

HiTune

Dataflow-Based Performance Analysis for Big Data Cloud

Jinquan (Jason) Dai, Jie Huang, Shengsheng Huang, Bo Huang, Yan Liu Intel Asia-Pacific Research and Development Ltd Shanghai, China, 200241

USENIX ATC'11

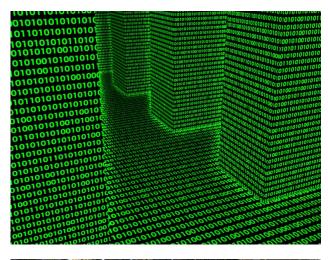
Big Data

"Industrial Revolution of Data"

- The heartbeat of mobile, cloud and social computing
- Expanding faster than Moore's law
 - E.g., Internet of Things

What is Big Data?

- Too large to work with using traditional tools (e.g., RDBMS)
- Require a new architecture
 - Massively parallel software running on 100s~1000s of servers



2011-6-16

3

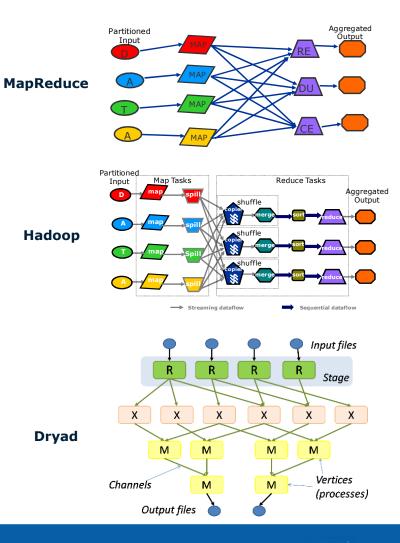
Dataflow Model for Big Data Analytics

User

- Applications modeled as dataflow graphs
- Write subroutines running on the vertices
- Abstracted away from messy details of distributed computing

System runtime

- Dynamically map dataflow graphs to the cluster
- Handles all the low level details
 - Data partitioning, task distribution, load balancing, node communications, fault tolerance, ...



What Worked

Parallel programming is hard

- Distributed programming is harder
- Dataflow model makes it a lot easier

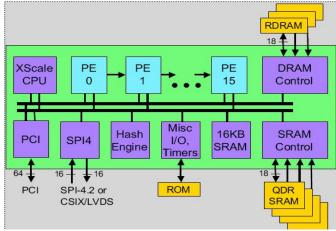
Nontrivial software written with *threads, semaphores,* and *mutexes* are incomprehensible to humans.

Edward A. Lee CGO 2007, March 2007

An appropriately high level of abstraction

- User required to consider data parallelisms exposed by the dataflow
- Runtime distributes executions of subroutines by exploiting data dependencies encoded in the dataflow

Auto-Partitioning Compiler for Intel Network Processor (IXP)



What Didn't Work

Dataflow abstraction makes Big Data system appear as a "black box"

- Very difficult for the user to understand runtime behaviors
- Performance analysis & tuning remain a big challenge

Key challenges of performance analysis for Big Data

- Massively distributed system
 - How to correlate concurrent performance activities (across 10000s of programs and machines)?
- High level dataflow abstraction
 - How to relate low level performance activities to high level dataflow model?

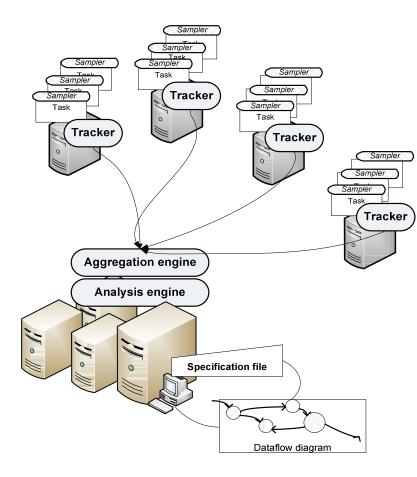
HiTune: "Vtune for Hadoop"

Distributed instrumentations

- Lightweight sampling using binary instrumentation
 - No source code modifications
- Implemented using Java programming language agents
 - Generic sampling information collected

Dataflow-driven analysis

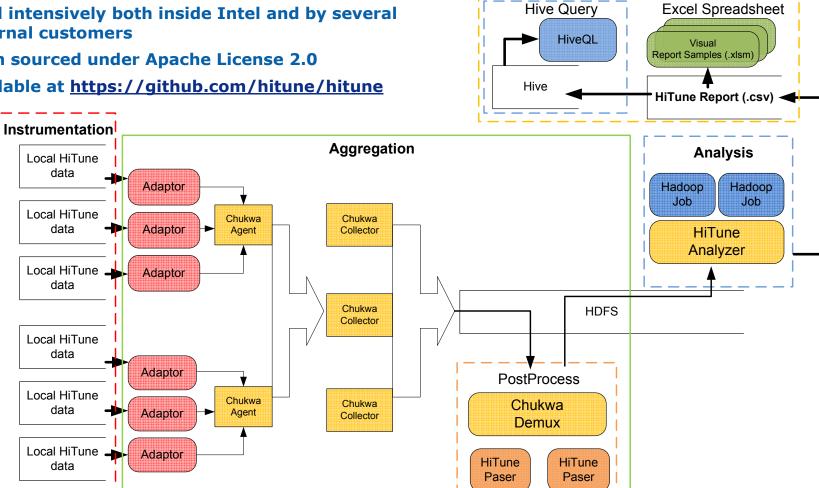
- Re-constructing dataflow execution process using low level sampling information
 - Based on a dataflow specification
- Implemented as several Hadoop jobs



HiTune 0.9

Status

- Used intensively both inside Intel and by several external customers
- **Open sourced under Apache License 2.0**
- Available at https://github.com/hitune/hitune

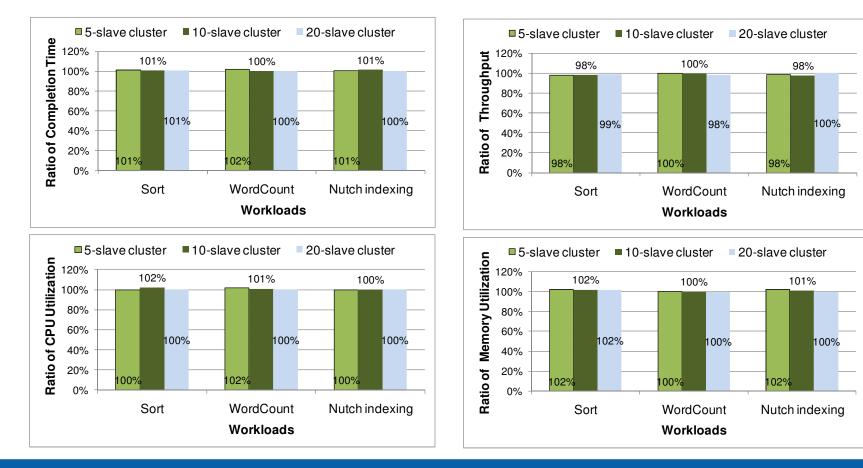


Excel Spreadsheet

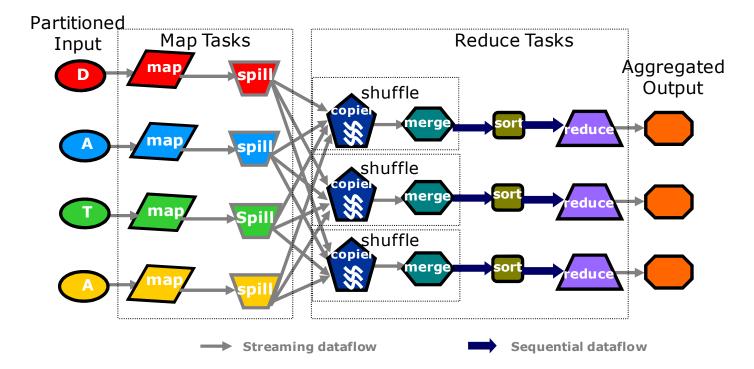
Overhead

Ratio of instrumented vs. uninstrumented clusters

Less than 2% runtime overhead due to instrumentation



The Hadoop Dataflow Model



Case Study: Limitation of Traditional Tools

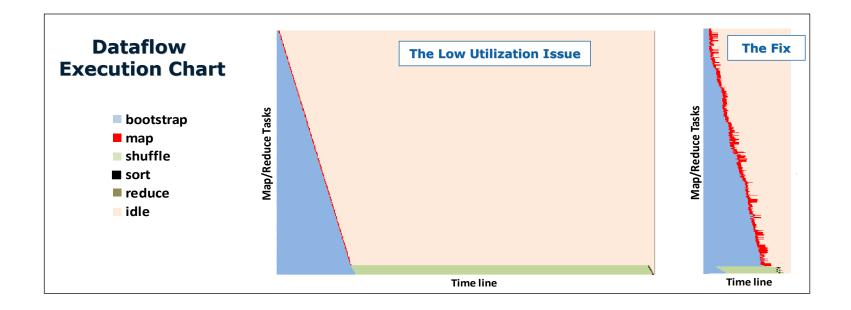
Sorting many small files (3200 500KB-sized files) using Hadoop 0.20.1

- Cluster very lightly utilized (extremely low CPU, disk I/O and network utilization)
- No obvious bottlenecks or hotspots in the cluster
- Traditional tools (e.g., system monitors and program profilers) fail to reveal the root cause

Case Study: Limitation of Traditional Tools

HiTune results (dataflow execution) reveal the root cause

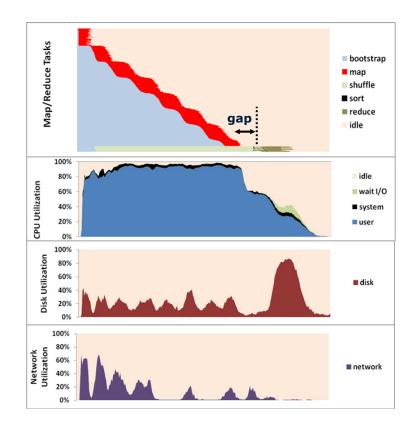
• Upgrading to "Fair Scheduler 2.0" fixes the issue



Case Study: Limitation of Hadoop Logs

TeraSort

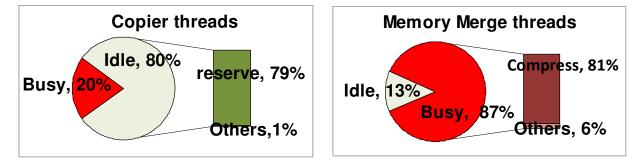
- Large gap between end of map and end of shuffle
 - None of CPU, disk I/O and network bandwidth are bottlenecked during the gap
- "Shuffle Fetchers Busy Percent" metric reported by Hadoop is always 100%
 - Increasing the number of copier threads brings no improvement
- Traditional tools or Hadoop logs fail to reveal the root cause



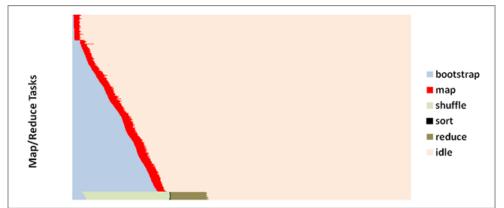
Case Study: Limitation of Hadoop Logs

HiTune results (dataflow-based hotspot breakdown) reveal the root cause

- Copier threads idle 80% of the time, waiting for memory merge thread
- memory merge thread busy mostly due to compression



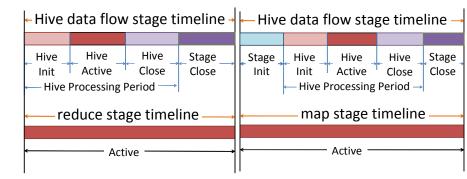
• Changing compression codec to LZO fixes this issue



Case Study: Extensibility

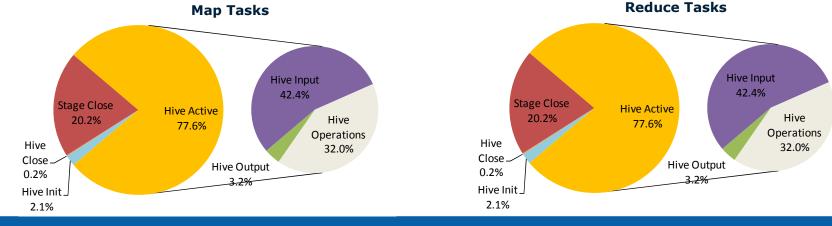
Easily extended to support Hive

• Simply changing the dataflow specification



Aggregation query in Hive performance benchmarks

- 68% of time spent on data input/output, Hadoop/Hive initialization & cleanup
- Critical to reduce intermediate results, improve data input/output, and reduce Hadoop/Hive overheads



Summary

HiTune - "VTune for Hadoop"

- Better insights on Hadoop runtime behaviors
 - Dataflow-based analysis
- Extremely low runtime overheads
- Very good scalability & extensibility
- v0.9 open sourced under Apache License 2.0
 - See <u>https://github.com/hitune/hitune</u>

Amazing things happen with Intel inside*