
Pixaxe: A Declarative, Client-Focused Web Application Framework

Rob King
Principal Researcher, TippingPoint DVLabs

Abstract
This paper provides a brief introduction to and overview
of the Pixaxe Web Application Framework (“Pixaxe”).
Pixaxe is a framework with several novel features, in-
cluding a transparent template system that runs entirely
within the web browser, an emphasis on developing rich
internet applications as simple web pages, and pushing as
much logic and rendering overhead to the client as possi-
ble. This paper also introduces several underlying tech-
nologies of Pixaxe, each of which can be used separately:
Jenner, a completely client-side template engine; Esel, a
powerful expression and query language; and Kouprey, a
parser combinator library for ECMAScript.

1 Introduction

There has been an explosion of frameworks for the
building of Rich Internet Applications (RIAs). Frame-
works exist using every popular (and unpopular) pro-
gramming paradigm, language, and server side technol-
ogy. Frameworks range in complexity from a simple
JavaScript libraries that merely ease the handling of nor-
mal DOM events to frameworks that completely abstract
away HTML and JavaScript. Some frameworks run en-
tirely on the client, while others require considerable
server side support.

This paper describes the Pixaxe Web Application
Framework (“Pixaxe”). Pixaxe is interesting in that it
focuses on creating web pages using a powerful, func-
tional expression language that is a superset of normal
XHTML. The compiler and virtual machine for this lan-
guage is implemented entirely in ECMAScript and runs
entirely within a web browser. By evaluating these ex-
pressions, web pages are rendered, inputs are validated,
and client-server communication is initiated.

Pixaxe’s other interesting features include a complete
parser combinator library running entirely within a web
browser, an extremely server agnostic design (more so

than most “server agnostic” frameworks), an extremely
easy to use Model-View-Controller (MVC) design, and a
very bandwidth-frugal design that transmits a page only
once and then transmits only changes to interesting data.

Pixaxe was deisgned to be very useful in developing
web interfaces for legacy applications, or in other situ-
ations where the web interface is not the primary inter-
face to a set of data. It was also designed to be very
efficient in the use of server resources, by limiting re-
quired bandwidth and performing as much computation
and rendering on the client as possible. In fact, Pixaxe re-
quires nothing more of a server than the ability to serve
static files.

In feel, Pixaxe is closest to XForms [9] 1, in that it
views web pages as declarative interfaces modifying lo-
cal models that can then be synchronized with servers
without reloading the page.

2 A Short Example

Unlike some other application frameworks, Pixaxe at-
tempts to keep web application development as close to
web page authoring as possible. It does not abstract away
HTML, CSS, or any other web technology but instead
encourages the developer to write directly in HTML us-
ing a declarative, template-driven approach. This al-
lows developers to leverage existing technologies to the
largest extent possible, and turns XHTML into a power-
ful interface description language (especially when using
the XSLT macros provided by Pixaxe, discussed in sec-
tion 3.5).

Figure 1 illustrates a simple example of a Pixaxe ap-
plication. When viewed in a web browser, this example
would be rendered as shown in Figure 2.

This example shows some interesting features of Pix-
axe: there are no explicit calls in any scripting language,
it looks like a normal XHTML document, and there are
some special template directives freely mixed with the
markup. What is unusual is that this page is rendered,

1



Figure 1 A simple Pixaxe application.

<html>
<head>

<title>Simple Example</title>
<script type="text/javascript"

src="pixaxe.js" />
</head>

<body>
<p><b>A Two Color Gradient</b></p>
<table style="width: 100%;">
${for i from 0 to 256 by 16 return

<tr>
${for j from 0 to 256 by 16 return
<td style="background:

rgb(0, ${j}, ${i});">
0,${j},${i}

</td>
}

</tr>
}

</table>
</body>
</html>

Figure 2 Rendered output (in Apple Safari).

2



along with the special template directives, entirely by
the client. This page could be stored in a file on a lo-
cal filesystem and opened in a web browser, and it would
be rendered correctly.

This illustrates one of the core guiding principles of
Pixaxe development: all display and rendering should
be done by the client. This stems from the assump-
tion that the web interface is but one of many interfaces
to the same datasource. This example also provides a
sample of Pixaxe’s template syntax which is based on
a purely functional and side-effect-free expression lan-
guage known as Esel 2.

This example shows how Pixaxe integrates with other
technologies and encourages developers to write web
pages correctly and portably while still reaping the ben-
efits of Pixaxe.

3 Developing Rich Internet Applications
With Pixaxe

Pixaxe attempts to keep development of rich internet ap-
plications similar to the development classic web pages.
It integrates a classic Model-View-Controller (MVC) de-
velopment paradigm (as described in [6]) and declarative
paradigm, but does not enforce this. Pixaxe itself views
a web page as two combined entities: a template and
a store. The template corresponds roughly to the view
portion of the MVC model, and the store corresponds
roughly to the model portion. The controller portion of
the MVC model (handling user input) is handled by a
combination of Esel expressions embedded in templates
(which validate the input and update the model) and the
store (which synchronizes the model with all interested
parties and instructs the page to re-render if necessary).

Brief overviews of the template language, store, han-
dling user input, and client-server communications are
presented below.

3.1 The Jenner Template Language
The template language of Pixaxe is known as Jenner. It
is capable of being used independently of Pixaxe as a
simple client-side template engine. (Jenner itself is a su-
perset of the Esel expression and query language, which
itself may be used independently of Jenner).

The Jenner template language is a full-fledged expres-
sion and data query language. Jenner expressions are
used to retrieve and optionally transform data from a
store and insert the results into the rendered page. Jenner
expressions can also be used to validate user input and
update the store when data changes.

Jenner’s syntax and semantics are similar to those of
Java’s Unified Expression Language (see [1]); these sim-
ilarities are intentional. While many small expressions

are valid in both languages, the two are different enough
to be considered generally incompatible.

Jenner has two different types of expressions: value
expressions and reference expressions. The name “value
expression” is perhaps misleading, since all Jenner ex-
pressions return a value, but it is useful to differentiate
between the two types of expressions.

3.1.1 Value Expressions

An Jenner value expression can take two forms: literal
and bracketed. A literal expression is used to declare a
single value, though this literal expression may contain
other subexpressions (which would be bracketed).

For example, these are all valid literal expressions:

42
Hello, World!
true
null

Each of the above expressions are, as are all expres-
sions in Jenner, typed. Jenner supports all primitive types
defined by ECMAScript, except for the undefined value
which is treated as equivalent to null.

Jenner also supports a special collection type, which is
roughly equivalent to an ECMAScript array. Jenner pro-
vides a powerful list comprehension syntax, discussed
below, for expressing collections.

A bracketed expression is one that begins with the spe-
cial sequence ${ and ends with the character }. Inside
these delimiters, other Jenner expressions may be em-
bedded, including other bracketed expressions. Within
these brackets, the full expression language is available.

Jenner supports most common operators, including
basic and modular arithmetic, boolean combination,
string concatenation, and a C-style trinary conditional
operator. Jenner also includes operators for testing set
membership and fast tests for empty strings and collec-
tions.

Jenner also supports variable lookups (but not assign-
ment). These can be written in a fashion similar to that of
ECMAScript. Variables are exported to the Jenner run-
time by the hosting environment; it is not possible to ac-
cess objects that are not directly referencable from these
exported variables.

As an example, this expression returns the sum of the
value of the aNumber variable and 1, if aNumber is
defined. If aNumber is not defined, null is returned:

${empty aNumber ? null : aNumber + 1}

3



Bracketed expressions may also contain function calls.
Functions cannot be defined in Jenner itself; they must
be exported by the hosting application. Functions can
be namespaced to avoid name collision. Jenner contains
by default a reasonable standard library of functions, but
developers are encouraged to write and share new collec-
tions of functions.

Perhaps the most interesting form a value expression
is Jenner’s list comprehension expression, known as a
FLWR expression. 3 FLWR expressions are used to cre-
ate Jenner collections and are also used to query collec-
tions of data by comprehending a collection of results
matching some predicate.

FLWR expressions always evaluate to a collection,
even if that collection is empty. FLWR expressions can
be viewed as iterative constructs, where a variable is as-
signed a numeric value from some lower bound to some
upper bound. For each iteration of this loop, the value
is incremented by an optional step expression or by one.
FLWR expressions provide lexical scoping – local vari-
ables can be declared that are visible only within the
body of a FLWR expression. For each value generated
by some generator expression, if it an optional condi-
tional clause evaluates to true, the value is added to the
resulting collection in order.

For example, this expression would create a new col-
lection consisting of all members of an array of strings
which are longer than three characters, with each result
capitalized:

for i from 0 to names.length - 1
var s := names[i]
where s.length > 3

return upper(s)

FLWR expressions are similar to the FLWOR expres-
sions of the XQuery language (see [8]); this similarity is
intentional.

3.1.2 Reference Expressions

Jenner also supports expressions that return a reference
to an object in the hosting application. References are
represented as a tuple consisting of an object reference
and a (possibly empty) property name of that object.

Reference expressions are delimited by #{ and }.
Within these delimiters, a subset of the full Jenner value
syntax is allowed; the result of the embedded expression
must be either null or an object with an optional property
name. Only objects exported from the hosting applica-
tion are vali.

This example expression would return a reference to
the object denoted by people.addresses with a
property name of 1:

#{people.addresses[1]}

Reference expressions cannot be mixed with value ex-
pressions and may not be embedded in other expressions;
they must be entirely standalone.

Reference expressions do not directly support assign-
ment; this is considered a feature. Instead, they may be
used by the hosting application as a target for assign-
ment, but the hosting application is free to use or not use
reference expressions in any way.

3.1.3 Node Expressions

Jenner also provides a node type. This provides a literal
syntax for elements which is identical to the XML syntax
for specifying elements. A node literal may be used in an
expression anywhere a literal is allowed.

Since nodes may contain other nodes and Jenner ex-
pressions, a web page can therefore be considered a sin-
gle large Jenner expression.

Node literals’ names must be specified directly; they
cannot be expressions. This applies as well to the names
of attributes in node literals. The contents of attributes
and nodes, however, can be any valid non-node Jenner
expression.

Jenner can leverage any expression. This has some
interesting consequences. For example, a conditional ex-
pression can be used to only render a node depending on
the state of the application. For example, this template
could be used to display a list of messages should any be
present:

<body>
${not empty msgs ?

<ul>
${for i from 0 to msgs.length - 1

return
<li style="text:

${msgs[i].unread ?
’red’ : ’black’}">

${msgs[i]}
</li>

}
</ul>

: <p>No messages</p>}
</body>

Note the embedded Jenner expression inside the
style attribute of the li element.

Jenner’s template language is not particularly new or
unique; it bears large similarities to templates used by
Sun’s Java Server Pages (see [2]) or other server-side

4



template systems. What makes Jenner interesting is that
all template evaluation and rendering is performed en-
tirely by the client. Jenner is believed to be the first
completely client-side template system in which markup
and template instructions can be freely mixed (other than
XSLT).

Jenner has some advantages over other client-side
template systems. For example, while most modern web
browsers support XSLT templates, there are no standard
ways to apply XSLT transformations multiple times;
generally the transformations are applied only once, at
page load. Jenner may re-render the page at any time.
Some other templating systems, such as JavaScriptMVC
4 perform template evaluation and rendering entirely on
the client, but do not allow markup and template instruc-
tions to be freely mixed.

3.2 Storing Data
As stated above, Pixaxe loosely follows the MVC
paradigm for development. A single page has a view
component in the form of a Jenner template and a sin-
gle model in the form of a store. The store contains all
data that is relevant to the application at any given time.

Pixaxe keeps the store synchronized between all inter-
ested parties. When the data in the store changes, Pixaxe
calls Jenner to re-render the page. If the user performs an
action that results in client-server communication, Pix-
axe serializes the store and passes it to the server, and
then updates the store with the results of server process-
ing. If the user performs input that updates the store, the
page is re-rendered to reflect the new values.

When the store is serialized and sent to the server, the
server may make changes and send an updated version of
the store back to the client. The client can then re-render
the page to reflect the new values. Note that this asyn-
chronous transmission of the serialized store to and from
the server is the only client-server communication in Pix-
axe; the page itself is downloaded only once. This can
result in significant bandwidth savings, and also allows
for a very abstract server interface - client-server com-
munication is reduced to synchronizing a simple JSON
document.

Pixaxe integrates with Jenner by the simple expedi-
ent of setting the global store to be Jenner’s default envi-
ronment. Therefore, all but the simplest Pixaxe applica-
tions will contain something like this line somewhere in
a script element:

com.deadpixi.jenner.defaultEnvironment =
new com.deadpixi.pixaxe.Model( ...

Pixaxe tries to keep the creation of

the store as declarative as possible. The
com.deadpixi.pixaxe.Model constructor
takes two arguments: the first is a single object that
becomes the store. Developers are encouraged to write
this object using ECMAScript object literal syntax, to
keep to the declarative programming style as much as
possible. An optional second argument to the constructor
is a URL whose contents (which must be JSON, see [3])
will be loaded into the store after the page has finished
loading.

As an example, this might be the object used as the
store of a simple address book, with some potentially
useful initial values:

{
"addresses": [

{"name": "Rob",
"name": "jking@deadpixi.com"},
{"name": "Betsy",
"name": "betsy@example.com"}

]
}

This object would then be available to Jenner as
its default environment, and therefore expressions in
the template would have access to a variable called
addresses.

Alternatively, this object (which is expressed in JSON)
could be placed in a separate file, and a URL specify-
ing that file could be passed as the second argument to
the Model constructor. This would cause this file to be
loaded and merged with the store after the page has fin-
ished its initial load.

Note that the page is initialized only once, at page
load time. The page itself is never again transmit-
ted across the network, and there is no HTML form
style “submit-reload” cycle. The store is synchro-
nized between client and server using the de facto stan-
dard XMLHttpRequest method, and the page is re-
rendered by re-evaluating the Jenner expression which
makes up the page.

3.3 Handling User Input
In keeping with Pixaxe’s goal of leveraging existing tech-
nology, Pixaxe using XHTML as a rich interface speci-
fication language. Standard XHTML form controls are
used to create input elements (possibly augmented by
XSLT macros, see section 3.5).

Input controls can be placed anywhere in a document.
If a control is placed inside of a form element, then ma-
nipulating the control will result in some type of syn-
chronization of the store with the server (note that this

5



does not mean a traditional XHTML form submission).
Controls outside of a form element result only in local
changes to the store (which may of course be synchro-
nized with the server later).

Pixaxe supports all HTML control elements, including
input, button, select, and textarea. Each of
these controls can be linked to the page’s store by placing
a reference expression in the element’s name attribute.
Pixaxe will then ensure that the value in the store and the
controls’s value are synchronized.

For example, this declaration would create a text in-
put element whose value would be placed in the name
property of the page’s store:

<input name="#{name}"
value="${name}" />

In this example, whenever the user activates a submis-
sion control, the page’s template is re-evaluated, render-
ing the input control with the current value of the name
variable in the store. Any change in the control’s value
by the user would be automatically placed into the store.
This synchronization between store, template, and user
allows for a very powerful and declarative method of in-
terface specification.

This gives rise to a very simple, two stage process for
the handling of input when the user-activated submis-
sion control is not part of a form. First, the page’s store
is updated such that all controls that reference the store
have their values placed in the store. The page is then
re-rendered.

For example, this page will automatically re-render to
display the current value of the name control whenever
the user activates the submit control:

<p>Hello, ${empty name ? ’Stranger’ :
name}</p>

<input name="#{name}" />
<input type="submit" value="Ok" />

No client-server communication takes place when the
user activates the submit control in this example: the
store’s name variable is updated and the page is re-
rendered by re-evaluating its template locally.

To integrate form controls with Pixaxe, the semantics
of the standard attributes assigned to form controls is
overloaded. The meanings assigned to each attribute are
described below:

accept The optional accept attribute can be used to
modify or validate the value of the control before it
is copied to the store. The Jenner expression speci-
fied in the accept attribute is evaluated each time

the control’s value is evaluated and the value of the
accept expression is instead copied to the model.

name If the value of the name attribute is an Jenner ref-
erence expression, then the control is linked to the
model. Whenever the user activates a submit con-
trol, the value of the current control is copied to the
property pointed to by the reference.

value If the value of this attribute is an Jenner expres-
sion, it is evaluated each time the page is rendered
and the value of the control is set to the result.

These attributes are all specified as part of the HTML
standard. All other attributes may contain Esel expres-
sions; these will be evaluated and set each time the page
is rendered (see, for example, the style attribute in Fig-
ure 1).

Synchronization with the store is bidirectional. If the
store is updated through some other means (generally
through client-server communication), the control is up-
dated to keep its value synchronized. Thus, controls al-
ways accurately reflect the state of the store and vice-
versa.

All types of controls can be used, but controls of type
hidden are treated specially. A hidden control is used
to set an initial default value for some part of the store.
Thus, the developer can initialize certain values in the
store when the page initially loads.

3.4 Client-Server Communications

Client-server communication is done entirely via JSON
documents POSTed to URIs asynchronously. Communi-
cation is not viewed as a imperative action, but rather as
a synchronization of the state of the page’s store with the
server (by convention this is known as “synchronizing
the world”).

Client-server communication is initiated when the user
activates a submit control that is a child of a form ele-
ment. There are two possible methods of communication
in that case: classic form submission, and store synchro-
nization.

If a form element’s enctype attribute is not set to
“text/javascript”, then the form is submitted as per the
HTML standard and whatever is returned from the form
replaces the contents of the page. This is used to inter-
face with legacy code that insists on using normal HTML
form submission semantics.

If a form element’s enctype attribute is set to
“text/javascript”, however, the form is not submitted us-
ing the classic method. Instead, Pixaxe first synchro-
nizes the values of all controls with the page’s store. The
page’s store is then serialized into JSON and POSTed

6



asynchroniously to the URL specified by the form’s tar-
get. It is expected that the server return a JSON ob-
ject which is then merged with the page’s store. This
merge process simply copies all properties from the re-
turned object to the store with the same name, potentially
overwriting the values of old properties or adding new
ones. Properties that are not named in the returned ob-
ject are not affected. Note that in this case, the page is
not reloaded in any way; it is simply re-rendered locally
by Jenner.

For example, assume that the page’s store is displayed
here, as JSON:

{
"name": "Arthur",
"id": 42

}

If the user activated a submit control contained by
a form element whose enctype attribute is set to
“text/javascript”, the page’s store would be serialized and
submitted as described above.

Below is an example response from the server, which
would be returned as the body of the response to the
POST request.

{
"id": -1,
"invalid": true

}

Pixaxe would merge this response with the page’s
store, resulting in the new contents of the store.

{
"name": "Arthur",
"id": -1,
"invalid": true

}

After this synchronization process, the template is re-
rendered locally by Jenner.

Forms whose enctype is “text/javascript” may also
place an Esel expression in their accept attribute. This
expression must evaluate to true, or the server synchro-
nization will not happen. This expression can be used to
validate user input before initiating client-server commu-
nications. The form will still be re-rendered even if this
validation fails, giving the application a chance to inform
the user of invalid input.

3.5 XSLT Macros
Pixaxe comes with a collection of XSLT stylesheets.
These stylesheets define macros, which consist of spe-
cial nodes in the original markup that are transformed by

XSLT at page load time to a collection of normal HTML
markup and Jenner template instructions.

Several useful XSLT macros exist, including macros
that create paged tables, modal dialog boxes, lightboxes,
tab boxes, and AJAX-style file upload controls. These
stylesheets can be applied automatically by most modern
web browsers at page load time.

One interesting aspect of these macros is that they are
implemented entirely in regular HTML and Jenner in-
structions. They therefore require no additional server
side support. Since the macro expansion is applied only
at page loading time, it does not significantly affect page
re-render times.

These macro packages can be arbitrarily complex. For
example, Figure 3 illustrates the code for a simple tab
box on a web page, and Figure 4 illustrates the rendered
page. Figure 5 illustrates (partially) the expansion of the
dppx:tab-box and dppx:tab macros.

Macros can be arbitrarily complex, giving develop-
ers the ability to abstract away as much XHTML as
desired. Additionally, by allowing the free mixing of
Jenner markup and HTML, XSLT stylesheets applied to
pages have a much richer “target language” than tradi-
tional stylesheets.

3.6 Putting It All Together
This example demonstrates a complete, if simple, Pix-
axe application that uses a large number of the described
features. This example application builds a very sim-
ple, shared bulletin board. Users can post short messages
which are then visible to all other users.

First, the page store is declared. This should be placed
in a separate file from the web page, in this example
called “store.js”.

com.deadpixi.jenner.defaultEnvironment =
new com.deadpixi.pixaxe.Model({

msgs: [],
newMsg: ""

}, "messages.json");

The second argument is a URL that points to a file
that is assumed to contain the list of messages currently
known to the server as a single JSON object, with a prop-
erty called “msgs”. This URL will be used to load the
initial values into the page’s store after the page has fin-
ished loading.

The rest of the application is defined in a normal
XHTML file. For brevity, only the body element of this
file is shown below. Esel standard function now is used
to indicate to the user how up to date the page’s display
is. Below this is a list of messages retrieved from the
server.

7



Figure 3 An example of a page using XSLT macros.
<body>

<dppx:tab-box>
<dppx:tab label="First Tab" selected="true">

<p>Tab bodies can consist of arbitrary HTML and Jenner markup.</p>
<p>For example, here is the current value of the "name"

variable in the Store: ${name}</p>
</dppx:tab>

<dppx:tab label="Second Tab">
<p>Another tab.</p>

</dppx:tab>

<dppx:tab label="Third Tab">
<p>Yet another tab.</p>

</dppx:tab>

<dppx:tab label="Fourth Tab">
<p>Tabs everywhere!</p>

</dppx:tab>
</dppx:tab-box>

</body>

Figure 4 The rendered example of the source in Figure 3.

8



Figure 5 A partial expansion of the dppx:tab-box and dppx:tab macros.
<fieldset><input type="hidden" value="id4127134"

name="#{controller.dppx_tabselid4127132}"/>
<legend><input type="submit"

name="#{controller.dppx_tabselid4127132}"
class="dppx-tab dppx-tab-left
dppx-tab-${controller.dppx_tabselid4127132
!= ’id4127134’ ?
’un’ : ’’}selected"
accept="id4127134" value="First Tab" />

<input type="submit"
name="#{controller.dppx_tabselid4127132}"
class="dppx-tab dppx-tab-${
controller.dppx_tabselid4127132
!= ’id4127149’ ?
’un’ : ’’}selected"
accept="id4127149" value="Second Tab" />

...
<div class="dppx-tab-body

dppx-tab-body-${controller.dppx_tabselid4127132
!= ’id4127134’ ? ’un’ : ’’}selected">

<p>Tab bodies can consist of arbitrary HTML and Jenner markup.</p>
<p>For example, here is the current value of the "name"

variable in the Store: ${name}</p>
</div>

<body>
<p>${msgs.length}

message${msgs.length != 1 ?
’s’ : ’’}</p>

<p>Updated at ${now()}.</p>

<ul>
${for i from 0 to msgs.length - 1

var m := msgs[i] return
<li>${m}</li>

}
</ul>

After this, the user is given a text input area to post a
new message. This input control is linked to the page’s
store by placing a reference expression in the control’s
name attribute.

<hr />
<input name="#{newMessage}" />

A submit control is placed inside a form element
whose action points to the message posting script on the
server.

<form enctype="text/javascript"

action="/cgi-bin/post.cgi">
<input type="submit"

value="Add Message" />
</form>

This would create a complete and fully functional ap-
plication, except for the server components. The list
of messages could be a simple JSON document. The
message posting script would need only to deserialize
the contents of the POSTed store from JSON, extract
the ”newMsg” property from this deserialized object, ap-
pend its value to the messages document, and return that
document to the client.

4 Comparison to Other Frameworks

Pixaxe was designed to be very light in terms of server
resources. This makes it well suited for situations where
it is not the primary interface to a service, or where the
service is a legacy application.

This section compares Pixaxe to some other frame-
works, and helps illustrate the situations for which Pix-
axe is best suited.

4.1 Pixaxe and the Google Web Toolkit
The Google Web Toolkit (http://code.google.
com/webtoolkit/) is a mixed client-server toolkit

9



from Google. The toolkit (commonly referred to as
“GWT”) relies heavily on the Java language for develop-
ment. GWT in fact compiles Java sources to JavaScript
code which is then executed on the browser.

GWT is in many ways the opposite of Pixaxe. De-
veloping with GWT follows much the same process as
developing any large Java application - there is a com-
pile/debug/edit cycle, and the use of Java-centric tools is
encouraged. GWT encourages a mixed object-oriented
and procedural development paradigm by building in-
terfaces programatically in Java (though there has been
more support lately for declarative interface specifica-
tion).

While GWT can be used in a server agnostic manner,
much of the code is written assuming a Java Servlet Con-
tainer 5 on the server. GWT also abstracts away large
amounts of HTML.

GWT has many advantages: an extremely large user
base, and the support of one of the largest technology
companies in the world, as well as numerous mature
tools (such as Eclipse 6) that can make the development
of large applications considerably easier.

By the same token, GWT is often overkill for small
projects or in situations where a Java Servlet Con-
tainer is not available on the server. For smaller,
rapidly-developed applications, Pixaxe’s lack of a com-
pile/debug/edit cycle can be a major advantage. In situa-
tions where server resources are limited or Java technolo-
gies cannot be used, Pixaxe’s server agnosticism makes
it an attractive choice. Pixaxe would likely not scale well
to applications the size of Google Mail 7, but has easily
handled smaller applications.

4.2 Pixaxe and SproutCore
SproutCore (http://www.sproutcore.com) is a
popular client-centric toolkit used by many popular web-
sites. SproutCore is close in feel to Pixaxe. Sprout-
Core is client-focused, running its code solely within
the browser. It also favors a declarative interface spec-
ification, and development follows the Model-View-
Controller pattern. Its use in large, successful applica-
tions such as Apple’s MobileMe 8 portal illustrates that
it can be successfully used for large projects and is a ma-
ture choice.

However, SproutCore differs from Pixaxe in a few
interesting ways. SproutCore still follows a shortened
compile/debug/edit cycle. SproutCore requires Ruby for
application development, though not to run or view ap-
plications. It is server agnostic for the most part, though
much of its documentation makes assumptions that Ruby
is used on the server side.

SproutCore development tends to use much more
JavaScript than Pixaxe. SproutCore could be called a

“JavaScript framework”, in that much of the business
logic of code is specified in JavaScript. Indeed, interfaces
are often built (semi-declaratively) using JavaScript.

Pixaxe enables an arguably simpler development path,
allowing purely declarative interfaces in XHTML and a
simple expression language. New “widgets” in Pixaxe
are easily created through simple XHTML, and option-
ally made reusable through simple XSLT macros.

Pixaxe and SproutCore are well suited to many of the
same tasks. SproutCore’s programming interface is more
powerful than that of Pixaxe, but is concomitantly more
complicated. For simple, radpily developed applications,
especially single-page applications, Pixaxe may be the
better choice.

4.3 Pixaxe and XForms

XForms (http://www.w3.org/MarkUp/
Forms/) was the direct inspiration for Pixaxe.
XForms is an application of XML for the specification
of data processing models for XML, and user interfaces
to those models. It does not require, but is often used
“on top of” XHTML, using the latter as part of its
presentation layer.

The original applications for which Pixaxe was used
were originally to be written in XForms. Unfortunately,
XForms is not natively supported in any mainstream web
browser. Therefore, Pixaxe was developed to provide a
similar development experience, but usable on any mod-
ern web browser.

XForms has the benefit of being extremely well speci-
fied, and builds on the extensive base of XML technolo-
gies specified by the W3 Consortium. XForms allows for
the free mixing of presentational markup and logic spec-
ification in a single page, and lends itself well to forms-
based development cycles.

Due to this strong inspiration, Pixaxe could easily be
used in any situation where XForms could be used, but
with the benefit of wider support. XForms was designed
to help create applications that were still web pages for
the most part, and this is a design goal shared by Pixaxe.

5 The Implementation of Pixaxe

This section of the paper discusses the implementation
details of Pixaxe, including all of the technologies upon
which it is built. The bulk of Pixaxe’s code lies in the
compiler and virtual machine for the Esel and Jenner lan-
guages. Also detailed here is the Kouprey parser combi-
nator library, which is used to create the parser for Esel.

10



5.1 The Kouprey Parser Combinator Li-
brary

Pixaxe uses a parser combinator library known as
Kouprey 9. Kouprey eases the development of devel-
oping parsers by allowing developers the ability to ex-
press grammars using simple ECMAScript statements
in something resembling Extended Backaus-Naur Form
(EBNF, see [5]). The generated parsers are based on the
Parsing Expresson Grammar (PEG) formalism (see [4]).

Kouprey is available to be used separately from Pix-
axe. It has no dependencies other than a standard
ECMAScript runtime. It is sufficiently powerful that a
complete parser for the Component Pascal 10 program-
ming language has been written entirely using Kouprey.

A full discussion of Kouprey is beyond the scope
of this document, but interested readers are encouraged
to consult the Kouprey home page at http://www.
deadpixi.com/kouprey.

5.2 Esel, Jenner, and Their Virtual Ma-
chine

The Jenner template language is built on top of a small
expression language known as Esel. Jenner’s syntax is a
pure superset of that of Esel, adding only the literal node
type syntax.

Esel uses Kouprey to generate its parser. Esel expres-
sions are compiled into abstract syntax trees, which are
then passed to a code generator. This code generator cre-
ates programs for a virtual machine designed to run Esel
expressions.

The Esel compiler, code generator, and virtual ma-
chine are written entirely in ECMAScript and are avail-
able for use independently from Pixaxe. Esel’s virtual
machine is a simple stack-based virtual machine with 32
instructions. The virtual machine itself is Turing com-
plete, and provides support for such advanced features
as lexically closed environments and a foreign function
interface with ECMAScript.

5.3 The Jenner Template Engine
Jenner, Pixaxe’s template engine, is remarkably simple
in its implementation. Upon page load, Jenner is passed
a DOM element object to treat as the root of the template;
by default this is the page’s body element.

The DOM of the page is then traversed. All text nodes
and all comment nodes of a special syntax (by default,
any comment node whose first two characters are “##”)
are appended to a single Jenner expression. Any time
an element node is encountered, it is assigned a unique
ID and a call to the special jenner:nodeset function
is appended to the expression. This is done recursively

until the entire page has been converted to a single large
Jenner expression. To render the page, the root of this
expression is simply evaluated.

The jenner:nodeset function is used to insert
nodes dynamically into the page using standard DOM
manipulation. The original page is copied to serve as a
template for each render. Jenner also performs extensive
caching of rendered and compiled results for speed.

Jenner also allows developers to override default han-
dling of elements and attributes by name. Pixaxe uses
this functionality to assign special meaning to various at-
tributes, mostly for form and input handling.

Jenner is available for use independently of Pixaxe.
Jenner could be very useful as a display technology for
other frameworks.

5.4 Pixaxe, Input Processing and Data
Management

Pixaxe itself builds data management capabilities on top
of Kouprey, Esel, and Jenner. It is essentially a very thin
layer on top of these technologies.

The vast majority of Pixaxe’s code is used in process-
ing user input, primarily performing form control value
processing and input validation. Page store management
is relatively simple, consisting mostly of copying values
from controls into the model and instructing Jenner to
re-render the page.

5.5 Client-Server Communications

Client-server communications in Pixaxe are simple, us-
ing the de facto standard XMLHttpRequest (see [7])
support in modern web browsers to POST serialized ver-
sions of the page’s store and merge the returned informa-
tion into the store.

Pixaxe uses native JSON processing functions if pos-
sible for speed, but will fall back to using an JSON li-
brary written in ECMAScript if native functions are not
available.

One interesting feature provided by Pixaxe’s client-
server communications subsystem is the application
of callbacks. All communication takes place asyn-
chronously. The page store can include specially named
functions that will be invoked when the store is serial-
ized, when it is merged with the server, and on various
error conditions. Pixaxe provides a standard set of call-
back functions that will render an “input shield” over the
page, preventing any user interaction until the commu-
nications cycle is complete. Their use is, of course, op-
tional.

11



5.6 Cross-Browser Support

Kouprey and Esel are written in pure ECMAScript and
should work without modification in all conformant en-
vironments. Jenner and Pixaxe, however, are intimately
involved in the way the browser represents pages and
events and therefore must be written with cross-browser
support in mind.

Jenner and Pixaxe officially support Apple Safari (ver-
sions 4 and later), Microsoft Internet Explorer (versions
7 and later), and Mozilla Firefox (version 3 and later).
Other versions of these browsers and other vendors’
browsers may work but they are not extensively tested.

Different browsers require different syntax in certain
situations for Jenner templates. Most notably, some
browsers require expressions to be inside comment nodes
when they are inside table elements, while other
browsers require them to be bare. Similar situations arise
when dealing with ol and ul elements. Jenner and Pix-
axe provide XSLT stylesheets that can be applied to the
page as it is loaded that automatically translate pages to
use the appropriate format, transparently to the devel-
oper.

6 The Future

Kouprey, Esel, Jenner, and Pixaxe are all under active
development and several interesting features are planned
for a future release.

Kouprey’s next version is expected to be considerably
faster and have better error handling and reporting. It
will also be rewritten to make grammar definitions more
natural when using the ECMAScript Compact Profile.

Esel’s virtual machine is being rewritten to be faster
and smaller. There are also some proposed language ex-
tensions, including destructuring assignment and n-way
case statements.

Jenner and Pixaxe will be much more tightly inte-
grated in a future release (though it is planned that Jen-
ner will still be usable without Pixaxe). A faster render-
ing algorithm is also being worked on that involves static
analysis of Esel expressions to determine which portions
of the page would be affected by certain changes to the
page’s store. Additionally, a real-time synchronization
mechanism is under development that would not require
users to manually indicate that a form is ready for pro-
cessing.

7 Availability

All of the technologies discussed in this paper are avail-
able under a a free software license. All of these tech-
nologies are currently available and in active use.

Download links and detailed documentation for
all technologies are available at http://wwww.
deadpixi.com.

References
[1] CHUNG, K.-M., DELISLE, P., AND ROTH, M. Expression lan-

guage specification. Part of the Java Community Process, see
http://www.jcp.org/en/jsr/detail?id=245.

[2] CHUNG, K.-M., DELISLE, P., AND ROTH, M. Java serverpages
2.1. Part of the Java Community Process, see http://www.
jcp.org/en/jsr/detail?id=245.

[3] ECMA INTERNATIONAL. Ecmascript language specification.
copy available at http://www.ecma-international.
org/publications/files/ECMA-ST/ECMA-262.p%
df.

[4] FORD, B. Parsing expression grammars: A recognition-
based syntactic foundation. copy available at http://www.
brynosaurus.com/pub/lang/peg-slides.pdf.

[5] PATTIS, R. E. Ebnf: A notation to describe syntax. copy
available at http://www.cs.cmu.edu/˜pattis/misc/
ebnf.pdf.

[6] REENSKAUG, T. Thing-model-view-editor. archived copy avail-
able at http://heim.ifi.uio.no/˜trygver/1979/
mvc-1/1979-05-MVC.pdf.

[7] W3 CONSORTIUM. Xmlhttprequest. a working draft, copy avail-
able at http://www.w3.org/TR/XMLHttpRequest/.

[8] W3 CONSORTIUM. Xquery 1.0: An xml query language. copy
available at http://www.w3.org/TR/xquery/.

[9] W3 CONTORTIUM. Xforms 1.1. copy available at http://
www.w3.org/TR/xforms/.

Notes
1In fact, Pixaxe’s original name was “JSONForms”.
2The name “Esel” was inspired by “ECMAScript Expression Lan-

guage”.
3“FLWR” from “for”, “let”, “where”, and “return”, the four basic

operations of the expression.
4See http://www.javascriptmvc.org.
5http://java.sun.com/products/servlet/
6http://www.eclipse.org
7http://mail.google.com
8http://www.me.com
9Kouprey was named after the Cambodian ox, by analogy to other

parser generators such as yacc and bison.
10See http://www.oberon.ch/.

12


