
Block Mason

Dutch T. Meyer∗†, Brendan Cully†, Jake Wires‡,
Norman C. Hutchinson† and Andrew Warfield† ‡

† Department of Computer Science
University of British Columbia

‡ Citrix, Inc

Abstract
Hardware virtualization gives administrators the

flexibility to rapidly create, destroy and relocate vir-
tual machines across physical hosts. Unfortunately, the
storage systems upon which these systems depend are
not nearly as agile. To facilitate the rapid, safe de-
velopment of block devices that can meet the needs
of virtual machines, we present the Block Mason vir-
tual block device framework. Although the block de-
vice interface is simple and intuitive, block devices
themselves must generally be implemented in the op-
erating system kernel, an environment which is nei-
ther simple nor portable. Block Mason allows users
to build small, reusable block processing elements in
user space, and to connect them together into power-
ful composite modules using a simple declarative graph
language. Although the environment emphasizes sim-
plicity for developers and end users, it includes built-in
support for powerful operations like live reconfigura-
tion and dependency tracking.

1 Introduction

Beneath the simplicity of the block device interface
lies a deep and varied set of techniques to store and
retrieve blocks. Requests may be routed, filtered or du-
plicated, encrypted, compressed, or checksummed, to
name just a few possible transformations. From these
basic operations, complex higher-level services such as
incremental backup, content-based addressing, copy-
on-write, mirroring, migration and distributed storage

∗Written while on internship with Citrix, Inc.

services can be constructed. With knowledge of the se-
mantics of I/O request streams, [1, 10] this list grows
further to include capabilities traditionally reserved for
file systems [9]. But in spite of the significant benefits
and wide applicability of such services, they have not
been broadly adopted.

For developers, the attractive simplicity of the block
interface is obscured by the difficulty of kernel pro-
gramming. Kernel extension writing is dangerous
and offers deliberately limited functionality. Storage
providers are obliged to frequently reinvent their own
libraries for configuration and management, costing
developer time and resulting in inconsistent interfaces
for end users. These restrictions are becoming increas-
ingly onerous due to the complex, dynamic, and unique
demands placed on storage by today’s highly net-
worked, virtualized environments. Despite these chal-
lenges, the block interface remains the natural place to
provide storage to virtual environments, because it is
simple and highly portable across virtual machines.

Block Mason offers developers a powerful and easy-
to-use environment for developing reusable storage el-
ements, and lets administrators combine these elements
to easily create powerful storage facilities. Its ap-
proach, conceptually similar to the Click [4] modu-
lar router, is to treat storage devices as a dynami-
cally reconfigurable graph of simple block request han-
dlers. Modules may be written in high-level languages,
and encapsulate simple routing, analysis or transfor-
mation operations. Our VM-based architecture offers
an extensible set of storage operations, and a conve-
nient platform for user-mode development with cross-
platform compatibility.



2 Architecture

Block Mason is a redesign of the blktap [11] interface,
which exports block requests from a guest VM to user-
mode in a privileged domain. We borrow terminology
from Click [4], as our system is conceptually similar.1

Block Mason provides two primary interfaces: one
for module authors, and another for users–typically
system administrators–who assemble modules into
new storage designs. We will consider our architecture
primarily from the perspective of the latter in order to
be most illustrative. In addition to what is presented
below, services common across elements (e.g. error re-
porting, request forwarding, etc.) are provided to mod-
ules as part of the Block Mason API.

2.1 Elements

Elementsare re-usable modules that perform data pro-
cessing, routing, and analysis. Our intent is that sys-
tem designers and maintainers will have a large pool
of pre-made elements available. This code re-use will
enable development to be quick and safe. In addition,
our framework facilitates the design of new elements
for special purpose tasks.

Each element is configured with a type and any
element-specific parameters. Table 1 shows a sample
from one of our configuration files: thedebug log
element passes requests through unmodified, recording
them in a log.

element MyDebug
(type debug log)
(log file /var/log/request log)

Table 1: Element configuration syntax.

A significant consideration in our design is ensuring
that elements are easy to write. We expect that most
module authors will work in high-level languages.
Still, our current linearization module (which aggre-
gates any number of block devices or files into a single
volume) is implemented as 26 lines of C and 73 lines
of template code.

1Important differences do arise from our focus on storage as op-
posed to networking. Request forwarding is done on two-way re-
quest/response channels in Block Mason, and our elements tend to
be relatively coarse grained operations, acting on whole-blocks.

2.2 Ports

Passing requests between elements is done through
ports. Ports are created in conjunction with elements,
and are given meaningful names to identify their func-
tion. Administrators connect elements together by
matching the input port on one element to the output
port on another. An example of our syntax is shown
in Table 2; here an edge connects thedebug log ele-
ment to a block device.

(MyDebug, out) − > (LocalDisk, in)

Table 2: Edge configuration syntax.

Elements can route requests to any of their output
ports, and can register to receive success or error no-
tices when the request completes.

Our scheduler takes each request from the outgoing
ports and re-queues it on the appropriate incoming port
of the next element. Graphs in Block Mason are event-
driven, with elements operating asynchrononously. At
any given time, many requests may be in flight, as
batching is critical to achieving good performance. De-
pendency tracking is provided in the API for modules,
such that authors can ensure disk consistency by or-
dering writes. Our dependency tracking mechanism is
borrowed from Parallax [6].

Currently elements share an address space, but since
block requests are serializable, it is straightforward
to support ports that cross process, VM, or network
boundaries. This facilitates the use of domain specific
languages, recovery from failed elements, and the cre-
ation of more complicated network services, similar in
scope to Petal [5].

2.3 Live Updates

The graph of a running device can be modified on the
fly in order to add, remove, or reconfigure features.
This allows designers to adopt flexible storage policies.
As requirements change over time, the storage system
can evolve accordingly.

Our command-line tool allows an administrator to
display and manipulate the graph, then reload the cur-
rent graph with any element or edge modifications. To
accomplish this, the stream of requests is temporarily

2



paused at the source, and outstanding events are qui-
esced. The graph is then destroyed and rebuilt as if
it were being constructed for the first time. Users of
the device will experience a brief period of increased
request latency but remain otherwise unaffected. This
ability is very useful in performing run-time reconfig-
urations, like checkpointing a chained image file, or
adding (and later removing) probe modules for profil-
ing the block request stream.

2.4 Dependency Tracking

To facilitate the construction of more complicated ser-
vices our framework provides support for the tracking
of inter-request dependencies. This can be used to en-
sure ordering between requests and is useful for pro-
viding data consistency or persistent logging guaran-
tees. Since this feature is provided by Block Mason,
any module can make use of the capability. Our inten-
tion is that features representing graph-level concerns,
such as this one, can be moved into the architecture to
ease the burden on module developers.

Modules may order any number of requests by as-
signing dependencies between them. These dependen-
cies dictate that the dependent request not be issued
to persistent storage before its associated independent
request. To introduce a dependency, a module author
simply uses thetd add dependency(dep req,
indep req) call. This tags bothdep req and
indep req requests, such that they will be tracked
in our scheduler. New modules that wish to track de-
pendencies can also check the state of any request with
thetd is independent(req) call.

3 Case Studies

To demonstrate the utility of Block Mason, we now
briefly discuss two example block-level services that
have been constructed with it. In addition to these ex-
amples, we are in the process of porting Parallax [6]
from its current blktap-based implementation to run as
a collection of Block Mason components.

3.1 Live Volume Migration

To demonstrate the application of our architecture, we
show how a maintenance task can be accomplished us-
ing a small number of general-purpose modules. While

small VM-based servers may begin operation on indi-
vidual physical hosts using local disks, many deploy-
ments will evolve toward the use of network-based
storage such as NFS or iSCSI. Unfortunately, migrat-
ing VM images from one storage device to another in-
volves large amounts of bulk data transfer and may in-
cur considerable downtime. In this case, Block Ma-
son can be configured to providelive disk migration,
as shown in Figure 1, where the in-use image is moved
from one storage target to another under the feet of the
running VM.

Log
Dirty

G
u
e
s
t

Filter
Remove
Reads

New DiskOld Disk

Tee
Main

Clear

Check

Repl.

Tee
Main Repl.

Read write

Copy

I/O Handling

Background Copy

IfIf

C
h
e
c
k

C
h
e
c
k

Figure 1: Live migration configuration.

3.1.1 Service Construction

The system is constructed from five distinct reusable
elements, and is designed to allow the stream of disk
I/O from the guest system to continue while copying
blocks from the original disk in the background. Each
distinct element is explained below:

3



• Tee – Duplicate an incoming request stream be-
tween any number of output ports. The guest re-
ceives completions for I/O from the original disk
only.

• Filter – Filters requests according to some crite-
ria. In Figure 1 read requests are filtered.

• Log Dirty – This filter module maintains a list of
block addresses which have not yet been synchro-
nized between two disks. In Figure 1, all blocks
are initially set to dirty. As blocks are written to
the target disk, their addresses are cleared from
the filter.

• If – Tests the request address against a filter mod-
ule, only forwarding requests corresponding to
addresses present in the filter. By connecting
this to the log dirty module, we drop non-dirtied
blocks.

• Copy – The copy module is in charge of driv-
ing the background copy operation with read and
write requests. It is initialized to walk through the
entire range of the original disk.

3.1.2 Operation

This configuration is comprised of two distinct oper-
ations. The I/O handling operation mirrors requests
across both disks, while keeping the log dirty module
up to date. At the same time, a background copy oper-
ation migrates data from the old disk. In production, an
error handler should be placed between the tee and the
new disk to catch any failures on that device. The han-
dler can then abort the migration or retry the request.

Our system handles the two potential races between
the background copy and the I/O handling. First, the If
module on the rightmost path ensures that new writes
are not accidently overwritten.2 Second, Block Mason
handles races involving conflicting writes issued con-
currently at end points, by delaying the latter request.

Once all blocks are marked clean in the log dirty
module, the graph can be replaced with direct access
to the disk. It is also possible to disable Block Ma-
son’s user-mode framework and issue future requests
directly to the block device.

2The If module on the leftmost path is a performance optimiza-
tion.

Many further improvements to this model are pos-
sible: quality of service modules could prioritize traf-
fic from the guest, notification modules could identify
when the process is complete and email the adminis-
trator to that effect.

3.2 Cloud Storage

Cloud storage is an attractive service, but access to it
requires internet protocols, such as HTTP and REST,
that differ greatly from the block interface used for
most other storage systems. It is therefore unsurpris-
ing that the usage of cloud storage is heavily weighted
towards web-based applications [2]. Yet the location
independence and high availability offered by such ser-
vices is generally desirable. The following module
demonstrates how an Amazon S3 disk can be made
available as a block device to any virtual machine.

S3 clients operate onbucketswhich are contain-
ers for key/value pairs, and fees are assessed for data
transfer. Our S3 module treats buckets as volumes,
with block addresses serving as keys. It acts as a re-
quest sink, marshalling them into REST commands
conforming to Amazon’s API which it forwards to an
S3 server.

This allows us to use a cloud storage service as a
block device. An example is shown in Figure 2. Here
we are using our module to host a guest VM’s file sys-
tem from the cloud. We have added a local cache to
provide fast access to a working set’s worth of data
(and to reduce access fees), and encrypt all data prior to
network transmission. Other modes of operation, such
as secure offline backup, are also possible.

Guest
AES

Cloud
Storage

100MB

Block
Cache Crypto

GuestGuestGuestGuest

Figure 2: A cloud-based block device created with
Block Mason modules.

Performance-sensitive users will likely want to ex-
tend this design with other modules. Communication
overheads make 4k pages inefficient, but with Block
Mason it is easy to create a module that adjusts block
sizes. Semantically intelligent modules could preferen-

4



tially divert valuable data into the cloud. Alternatively,
with a measurement module that was aware of the pric-
ing structure, spending limitations could be enforced,
even across a cluster of VMs.

4 Related Work

In addition to previously discussed work, our goals
are very much in line with those of FiST [12], which
is effectively a file system compiler that supports
many platforms. Our efforts instead focus on a cross-
platform block-level architecture. Similarly, all previ-
ous work on stackable file systems [3] seeks to ease
development with a more modular architecture. Our
approach is an extension of these prior efforts, albeit
with a more restricted focus.

Modules in Block Mason can operate entirely in
user-mode and may reroute requests dynamically. The
flexible nature with which they can be composed al-
lows building complex systems from simple reusable
elements. Configuration is also simplified through the
use of a human-readable, declarative syntax. These
features differentiate our system from the Linux device
mapper, in which all data processing must occur within
kernel modules and configuration is limited by theioctl
interface.

5 Conclusion

Our examples of a live migration service and cloud
storage volume demonstrate the versatility and useful-
ness of Block Mason. Our system can be reconfigured
underneath a running guest VM, using a declarative
configuration language. This allows administrators to
perform dynamic maintenance and refactoring opera-
tions on their storage systems without service interrup-
tions.

By building common routing, analysis, and modifi-
cation operations into simple modules, we also show
how the process of creating new services at the block
level can be made easier. Since devices are composed
as a graph of elements, Block Mason can provide very
complicated features using mature, well-tested mod-
ules. Our system handles much of the complexity and
subtlety of request routing and dependency tracking
interactions, freeing designers to focus on the unique
concerns of their services.

Our prototype has a functional scheduler and syn-
tax parser. We can create and run complex devices,
including elements with arbitrary port configurations.
Edges and elements can be added to or removed from a
running system without interruption. Dependency re-
lationships can be assigned and are correctly tracked
across the graph. We are in the process of building
a larger and more dynamic set of modules, creating a
stronger definition for the synthetic request channels
and improving error handling. Additionally, this work
inspires several relevant research directions.

One challenge is ensuring that there are sufficient
safeguards in place to avoid data corruption due to a
poorly designed configuration. Mounting a volume
with the wrong elements in place, or in the wrong
orientation could easily result in data loss. Similarly,
if a module itself is made unavailable, an entire vol-
ume may be rendered unreadable. One approach to
this problem would be to sign each volume (or even
block) with the module configuration used to create it.
Alternatively, Block Mason makes it feasible to wrap
complicated operations with a copy-on-write module,
so the underlying data is protected.

Block Mason exposes a very powerful interface, en-
abling the creation of very complicated storage sys-
tems. By reimplementing an existing block-level sys-
tem, e.g. [7], we can provide a basis for measuring our
system’s performance and expressiveness. We hope
that it will also show that future block-based systems
can be built more easily through module reuse.

Similarly, Block Mason may be able to incorpo-
rate traditionally higher-level file system mechanisms
into the block layer. Linux’s request elevator, for ex-
ample, could be reimplemented as a set of elements,
which would allow users more control over batching
and scheduling policies.

When ports are made to cross protection bound-
aries, high-level domain-specific languages can incre-
mentally replace our current modules. It is likely that
a language written specifically for routing and manip-
ulating block requests could be made far simpler than
C. Such a language may also allow static and run-time
analysis to establish correctness, perhaps by incorpo-
rating ideas from [8]. Similarly, our configuration lan-
guage could be extended to support declarative invari-
ants on operation, such as“all data is encrypted before
it reaches disk.”

5



References

[1] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau.
Information and control in gray-box systems.
In SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems princi-
ples, pages 43–56, New York, NY, USA, 2001.
ACM.

[2] M. Brantner, D. Florescu, D. Graf, D. Kossmann,
and T. Kraska. Building a database on s3. InSIG-
MOD ’08: Proceedings of the 2008 ACM SIG-
MOD international conference on Management
of data, pages 251–264, New York, NY, USA,
2008. ACM.

[3] J. S. Heidemann and G. J. Popek. A layered ap-
proach to file system development. Technical re-
port, 1991.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The click modular router.ACM
Trans. Comput. Syst., 18(3):263–297, 2000.

[5] E. K. Lee and C. A. Thekkath. Petal: Distributed
virtual disks. InProceedings of the Seventh In-
ternational Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, pages 84–92, Cambridge, MA, October
1996.

[6] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre,
M. J. Feeley, N. C. Hutchinson, and A. Warfield.
Parallax: virtual disks for virtual machines.
In Eurosys ’08: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Com-
puter Systems 2008, pages 41–54, New York, NY,
USA, 2008. ACM.

[7] S. Quinlan and S. Dorward. Venti: a new ap-
proach to archival storage. InFirst USENIX Con-
ference on File and Storage Technologies, Mon-
terey,CA, 2002.

[8] M. Sivathanu, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and S. Jha. A Logic of File Sys-
tems. InProceedings of the Fourth USENIX Sym-
posium on File and Storage Technologies (FAST
’05), San Francisco, CA, December 2005.

[9] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Improving

storage system availability with d-graid. InFAST
’04: Proceedings of the 3rd USENIX Conference
on File and Storage Technologies, pages 15–30,
Berkeley, CA, USA, 2004. USENIX Association.

[10] M. Sivathanu, V. Prabhakaran, F. I. Popovici,
T. E. Denehy, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Semantically-smart disk sys-
tems. In FAST ’03: Proceedings of the 2nd
USENIX Conference on File and Storage Tech-
nologies, pages 73–88, Berkeley, CA, USA,
2003. USENIX Association.

[11] A. Warfield, S. Hand, K. Fraser, and T. Deegan.
Facilitating the development of soft devices. In
ATEC ’05: Proceedings of the annual conference
on USENIX Annual Technical Conference, pages
22–22, Berkeley, CA, USA, 2005. USENIX As-
sociation.

[12] E. Zadok and J. Nieh. Fist: A language for stack-
able file systems. InIn Proceedings of the An-
nual USENIX Technical Conference, pages 55–
70. USENIX Association, 2000.

6


