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Abstract

One of the most critical steps of any security review
involves identifying the trust boundaries that an ap-
plication is exposed to. While methodologies such
as threat modeling can be used to help obtain this
understanding from an application’s design, it can
be difficult to accurately map this understanding to
an application’s implementation. This difficulty sug-
gests that there is a need for techniques that can
be used to gain a better understanding of the trust
boundaries that exist within an application’s imple-
mentation.

To help address this problem, this paper describes a
technique that can be used to model the trust bound-
aries that are created by securable objects on Win-
dows. Dynamic instrumentation is used to generate
object trace logs which describe the contexts in which
securable objects are defined, used, and have their se-
curity descriptor updated. This information is used
to identify the data flows that are permitted by the
access rights granted to securable objects. It is then
shown how these data flows can be analyzed to gain
an understanding of the trust boundaries, threats,
and potential elevation paths that exist within a given
system.

1 Introduction

One of the most critical aspects of any application
security review is the process of modeling an appli-
cation’s trust boundaries. This knowledge allows an
auditor to understand how domains of trust are able
to influence one another. Without this knowledge,
an auditor is generally not be able to easily identify
the components of an application that may be ex-
posed to untrusted data. As such, an application’s
trust boundaries must be understood in order to ac-
curately characterize the threats that exist.

A common methodology that can aide this process
is threat modeling which has been popularized by Mi-
crosoft in recent years as a component of the Security

Development Lifecycle (SDL)[10]. Threat modeling
provides an auditor with a framework for describ-
ing and reasoning about the trust boundaries that
exist within an application’s design. While threat
modeling can help provide an understanding of an
application’s as-designed security, it is not as adept
at providing an understanding of an application’s as-
implemented security. For instance, an auditor may
find it difficult to use threat modeling to express the
trust boundaries that are created based on artifacts
of an implementation. These deficiencies point to a
need for techniques that can be used to improve an
auditor’s understanding of the trust boundaries that
exist within an application’s implementation.

A good example of an implementation artifact that
can be difficult to capture from an application’s de-
sign is the way in which an application interacts with
securable objects such as files, events, and processes.
Securable objects, shortened to objects henceforth,
are used by Windows to provide an abstraction for
various resources[12]. Each object is an instance of
an object type and can be assigned a security descrip-
tor. A security descriptor is used by Windows to
describe the access rights security identifiers (SIDs)
are granted or denied to a given object. These rights
can be mapped to the influences each SID may have
on other SIDs when using a given object. For ex-
ample, the ability for all users to write to a registry
key whose values are read by an administrative user
makes it possible for all users to pass data to, and
thus influence, an administrative user. This paper
provides an approach that can be used to model and
reason about these influences in terms of the data
flows permitted by securable object access rights.

The approach described in this paper is com-
posed of two parts. The first part (§2) involves us-
ing dynamic instrumentation to generate object trace
logs which provide the raw data needed to analyze
the data flows permitted by securable object access
rights. The second part (§3) involves interpreting
the object trace log data to analyze data flows, trust
boundaries, threats, and potential elevation paths.



1.1 Contributions

The primary motivation for this paper is to provide
tools and techniques needed to allow a security audi-
tor to model and reason about the trust boundaries
created by securable objects. While there are many
other types of trust boundaries that can exist within
an application, such as those related to network con-
nectivity and system calls, this paper focuses strictly
on securable objects. In this vein, the specific contri-
butions in this paper include:

• A technique that can be used to dynamically in-
strument securable object definitions and uses on
Windows.

• A model that can be used to represent the data
flows permitted by securable object access rights,
the trust boundaries that are traversed, and the
threats that exist as a result.

1.2 Related work

There has been significant work done on devel-
oping software verification techniques that focus
on determining that a program satisfies a given
specification[4, 2, 15, 8]. These techniques have
also been applied to help support software security
analysis[6, 3, 10, 1]. The work presented in this paper
may aide software security analysis by automatically
deriving an understanding of the data flows permit-
ted by securable object access rights as obtained from
a program’s implementation. For example, this un-
derstanding could be used to help provide raw data
for determining threat model conformance with Re-
flexion models[1].

Previous work has also shown that specific in-
stances of privilege escalations can be detected by
using a logical model of the Windows access control
system to analyze the access rights assigned to per-
sistent file, registry key, and service objects[14, 7].
This paper extends this work by using dynamic in-
strumentation to collect access control information
for all securable object types.

2 Data collection

The access rights associated with a given object de-
fine the extent to which each SID can influence one
another. As such, the first step to understanding
these influences involves collecting access right infor-
mation for all objects. This paper uses a combination

of two approaches to obtain this information for both
persistent and dynamic objects. The data collected
by both approaches is ultimately written to one or
more object trace logs which provide the raw input
used in §3.

2.1 Persistent objects

Persistent objects are non-volatile objects that may
exist before a system has booted. The most preva-
lent persistent objects are files, registry keys, and
services. The access rights associated with each
of these objects can be obtained using function-
ality provided by the Windows API[12]. Specifi-
cally, GetNamedSecurityInfo can be used for files,
GetSecurityInfo can be used for registry keys, and
QueryServiceObjectSecurity can be used for ser-
vices. It is suspected that this approach likely mirrors
that which was used in previous work[7].

2.2 Dynamic objects

Dynamic objects include both volatile and non-
volatile objects that are defined while a system is
executing. Examples of dynamic objects include sec-
tions, events, and processes. The access rights asso-
ciated with dynamic objects can be obtained by dy-
namically instrumenting the object manager in the
Windows kernel. Dynamic instrumentation makes it
possible to collect information about the contexts in
which objects are defined, used, and have their se-
curity descriptor updated. This information can be
used to better distinguish between access rights that
can be granted to a SID, such as by a security de-
scriptor, and access rights that are granted to a SID,
such as when a SID defines or uses an object.

2.2.1 Object definitions

Every object that is defined on Windows must first
be allocated and initialized by ObCreateObject. By
instrumenting ObCreateObject, it is possible to log
information about the context that defines a given ob-
ject. This contextual information includes the calling
process context, active security tokens, initial secu-
rity descriptor (if present), and call stack. It is im-
plicitly assumed that the SID responsible for defining
an object is granted full rights to the object.

2.2.2 Object uses

When an application uses an object it must typ-
ically create a handle to the object by issuing a
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call to a routine that is specific to a given object
type, such as NtOpenProcess. These routines ulti-
mately make use of functions provided by the ob-
ject manager, such as ObLookupObjectByName and
ObOpenObjectByPointer, to actually acquire a han-
dle to the object. While there are many places that
could be instrumented, there are two options that
have superior qualities: hooking the OpenProcedure
of each object type or using object manager callbacks.
This paper will only discuss the use of object manager
callbacks.

Object manager callbacks are a new feature in Win-
dows Vista SP1 and Windows Server 2008[11]. This
feature provides a new API, ObRegisterCallbacks,
which allows device drivers to register a callback that
is notified when handles to objects of a given type
are created or duplicated. While this API would
appear to be the perfect choice, the default im-
plementation only allows callbacks to be registered
for process and thread object types (PsProcessType
and PsThreadType). Fortunately, this limitation can
be overcome by dynamically altering a flag associ-
ated with each object type which enables the use of
ObRegisterCallbacks. Once registered, each call-
back is then able to log information about the context
that uses a given object such as the calling process
context, active security tokens, assigned security de-
scriptor, granted access rights, call stack, and object
name information.

2.2.3 Object security descriptor updates

The SecurityProcedure function pointer associated
with each object type must be instrumented in or-
der to detect alterations to an object’s security de-
scriptor. The SecurityProcedure of an object type
is called whenever an object’s security descriptor is
modified during the course of an object’s lifetime,
such as through a call to SetKernelObjectSecurity.
This allows each instrumented security procedure to
log information about the security descriptor that is
assigned to individual objects during the course of
execution.

2.2.4 Memory mapped images

In addition to instrumenting object definitions, uses,
and security descriptor updates, it is also help-
ful to instrument the memory mapping of load-
able modules. This can be accomplished by using
PsSetLoadImageNotifyRoutine to register a call-
back that is notified whenever a module is mapped

into the address space of a given process. This gives
the callback an opportunity to log information about
the base address and image size of each mapping as
an attribute of a process object. Memory mapping
information is needed in order to determine what im-
age file the return address of a given call stack frame
is contained within when interpreting call stack in-
formation.

3 Trust boundary analysis

Object trace log data can be used to better under-
stand how SIDs are able to use objects to influence
one another. These influences can be modeled by de-
scribing the flow of data between SIDs as permitted
by the access rights each SID is granted to a given
object. To illustrate this, §3.1 shows how a data flow
graph (DFG) can be used to describe the permitted
data flow behavior of a system. §3.2 then describes
how a DFG can be generated by interpreting object
trace log data. Finally, §3.3 shows how trust bound-
aries and threats can be derived from a given DFG.

3.1 Definitions

A data flow graph G = (D,U,E) relates a data defi-
nition context d ∈ D with a data use context u ∈ U
such that du ∈ E. Each vertex is defined as a tuple
d, u = 〈a,m, v〉 where a is an actor that belongs to a
domain of trust, m is a medium through which data
is flowing, and v is a verb that describes how data
is transferred. Each verb is defined as v = 〈n, C, T 〉
where n is the name of the verb, C is a set of match-
ing criteria, and T is a set of threats posed to an actor
that makes use of the verb. A data flow du ∈ E ex-
ists whenever d and u are using complementary verbs
vdvu ∈ V to operate on related mediums mdmu ∈ M .

In the context of this paper, each vertex in a DFG
takes on a more precise definition. Specifically, a rep-
resents a SID or a group of SIDs, m represents an ob-
ject instance, and v represents a verb that is specific
to the object type of m. A verb’s matching criteria C
describes the access rights that must be granted for a
SID to operate on an object. Using these definitions,
a data flow exists whenever d and u are using com-
plementary verbs, such as those found in figure 1, to
operate on the same medium md = mu. For example,
a definition d = 〈S-1-1-0, LsaPort, Write request〉
and a use u = 〈S-1-5-18, LsaPort, Read request〉
illustrates a data flow where S-1-1-0 writes a request
to LsaPort which is then read by S-1-5-18.
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Object Type
vd vu

Name Criteria Threats Name Criteria Threats

ALPC Port
Write request CONNECT I Read request IMPLICIT DEF STRIDE
Write reply IMPLICIT DEF I Read reply CONNECT STRIDE

File
Write data WRITE DATA I Read data READ DATA STRIDE
Write data WRITE DATA I Execute process EXECUTE STRIDE

Key Set value SET VALUE I Query value QUERY VALUE STRIDE

Process
Write memory VM WRITE Execute code IMPLICIT USE STRIDE

Terminate process TERMINATE Kill process IMPLICIT USE D
Create thread CREATE THREAD Execute code IMPLICIT USE STRIDE

Section
Write memory MAP WRITE I Read memory MAP READ STRIDE
Write memory MAP WRITE I Execute memory MAP EXECUTE STRIDE

Service Change config CHANGE CONFIG Start service IMPLICIT USE STRIDE
Thread Set context SET CONTEXT Execute thread IMPLICIT USE STRIDE

Figure 1: Verb relationships vdvu ∈ V for a subset of the object types that exist on Windows. These relation-

ships describe how data can flow through an object where vd defines data that is used by vu. Matching criteria

are expressed in terms of Windows access rights required to make use of the verb. Threats are expressed

categorically using STRIDE[10].

3.2 DFG generation

A DFG can be generated by interpreting object trace
log records that contain information about the ac-
cess rights individual SIDs are granted to each object.
This information exists in log records that describe
when an object is defined, used, or has its security
descriptor updated.

When an object is defined, a vertex is created
for each verb associated with the object’s object
type, with the exception of verbs having the crite-
ria IMPLICIT USE. This is meant to capture the fact
that the definer of an object is implicitly granted full
access to the object and is thus capable of using all
verbs. Each vertex is created in terms of the context
that defined the object where a is either the Owner of
the object’s security descriptor or the active security
context’s client token or primary token owner SID, m
is the object being defined, and v is the verb whose
criteria was satisfied. For example, the dynamic def-
inition of an ALPC port object would lead to the
creation of a vertex u = 〈SID, object, Read request〉.

When an object is used, a vertex is defined for any
v that matches the access rights granted to the SID
that uses the object. The owner SID and the primary
group SID of either the client or primary thread to-
ken represent the actors that are involved. For exam-
ple, acquiring a handle to a registry key with granted
rights of KEY SET VALUE would lead to the creation
of a vertex d = 〈SID, object, Set value〉.

When an object’s security descriptor is assigned or
updated, zero or more vertices may be created as a re-
sult. Log records that provide information about an

object’s security descriptor can be interpreted by enu-
merating the access control entries (ACEs) contained
within the discretionary access control list (DACL)
of the object’s security descriptor. Each ACE con-
tains information about the rights granted to a SID
for a given object. A security descriptor with a
null DACL can be interpreted as granting full ac-
cess to all SIDs. If the rights granted to a SID
meet the criteria of a given v then a vertex can be
defined where the actor is the SID that is derived
from the corresponding ACE. For example, an ACE
that grants the SID S-1-5-18 the KEY QUERY VALUE
access right would lead to the creation of a vertex
u = 〈S-1-5-18, object, Query value〉.

The vertices that are created as a result of this
process can be combined together to form data flows
as described in §3.1. A data flow may also be created
in circumstances where the verb of a given vertex is
related to a verb having the criteria IMPLICIT USE.
This criteria captures behavior that implicitly follows
from a definition. For example, the act of writing
data into a process address space can implicitly lead
to the execution of the injected data as code.

3.3 DFG analysis

Once generated, a DFG can be analyzed to derive a
number of properties including the set of trust bound-
aries that exist, the potential threats posed to each
domain of trust, and the risks posed to specific re-
gions of code.
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3.3.1 Trust boundaries

For the purpose of this paper, a trust boundary is
defined as a medium, m, that allows data to flow
between domains of trust. The set of trust bound-
aries S = {m1,m2, . . .} that exist within a DFG
can be derived from the subset of data flows where
the definition and use actors are not equal such that
md,mu ∈ S given {du | du ∈ E, ad 6= au}. In other
words, a data flow involving different domains of trust
must implicitly cross a trust boundary. The subset
of data flows that cross a trust boundary compose a
trust boundary data flow graph (TBDFG). Figure 2
provides a summary of a TBDFG where each edge
conveys the number of data flows, and thus potential
elevation paths, involving ad and au.

3.3.2 Threats

The flow of data between domains of trust can lead
to threats such as elevation of privilege and denial
of service as categorized by STRIDE[10]. Determining
which data flows pose a threat is entirely dependent
on the perspective of a domain of trust. In the fol-
lowing descriptions, the relation operator ≺ can be
interpreted as less privileged than.

From a defensive perspective, a defense horizon
can provide an understanding of the threats posed
to a given domain of trust, a. A defense horizon
is composed of the subset of data flows which may
result in other domains of trust threatening a with
a set of threats T 1. This is captured by δ(a, T ) =
{du1, du2, . . .} given T ∩ Tvu

6= ∅, a = au, ad ≺ au.
Conversely, the attack horizon for a domain of trust

can provide an understanding of the threats posed
by a given domain of trust. An attack horizon is
composed of the subset of data flows which may re-
sult in a threatening other domains of trust with
a set of threats T . This is captured by α(a, T ) =
{du1, du2, . . .} given T ∩ Tvu

6= ∅, a = ad, ad ≺ au.

3.3.3 Actualized and potential data flows

Data flows can be further classified in terms of
whether or not they are actualized. An actualized
data flow exists whenever the u vertex was created
as a result of the access rights granted when an ob-
ject was dynamically defined or used. On the other
hand, a potential data flow exists whenever the u ver-
tex was created as a result of the access rights granted

1The term attack surface also describes this set but is con-
sidered less precise.

by an object’s security descriptor.
Actualized data flows are interesting from an anal-

ysis perspective because they represent threats that
can be immediately acted upon. Potential data flows
are more difficult to interpret from an analysis per-
spective as they may never become actualized. For
example, the ability for all users to write to a file
that can be executed by an administrator produces
a potential data flow with a threat that could allow
all users to elevate privileges to administrator. How-
ever, this is predicated on the administrator actually
executing the file which may never occur in practice.

3.3.4 Assigning risk attributes to code

It is not always easy to determine what code is re-
sponsible for exposing a trust boundary when assess-
ing the security of a program. This determination can
be made easier by taking into account the call stacks
that are logged to an object trace log when an object
is defined or used. This data makes it possible to
determine how different areas of code contribute to a
program’s overall risk. This understanding may ben-
efit traditional program analysis by helping to scope
analysis to areas of a program with higher risk at-
tributes based on their exposure to a trust boundary.
This data could also be used to support security met-
rics that relate to code exposure[5, 9].

3.4 Applications

To better illustrate how this model can be useful, it
is helpful to consider some of the ways in which it can
be applied.

3.4.1 Finding privileged ALPC ports

ALPC ports represent a good target for elevation
of privilege attacks due to their client-server nature.
Figure 3 provides a subset of the ALPC port data
flows that compose the defense horizon for SYSTEM on
a default installation of Windows Vista SP1. When
analyzing these data flows it is possible to determine
what code was responsible for exposing a given trust
boundary by inspecting the call stack that was cap-
tured at the time that a server-side ALPC port object
was defined. This allows an auditor to quickly iden-
tify code that may be at risk. For example, the follow-
ing call stack lead to the creation of a trust boundary
through \RPC Control\plugplay from figure 3.
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Figure 2: A summary of the data flows that exist within the TBDFG generated for ALPC Port objects on

Windows Vista SP1. Each edge provides a count of the number of data flows where ad can define data that

may be used by au. Each vertex represents an actor using SID strings[13]. Informally, this graph illustrates

the number of potential elevation paths from ad to au as enabled by ALPC Port objects.

ntoskrnl!AlpcpCreateConnectionPort+0xd0

ntoskrnl!NtAlpcCreatePort+0x29

ntoskrnl!KiSystemServiceCopyEnd+0x13

ntdll!ZwAlpcCreatePort+0xa

rpcrt4!LRPC_ADDRESS::ActuallySetupAddress+0xf8

rpcrt4!LRPC_ADDRESS::ServerSetupAddress+0x90

rpcrt4!RPC_SERVER::UseRpcProtocolSequence+0x1b4

rpcrt4!I_RpcServerUseProtseqEp2W+0x83

rpcrt4!RpcServerUseProtseqEpW+0x35

umpnpmgr!ServiceMain+0x189

svchost!ServiceStarter+0x1ea

advapi32!ScSvcctrlThreadA+0x25

kernel32!BaseThreadInitThunk+0xd

ntdll!LdrpInitializeThread+0x9

3.4.2 Using services to elevate privileges

A privilege elevation can occur whenever a low-
privileged SID is allowed to change the configura-
tion of a service. As a result, a lesser privileged
SID can execute arbitrary code with the privileges of
SYSTEM since it is possible to alter the image file of the
service and the credentials that the service executes
with. This allows a given SID to threaten to ele-
vate privileges to SYSTEM. In other words, a data flow
exists such that d = 〈SID, service, Change config〉
and u = 〈SYSTEM, service, Start service〉 whenever
SID ≺ SYSTEM. The default installation of Windows
Vista SP1 has no data flows that enable this specific
elevation path. Previous work has also shown how
this elevation path can be detected[7].

4 Conclusion

An application’s trust boundaries and data flows
must be understood in order to identify relevant
threats. Threat modeling is a valuable tool that can
be used to help provide this understanding of an ap-

ID ad md

1 WD \Sessions\1\Windows\ApiPort
2 WD \RPC Control\trkwks
3 WD \AELPort
4 WD \UxSmsApiPort
5 WD \RPC Control\samss lpc

6 WD \RPC Control\spoolss
7 WD \RPC Control\plugplay
8 AU \WindowsErrorReportingServicePort
9 WD \LsaAuthenticationPort
10 AU \BaseNamedObjects\msctf.serverWinlogon1

Figure 3: The d vertices for a subset of data flows

du ∈ δ(SYSTEM, {E}) where u = 〈SYSTEM, m, Read request〉
and vd = Write request as exposed by ALPC ports on

Windows Vista SP1.

plication’s design. Still, it can be difficult to map this
design understanding to an application’s actual im-
plementation. This can lead to divergences in one’s
understanding of the threats that actually exist. It
can also impact an auditor’s ability to know which
components may encounter untrusted data. These
deficiencies point to the need for techniques that can
help to derive trust boundary information from an
application’s implementation.

This paper has shown how to model the trust
boundaries that are created by securable objects on
Windows. Dynamic instrumentation was used to cre-
ate object trace logs which contain information about
the contexts in which securable objects are defined,
used, and updated. The object trace log data was
then used to model and reason about the data flows,
trust boundaries, and threats permitted by securable
object access rights. Future work will attempt to ex-
tend this model to other types of trust boundaries in
an effort to gain a more complete understanding of
the trust boundaries that exist within a given system.
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