrase to master key
It is generally accepted that a passphrase consist-

ing of one or more sentences in a human language only
contain about one bit of effective entropy per character,
and obviously they are variable length. Therefore the
passphrase is passed through the SHA2/512 one-way
hash algorithm. This transforms the variable length
passphrase to 512 bits which contain as much as possi-
ble of the entropy in the passphrase.

These 512 bits, called ‘‘the key material’’, are used to
locate and decrypt the so called ‘‘lock sector’’ which
contains the master-key and various parameters.

A compile time constant, sets the number of lock sector
copies supported, the default number is four. These
copies are located in four sectors chosen randomly at
the time when the device is initialised for GBDE usage.

The first 128 bits of the key material are used to
decrypt the sector offset of the encrypted and encoded
lock sector. The encrypted version of this offset can
either be stored in the first sector of the device or out-
side the device in a file.

Once read from disk, the next 256 bits of the key mate-
rial is used to decrypt the encoded lock sector using
AES/CBC/256.

The final 128 bits of the key material define the order
in which the fields of the lock sector are encoded.
Numeric fields are encoded in little-endian byte order
so that the on-disk format is portable between different
architectures. Once decoded, one of the fields offer a
MD5 hash checksum which can be used to prove that
this is actually a valid lock sector.

7.2. Sector mapping
It follows from the above that a number of trans-

formations are necessary on the sector location, in

addition to the cryptographic transformation of the sec-
tor contents.

The first transformation, splits the plain-text sectors
into a number of zones. The size of a zone is chosen so
that one sector exactly contains the encrypted sector
keys for all the payload sectors in the zone. With a sec-
tor size of 512 bytes and a sector key size of 128 bits,
the results in a zone size of

512bytes/sector * 8bits/byte

128bits
= 32sectors

The extra sector with the encrypted sector keys is
appended after the last of the 32 data sectors, making
the zone 33 sectors long in the encrypted image.

It should be noted that the sector size for the encrypted
device and consequently the zone size is a parameter
set at device initialisation time.

The second transformation is a rotation by an integral
number of sectors. The number is randomly chosen at
device initialisation time and recorded in a field in the
lock sector. This step addresses the design requirement
that the location of the encrypted sector should not be
trivial to determine.

The third transformation inserts the four lock sectors
into their locations. The locations of these are chosen
at random at device initialisation time, and stored in
fields in the lock sector. It follows quite obviously
from this, that each lock sector must contain informa-
tion about the location of all lock sectors, in order to
map around them.

Finally an offset is added which determines where the
encrypted image starts in the underlying device.

Offset

Zoning

Rotation

Insert
Masterkeys

fig 1: mapping operations.

The offset mapping serves two purposes, it allows the
first sector of the underlying device to be reserved to
contain the encrypted locations of the lock sectors, but
it also allows the administrator to use only a part of the
underlying device for GBDE encrypted data.

7.3. Plausible denial
This could be used to implement ‘‘plausible

denial’’ by embedding the GBDE partition inside some
data which credibly can be claimed to be something
else. Since high entropy data are rare in the wild, spe-
cial care is needed to build a convincing cover story to
explain the existence of otherwise unexplained random
looking bits.

Most computers today come pre taxed with a Microsoft
operating system, and this could be used for the cover
story: Flush all free space in the Windows partition
with random bits, locate a long stretch of free space in
the partition and use that to contain the GBDE
encrypted data. If no other evidence betrays the exis-
tence of the GBDE partition, it should be possible to
deny its existence.

A truly paranoid setup would leave the computer con-
figured to boot the Windows system by default, and
locate the GBDE data in such a way that it would be
destroyed by the act of doing so.

7.4. ‘‘Key-key’’ derivation
For each sector to be processed, we need to

derive the key-key which the sector key is encrypted
with. For this purpose the lock sector contains two
fields, the ‘‘salt’’ which is a 128 bit (pseudo-)random
number, and the master key which is a 2048 bit
(pseudo-)random number. Both of these are generated
when the device is initialised for GBDE usage and not
subsequently changed.

In order to make the format architecture invariant, the
the sector address is encoded as a little-endian 64 bit
integer

sect = LE64(sectoraddress)

and then, surrounded by the salt, run through the MD5
algorithm which acts as a ‘‘bit-blender’’. The salt is
necessary to prevent pre-computation of a dictionary of
all possibly sector addresses as an attack vector.

index[16] = MD5(salt[0. . . 7] + sect + salt[8. . . 15])

The resulting 16 bytes of index are used to ‘‘cherry-
pick’’ 16 bytes from the master key, which are run
through MD5 with the sector address inserted in the

middle: 5

5 In both cases the encoded sector address were put in the mid-
dle of the MD5 input data only for reasons of symmetry, cryptograph-
ically it makes no difference.

keykey = MD5(

masterkey[index[0]] + . . . + masterkey[index[7]] +
sect +
masterkey[index[8]] + . . . + masterkey[index[15]])

Some research have cast doubt about the cryptographic
qualities of the MD5 algorithm [RSAMD5]. The ques-
tionable property, how hard it is to generate collisions,
is of no concern here: MD5 is merely used as a ‘‘bit
blender’’ and unlike when MD5 is used for authentica-
tion purposes, there is no value to the attacker in pro-
ducing a collision with a different input.

7.5. Sector data encryption
To encrypt and write a sector of plain-text data,

the key-key is derived as above, and the sector contain-
ing the encrypted sector keys is read into memory.

data sector

AES
128

CBC

AES
128

CBC

Salt MD5

Cherry
picker

Master
Key

MD5

Sector Address

key−key

sector−key

PRNG

Sector Data

Write to
key−sector

Write to

fig 2: write operation

A new sector key is generated with the standard
(P)RNG facilities in the kernel and the sector data
encrypted using AES/CBC/128.

The sector key is encrypted with AES/CBC/128 using
the key-key and inserted at the correct place in the key
sector.

Both the key sector and the encrypted data sector are
written to disk after which the temporary storage is
cleared and the transaction is complete.

To read and decrypt a sector, the key sector and the
encrypted sector are read into memory, the key-key
generated and the sector key decrypted with it. The
sector key is used to decrypt the encrypted sector data,
the temporary buffers erased and the transaction com-
pleted.

Since the sector data is encrypted with a (pseudo-)ran-
dom key, there is no need to use any particular initiali-
sation vector for the encryption process and therefore a

constant IV of zero bits is used 6.

7.6. Performance optimisations
If implemented strictly according to the above

description, GBDE would take a drastic performance
hit because all I/O requests, no matter their size would
explode into two requests per sector on the underlying
device for each sector in the request. Even with the
caches built into modern disk drives, this would lead to
a drastic performance hit.

Instead the request is split into a number of ‘‘work
packets’’ which are characterised by the fact that all
data sectors in the work packet are consecutively laid
out on the device, this also implies that they are in the
same zone and therefore need the same key sector.

Furthermore to avoid re-reading a key sector which has
just been written to disk, a small cache is used to keep
copies of the encrypted key sectors which have recently
been used. The size of the cache grows linearly with
usage of key sectors, and decays with 10% every sec-

ond 7

Furthermore, the logical sector size of the encrypted
device can be set to a power of two multiple of the
underlying devices sector size. Using larger sectors
means fewer keys, larger zones and consequently larger
work packets.

For paging spaces, the VM page size should be used as
logical sector size, for file systems the smallest alloca-
tion unit should be used. For UFS/FFS this is the so
called fragment size, and it is typically 2048 bytes.

In retrospect zero bits were a bad choice since any sector on
the encrypted device which contains all zero bits show up as a dis-
tinct signature on the encrypted side. This does not introduce a vul-
nerability inside the design envelope, but it will nonetheless be ad-
dressed in the next revision of GBDE since a fix will not affect the in-
stalled user base.

7 It is not possible to use the regular kernel buffer cache be-
cause GBDE operates below the SPECFS layer. Furthermore the
buffer cache offers no means to clear the buffers contents before it is
recycled.

8. Administrative operations
In order to use a device with GBDE it must be

initialised first. The initialisation will generate the con-
tents of one lock sector and encode, encrypt and write it
to the device.

While this is technically enough to get started, it is
highly recommended that the entire device be filled
with (pseudo-)random bits before writing the initial
lock sector, since this will prevent an attacker from
using the previous possibly less random sector contents
to eliminate a large fraction of the sectors from an
attack.

Unfortunately, it takes considerable amount of time to
generate (pseudo-)random bits for modern sized disk
devices, and this process can take hours or even days to
complete.

To use a GBDE device, it needs to be ‘‘attached’’. This
involves presenting the passphrase, and using that
locate and decrypt, decode and validate the lock-sector.

The opposite process, detaching the GBDE device is
mainly a question of erasing all traces of the lock sector
and key sector copies from memory.

Since the location of all lock sectors is recorded in each
lock sector, it is possible for any user with a valid
passphrase to overwrite any lock sector.

One operation is writing a new lock sector protected by
a new passphrase. If done for the lock sector which the
user has a passphrase for, this amounts to changing the
users passphrase.

Another option is to overwrite the lock sector(s) with
zero bits. This disables the passphrase(s), a condition
which GBDE will report specifically on, in order to
provide the tangible feedback of destroyed data dis-
cussed earlier.

9. Attacking GBDE devices
Given a media containing data protected with

GBDE, there are two avenues for attacking the algo-
rithm: From the top, trying to get hold of the master-
key and salt from one of the lock sectors, from the bot-
tom, trying to derive them from decrypted sectors, or
by trying to guess the passphrase.

9.1. Top down attack
The first challenge is to identify which sectors

contain what.

There is currently no known algorithms or statistical
methods which are able to tell bits produced with
AES/CBC/256 and AES/CBC/128 apart, nor is it

possible to tell them apart from random bits, so the
only way to locate the lock sectors is by doing a brute
force search.

If the encrypted location of the lock sectors is available,
it may be faster to brute-force the 128 bits which
encrypt the location than to search all possible byte off-
sets on the disk.

Attacking the lock sectors means finding the 256 bit
encryption key for the encoded data, and the permuta-
tion of the 12 fields in the lock sector.

Given that one of the fields is a MD5 hash which will
can be used to test for a hit, the worst case work to
brute force the lock sector is therefore somewhere in
the neighbourhood of:

W AES/CBC/128 ⋅ 2128 + (W AES/CBC/256 + WMD5) ⋅ 2256

or

Nbytes_on_device ⋅ (W AES/CBC/256 + WMD5) ⋅ 2256

or, if the attacker by some other means have located the
lock sector:

(W AES/CBC/256 + WMD5) ⋅ 2256

All of which are practically infinity by todays stan-
dards.

9.2. Bottom up attack
Attacking from the other end, so to speak, we

will assume that the attacker either knows the plain text
of a number of sectors or is able to recognise it by some
algorithm, and let us give him the benefit of knowing
all the parameters which goes into the mapping of sec-
tors.

Doing a brute force on one of the sectors yields the sec-
tor key which can be used to brute-force the encrypted
copy of the sector key, which again yields the key-key
for this particular sector.

Having obtained the key-key for one specific sector, the
next step is to find the 16 unknown bytes of the 24
bytes input sequence to MD5 which generate this key-
key as output. (The middle 8 bytes is the little-endian
encoded sector number, which we assume the attacker
already knows).

In the worst case, the workload so far is:

2 ⋅ W AES/CBC/128 ⋅ 2128 + WMD5 ⋅ 2128

The attacker now has the value of up to 16 bytes (there
may be duplicates) of the 256 bytes in the master key,
but he does not know where those 16 values are located
in it.

If the attacker brute-forces multiple sectors, he can try
to brute-force the 128 bit salt using the known master

key bytes as truth detector. The exact number of sec-
tors he needs to brute force is very hard to predict but
let us assume the worst case value of two. The worst
case work necessary to do this is:

WMD5 ⋅ 2128

Knowing the salt the attacker can now predict which
bytes in the master-key are involved in the generation
of the key-key for each sector on the disk, and may be
able to decrypt a number of sectors based on the subset
of the master key he knows so far.

To extend his knowledge of the master key he will have
to attack more sectors using brute force, but the search
space is reduced by the already known bytes of the
master-key so each new sector may be obtainable along
with a byte of master key by a worst case effort as low
as:

2 ⋅ W AES/CBC/128 ⋅ 28 + 2 ⋅ WMD5

at which point the door is wide open.

Summing up, the total lowest worst case effort, given
known plaintext is in the neighbourhood of

2129 ⋅ W AES/CBC/128 + 2128 ⋅ WMD5

which is also practically infinity by todays standards.

9.3. Attacking the pass-phrase
As already mentioned, using human language

text for pass-phrases yields only about one bit of
entropy per word, so a well written 64 bit entropy pass-
phrase could be:

Blow, winds, and crack your cheeks! rage! blow!
You cataracts and hurricanoes, spout
Till you have drench’d our steeples, drown’d the cocks!
You sulphurous and thought-executing fires,
Vaunt-couriers to oak-cleaving thunderbolts,
Singe my white head! And thou, all-shaking thunder,
Smite flat the thick rotundity o’ the world!
Crack nature’s moulds, and germens spill at once,
That make ingrateful man!
[LEAR]

Given that few actors can deliver that correctly over the
lime-lights, we can expect that the average pass-phrases
will offer less entropy, and dictionary attacks are conse-
quently not only feasible, but to be expected.

The worst case work required to test one passphrase
candidate amounts to:

WSHA2/512 + W AES/128 /CBC +
Wdisk−read + W AES/256 /CBC + WMD5

while the best case work to reject it (because the
decrypted location of the lock-sector would be found to
be outside the physical media) is only:

WSHA2/512 + W AES/128 /CBC

The LOOP-AES [LOOPAES] facility in Linux offers
an ‘‘iteration count’’ which adds N thousand iterations
of AES/256 to the pass-phrase preprocessing path in
order to make such an attack more expensive.

With the increasing speeds of hardware and the avail-
ability of cryptographic co-processors, protecting a
weak pass-phrase for a decade or more in this fashion is
neither realistic nor prudent, and GBDE therefore does
not implement a similar option.

A better way to frustrate a dictionary attack is to com-

bine the pass-phrase with a high-entropy token,8 for
instance 1024 bits generated in a suitable random way.
This token could be stored on a authentication device or
removable storage device such as an USB-key.

10. Known weaknesses
No armour is impenetrable, and no dragon with-

out a soft spot. Three issues have been identified where
GBDE has less than perfect performance.

10.1. The static master key
The fact that the lock-sector contents does not

change with a change of passphrase means that once a
person has once had access to a device, it is not possi-
ble to reliably revoke that access by changing the pass-
phrase: He would be able to restore a copy of the lock-
sector for which he knows the pass-phrase, and thus
gain access to the device. All things being equal, this is
only marginally more problematic than the fact that the
user may also have kept copies of the plain-text data. If
this is a real concern, the proper mitigation is to copy
the data off the device, reinitialise the GBDE lock sec-
tors, and copy the data back. In the future an ‘‘fast re-
encrypt’’ operation would help make this a less painful
procedure.

10.2. Huge appetite for random bits
Because sector keys are single use (pseudo-)ran-

dom bits, GBDE can consume up to sixteen PRNG
bytes for every 512 byte sector written to the disk, or
32 kilobytes per megabyte of plaintext. It is obviously
important that these PRNG bits are high quality and
that the source cannot be manipulated or tampered
with, in particular when the device is first initialised
where the master-key and salt bit-strings are chosen.

8 This principle is often referred to as ‘‘something you have +
something you know’’

If the attacker can predict or manipulate the bits
assumed by GBDE to have random properties, attack-
ing the protected data could become trivial.

It follows from this that a PRNG which is not regularly
perturbed by outside entropy sources would be a very
bad source for GBDE, because it would be possible to
predict all future bits once the state of the generator
was determined once.

In FreeBSD the kernel random facility is based on the
industry standard Yarrow algorithm which uses crypto-
graphic functions to churn out high entropy bits based
on entropy collected from hardware sources
[YARROW].

10.3. The cleaning lady copy attack
An attacker in position to make a bit-wise copy a

GBDE protected media on a regular basis would be
able to gain a head-start on attacking the device by
being able to monitor which sectors change and which
do not from one snapshot to the next.

Given just a few copies spaced a day apart, an attacker
could likely pinpoint the location of the UFS/FFS super
blocks because of their strict geometric distances, and
the lock sectors may stand out after a longer time
period. In the analysis of attacks on cold media, we
more or less assumed that the attacker had this head-
start, but the full impact of this kind of attack can only
be judged for a specific file system or content type.

A log structured file system would probably be harder
to unravel this way because data and metadata are all
intermingled in sequential write operations.

11. GBDE as a component
A facility like GBDE is obviously only a compo-

nent in any real security implementation. The main
interface to GBDE as a component is the passphrase
and the administrative operations.

11.1. Typical laptop deployment
In an organisation, one possible way to deploy

GBDE on laptop computers could be the following:

The laptop is installed with operating system and disk
space is set aside for the GBDE partition(s). The secu-
rity department initialises the GBDE partition with a
top-secret company passphrase. The second lock sector
is initialised using a passphrase which the branch-office
manager has access to, and the third lock sector is ini-
tialise with a new passphrase which the user is given
access to.

To further improve security, the security department
could copy the first two encrypted lock sectors to a
floppy disk and replace them with random bits.

Should the user loose his passphrase or if he decides to
activate the lock sector destruction function in some sit-
uation, the floppy disk can be used to restore the lock
sectors and the contents of the device can be recovered
from there.

Needless to say, destroying the lock sectors adds little
security if the adversary has access to a backup copy, so
while the floppy disk does not need by definition need
to be stored in a safe, it should obviously not be stored
next to the encrypted device either.

11.2. Server deployment
For server use the issue is slightly more complex.

It is usually desirable to be able to keep the passphrase
stored on the server so that it will be able to boot auto-
matically, but at the same time make it impossible for
an attacker to get hold of the passphrase and the pro-
tected disk at the same time.

One way to implement this, is by using a ‘‘weak
link/strong link’’ method similar to that use in ‘‘permis-
sive action links’’ in atomic weapons [PAL]:

The server is installed in an small enclosure with a very
sensitive and very fast intrusion detection. If an intru-
sion is detected (breach of the weak link), the computer
will destroy the passphrase (disabling the strong link),
thereby protecting the encrypted data.

Needless to say, there needs to be an internal power
source which can provide sufficient power to reliably
destroy the passphrase, in case the attacker starts out by
cutting the power supply to the enclosure.

12. Performance impact
With an emphasis on strong crypto, performance

will always suffer, and GBDE is no exception.

12.1. Throughput
The most expensive part of the GBDE design is

the stored encrypted sector key, which worst case
forces two disk operations per sector operation.

The first set of measurements try to gauge how much
the logical sector size affects the performance. To
eliminate as much of the physical aspect, a test of 100
megabytes sequential read and write using 1 megabyte
operations were run with varying GBDE logical sector
sizes and without GBDE.

The hardware used was an AMD Athlon 700MHz CPU
using an IBM DTLA-307015 disk. For workstation or
server use, this is somewhat behind the state of the art,
but its performance is pretty close to that of a modern
laptop computer.

Operations seq. read seq. write
Mode kB/s stddev kB/s stddev

unencrypted 36141 28 27915 738

512 bytes 7326 12 3447 30
1024 bytes 8088 41 6023 50
2048 bytes 7880 32 5082 25
4096 bytes 8140 176 6061 51
8192 bytes 8849 37 6597 8

As can be see from the numbers, GBDE runs at approx
20-25% of the unencrypted speed if the logical sector
size is one kilobyte or above.

Why using 2048 byte logical sectors is slower than both
1024 and 4096 is somewhat of a mystery. We speculate
that it may be related to memory management arena
fragmentation, or possibly a cache interaction with the
UMA memory allocator.

12.2. Latency
Given that the encryption operations are very fast

compared to the seek times of contemporary disk hard-
ware, the expected behaviour with respect to I/O
latency is that operations with a high degree of locality
will take twice as long, and for operations where the
disk mechanism incurs arm settling time, the increase
in I/O latency will be lost in the noise.

An attempt was made to measure GBDE’s impact on
I/O latency using a modified version of the diskinfo
-t tests.

The numbers collected confirmed that highly local
operations roughly double their I/O latency, typically
from 150µs to 300µs. But for less local operations the
measurements were so noisy that statistically they
prove nothing useful, one way or the other. A ‘‘hairy-
eyeball’’ judgement of the numbers found nothing
which would disprove our hypothesis and found them
generally compatible with it.

We believe that the noise was due to the complexity of
the situation, where GBDE’s sector cache, the disk
drivers use of the disksort() function and the disk drives
internal optimisations result in very significant changes
in the order of things for even very minor changes to
the driving program.

12.3. Other indications
No attempt to quantify CPU usage more pre-

cisely than ‘‘will eat a lot of CPU cycles’’ hav e been
attempted, the expectation is that this will improve
when hardware assisted cryptographic functions
become available.

The author’s personal home directory has been GBDE
encrypted for more than 6 months at this point in time,
and he has neither found the performance annoyingly
slow nor lost any files in this period.

13. Future improvements
The current implementation of GBDE does not

take advantage of hardware assisted cryptographic pro-
cessing. Once AES capable hardware accelerators
become available the GBDE workflow engine should
be changed to take advantage of them.

A number of additional administrative operations can
be imagined, for instance a mode where a device is ini-
tialised and attached in one operation which does not
write the lock sectors to the media thereby preventing
later re-attachment. Such a mode would be useful for
devices used for paging or temporary file systems. A
command line option to save and restore lock sectors to
a file would be convenient too.

Fast re-encryption operation: it is possible to write
code to change the master key and salt which only
decrypt and re-encrypt the sector-keys. This would be
two to three orders of magnitude less work than re-
encrypting the entire volume.

14. Availability
GBDE is distributed under the ‘‘two-clause BSD

license’’ and will be maintained in the publicly avail-
able FreeBSD CVS repository, from where we encour-
age other operating systems to adopt it.

15. Conclusion
GBDE was designed and implemented as a cryp-

tographic facility which operates on the raw disk level
with real-world compatible semantics.

The operational experience so far is good, and initial
user feedback has been very positive.

The reviews have so far agreed that the cryptographic
design is sound and very strong approching overkill for
most ‘‘normal’’ applications.

It is impossible to set a guaranteed protection time on
any cryptographic algorithm, but we belive that if
AES/128 retains at least 80 bits of effective strength,

GBDE will protect its payload against any terrestial
attacker for at least 10 years and probably also 25 years

. . . provided the attacker can not guess that the pass-

phrase was: ‘‘Det er svært at spå, især om fremtiden.’’ 9

16. Acknowledgements
The author would like to thank:

Robert Watson for organising funding and subsequently
translating danglish to the proper red-tape protocol for
the involved paper tigers.

Lucky Green for, in addition to being incredibly patient
and helpful, trusting his data to GBDE from a very
early stage.

David Wagner for his insight, review and in particular
for reiterating the obvious until it finally registered.

Bruce D. Evans for his enthusiastic resistance and com-
petent technical hindrance. It would have been much to
easy to cut corners if it were not for people like Bruce,
much appreciated!

Also thanks to all the people who have listened atten-
tively while I have bored them with incoherent explana-
tions and fuzzy drawings, and people who have helped
stamp out ‘‘Danglish’’ from this paper, Flemming
Jacobsen and Gregory Sutter in particular.

And finally a big thanks to the Fr eeBSD crew for
putting up with me and my crazy ideas.

17. References
[CGD]

The ‘‘cgd’’ facility in NetBSD:
http://netbsd.gw.com/cgi-bin/man-
cgi?cgd+4+NetBSD-current

[CPRM]
CPRM was an attempt to mandate Digital
Restriction Management features be imple-
mented in all read-write storage devices, such as
AT A hard disks.

For a full time line of its emergence and defeat
see this summary article on ‘‘The Register’’
18-02-2001: ‘‘CPRM on ATA - Full Coverage’’
By Andrew Orlowski (http://www.theregis-
ter.co.uk):

[DOJ0227]
‘‘The Federal Bureau of Investigation’s Control

9 ‘‘It is difficult to predict, in particular the future’’
— Robert Storm Petersen (1882 - 1949)

Over Weapons and Laptop Computers’’

Report No. 02-27, August 2002, Office of the
Inspector General reports 317 laptops lost over
28 months. This is about 2% of the FBI’s inv en-
tory, and a rate of one every three days.

[IRAN]
‘‘Held Hostage in Iran - A First Tour Like No
Other’’ William J. Daugherty, 1996
http://www.cia.gov/csi/studies/spring98/iran.html

[LEAR]
Shakespeare: King Lear, Act III, scene 2.

[LOOPAES]
The ‘‘loop AES’’ facility in Linux:
http://loop-aes.sourceforge.net/loop-
AES.README

[PAL] ‘‘Permissive Action Links’’ Steven M. Bellovin
http://www.research.att.com/˜smb/nsam-160/pal.html

[PGP]
‘‘Pretty Good Privacy’’, originally written by Phil
Zimmerman, subsequently given the dot-com
runaround. A good place to start:
http://www.pgpi.com

[PRIV]
Private communication. This policy is confiden-
tial, so the source cannot be revealed.

[RSAMD5]
RSA Laboratories’ bulletin Number 4 - Novem-
ber 12, 1996 ‘‘Recent Results for MD2, MD4,
and MD5’’
ftp://ftp.rsasecurity.com/pub/pdfs/bulletn4.pdf

[STEGFS]
‘‘The Steganographic File System’’ Paper by
Ross Anderson, Roger Needham and Adi Shamir.
http://www.mcdonald.org.uk/StegFS/

[THEREG]
See for instance, these articles on ‘‘The Register’’
24-03-2000: ‘‘Sneak thief steals state secrets in
MI5 laptop’’ 06-04-2000: ‘‘Third secret-packed
official notebook nicked’’ 18-04-2000: ‘‘FBI
admits loss of ’top secret’ laptop’’ and on a
slightly different theme: 23-08-2001: ‘‘$15k
reward offered for lost laptop’’
(http://www.theregister.co.uk):

[YARROW]
Yarrow is a secure pseudorandom number gener-
ator designed by Bruce Schneier and John
Kelsey.
http://www.counterpane.com/yarrow.html

