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Abstract
We presentxJS, a practical framework for preventing
code-injections in the web environment and thus assist-
ing for the development of XSS-free web applications.
xJS aims on being fast, developer-friendly and provid-
ing backwards compatibility.

We implement and evaluate our solution in three lead-
ing web browsers and in the Apache web server. We
show that our framework can successfully prevent all
1,380 real-world attacks that were collected from a well-
known XSS attack repository. Furthermore, our frame-
work imposes negligible computational overhead in both
the server and the client side, and has no negative side-
effects in the overall user’s browsing experience.

1 Introduction
Code-injection attacks through Cross-Site Scripting
(XSS) in the web browser have observed a signifi-
cant increase over the previous years. According to
a September-2009 report published by the SANS In-
stitute [34],attacks against web applications constitute
more than 60% of the total attack attempts observed on
the Internet. Web application vulnerabilities such as SQL
injection and Cross-Site Scripting flaws in open-source
as well as custom-built applications account for more
than 80% of the vulnerabilities being discovered.XSS
threats are not only targeted towards relatively simple,
small-business web sites, but also towards infrastructures
that are managed and operated by leading IT vendors [2].
Moreover, recently widely adopted technologies, such
as AJAX [15], exacerbate potential XSS vulnerabilities
by promoting richer and more complex client-side inter-
faces. This added complexity in the web browser en-
vironment provides additional opportunities for further
exploitation of XSS vulnerabilities.

Several studies have proposed mechanisms and archi-
tectures based on policies, communicated from the web
server to the web browser, to mitigate XSS attacks. The
current state of the art includes XSS mitigation schemes

proposing whitelisting of legitimate scripts [17], utilizing
randomized XML namespaces for applying trust classes
in the DOM [16], or detecting code injections by exam-
ining modifications to a web document’s original DOM
structure [26]. While we believe that the aforementioned
techniques are promising and in the right direction, they
have weaknesses and they fail in a number of cases.
As we show in this paper, whitelisting fails to protect
from attacks that are based on already whitelisted scripts,
while DOM-based solutions fail to protect from attacks
where the DOM tree is absent [7].

To account for these weaknesses, in this paper, we pro-
posexJS, which is a practical and simple framework
that isolates legitimate client-side code from any possi-
ble code injection. Our contributions are thus twofold: i)
we describe, implement and evaluatexJS and ii) we out-
line limitations of previous methodologies and a number
of attacks that defeat existing approaches.

Our framework could be seen as afast randomization
technique. Instruction Set Randomization (ISR) [20] has
been proposed for defending against code injections in
native code or in other environments, such as code exe-
cuted by databases [9]. However, we believe that adapt-
ing ISR to deal with XSS attacks is not trivial. This is
becauseweb client-side codeis produced by the server
and is executed in the client; the server lacks all needed
functionality to manipulate the produced code. For ex-
ample, randomizing the JavaScript instruction set in the
web server requires at least one full JavaScript parser
running at the server. Thus, instead of blindly imple-
menting ISR for JavaScript, our design introducesIso-
lation Operators, which transpose all produced code in
a new isolated domain. In our case, this is the domain
defined by theXOR operator.

We designxJS with two main properties in mind:

• Backwards Compatibility. We aim for a practical,
developer-friendly solution for constructing secure
web applications and we ensure that the scheme
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1:<div> 1:<div>
2:<img onload=’’render();’’>2:<img onload=’’AlCtV...’’>
3:<script> 3:<script>
4:alert(’’Hello World’’); 4: vpSUlJTV2NHGwJyW/NHY...
5:<script> 5:</script>
6:</div> 6:</div>

Figure 1: Example of a web page that is generated by our
framework.

provides backwards compatibility.xJS allows web
servers to communicate to web browsers when the
scheme is enabled or not. A web browser not sup-
porting the framework may still render web appli-
cations, albeit without providing any of the security
guarantees ofxJS.

• Low Computation Overhead. Our design avoids
the additional overhead of applying ISR in both
web server and client, which would significantly
increase the computational overheads. This is be-
cause the web code would be parsed twice (one in
the server during serving and one in the client dur-
ing execution). Instead, the isolation operator in-
troduced inxJS applies theXOR function to the
whole source corpus of all legitimate client-side
code. Thus, the randomization process is fast, since
XOR exists as a CPU instruction in all modern hard-
ware platforms, and does not depend on any partic-
ular instruction set.

We implement and evaluate our solution in three
leading web browsers namely FireFox, WebKit1 and
Chromium, and in the Apache web server.

Our evaluation shows thatxJS can successfully pre-
vent all 1,380 attacks of a well-known repository [14],
imposes at the same time negligible computational over-
head in the server and in the client side. Finally, our
modifications appear to have no negative side-effects
in the user web browsing experience. To examine
user-perceived performance, we examine the behavior
of xJS-enabled browsers through a leading JavaScript
benchmark suite [3], which produces the same perfor-
mance results in both thexJS-enabled and the original
web browsers.

2 The xJS Framework

The fundamental concepts of our framework areIsola-
tion OperatorsandAction Based Policiesin the browser
environment. We review each of these concepts in this
section and, finally, we provide information about our
implementation prototypes.

1WebKit is not a web browser itself, it is more like an applica-
tion framework that provides a foundation upon which to build a web
browser. We evaluate our modifications on WebKit using the Safari
web browser.

xJS is a framework that can address XSS attacks car-
ried out through JavaScript. However, our basic concept
can be also applied to other client-side technologies, such
as Adobe Flash. The basic properties of the proposed
framework can be summarized in the following points.

• xJS prevents JavaScript code injections that are
based on third party code or on code that is already
used by the trusted web site.

• xJS prevents execution of trusted code during an
event that is not scheduled for execution. Our
framework guarantees thatonly the web site’s code
will be executed andonly as the site’s logic defines
it.

• xJS allows for multiple trust-levels depending on
desired policies. Thus, throughxJS, parts of a web
page may require elevated trust levels or further user
authentication to be executed.

• xJS in principle prevents attacks that are based on
injected data and misuse of the JavaScripteval()
function. We discusseval() semantics in detail
in Sections 4 and 5.

Isolation Operators

xJS is based on Instruction Set Randomization (ISR),
which has been applied to native code [20] and to
SQL [9]. The basic concept behind ISR is to randomize
the instruction set in such a way so that a code injection
is not able tospeak the language of the environment[21]
and thus is not able to execute. InxJS, inspired by ISR,
we introduce the concept of Isolation Operators (IO). An
IO essentially transposes a source corpus to a new iso-
lated domain. In order to de-isolate the source from the
isolated domain a unique key is needed. This way, the
whole source corpus, and not just the instruction set, is
randomized.

Based on the above discussion, the basic operation
of xJS is the following. We apply an IO such as the
XOR function to effectively randomize and thus isolate
all JavaScript source of a web page. The isolation is
achieved since all code has been transposed to a new
domain: theXOR domain. The IO is applied by the
web server and all documents are served in their isolated
form. To render the page, the web browser has tode-
isolatethe source by applying again the IO and then ex-
ecute it.

Note that, inxJS, we follow the approach of random-
izing the whole source corpus and not just the instruc-
tion set as in the basic ISR concept. We proceed with
this choice since the web code is produced in the web
server and it is executed in the web browser. In ad-
dition, the server lacks all needed functionality to ma-
nipulate the produced code. For example, randomiz-
ing the JavaScript instruction set needs at least one full
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JavaScript parser running at the server. This can sig-
nificantly increase the computational overhead and user-
perceived latency, since the code would be parsed twice
(one in the server during serving and one in the client
during execution). However, the isolation can break web
applications that explicitly evaluate dynamic JavaScript
code usingeval(). In that case, the web developer
must use a new API,xeval(), sincexJS alters the
semantics ofeval(). We further discuss this in Sec-
tion 5. Finally, we selectXOR as the IO because it is
in general considered a fast process; all modern hard-
ware platforms include a native implementation of the
XOR function. However, our framework may be applied
with any other IO.

Figure 1 depicts anxJS example. On the left, we
show the source code as it exists in the web server and on
the right, we provide the same source as it is fetched by
the web browser. The JavaScript source has beenXORed
and a Base64 [18] encoding has been applied in order
to transpose all non-printable characters to the printable
ASCII range.

Action Based Policies

xJS allows for multiple trust-levels for the same web
site depending on the desired operation. In general, our
framework suggests that policies should be expressed as
actions. Essentially, all trusted code should be treated
using the policy “de-isolate and execute”. For different
trust levels, multiple IOs can be used or the same IO can
be applied with a different key. For example, portions of
client-side code can be marked with different trust levels.
Each portion will be isolated using theXOR function, but
with a different key. The keys are transmitted in HTTP
headers (see the use ofX-IO-Key, later in this section)
every time the server sends the page to the browser.

Expressing the policies in terms of actions has the fol-
lowing benefit. The injected code cannot bypass the pol-
icy, unless it manages to produce the needed result after
the action is applied to it. The latter is considered prac-
tically very hard, even for trivial actions such as theXOR
operation. One possible direction for escaping the policy
is using a brute force attack. However, if the key is large
enough the probability to succeed is low.

Defining the desired policy set is out of the scope of
this paper. For the purpose of our evaluation (see Sec-
tion 4) we use one policy, which is expressed as “de-
isolate (apply XOR) and execute”. Other example poli-
cies can be expressed as “de-isolate and execute under
user confirmation”, “de-isolate with the X key and exe-
cute”, etc.

2.1 Implementation

Browser Modifications.All three modified web browsers
operate in the following way. A custom HTTP header

field, X-IO-Key, is identified in each HTTP response.
If the key is present, this is an indication that the web
server supports the framework, and the field’s value de-
notes the key for the de-isolation process. This is also a
practical way for incremental deployment of the frame-
work in a backwards compatible fashion. At the mo-
ment, we do not support multiple keys, but extending the
browser with such a feature is considered trivial. On the
other hand, the web browser communicates to the web
server that it supports the framework using anAccept2

header field for every HTTP request.
As far as WebKit and Chromium are concerned, we

had to modify two separate functions. First, the func-
tion that handles all events (such asonload,onclick,
etc.), and second, the function that evaluates a JavaScript
code block. We modified these functions to (i) decode
all source using Base64 and (ii) apply theXOR oper-
ation with the de-isolation key (the one transmitted in
X-IO-Key) to each byte. FireFox has a different design.
It also uses two functions, one for compiling a JavaScript
function and one for compiling a script. However, these
functions operate recursively. We further discuss this is-
sue in Section 4.

Server Modifications.For the server part ofxJS we
are taking advantage of the modular architecture of the
Apache web server. During Apache’s start-up phase
all configuration files are parsed and modules that are
concerned with processing an HTTP request are loaded.
The main processing unit of the apache web server is
the content generator module. A module can register
content generators by defining a handler that is config-
urable by using theSetHandler or AddHandler di-
rectives. These can be found in Apache’s configuration
file (httpd.conf).

Various request phases that precede the content gener-
ator exist. They are used to examine and possibly manip-
ulate some request headers, or to determine how the re-
quest will be handled. For example the request URL will
be matched against the configuration, because a certain
content generator must be used. In addition the request
URL may be mapped to a static file, a CGI script or a
dynamic document according to the content generator’s
operation. Finally after the content generator has sent a
reply to the browser, Apache logs the request.

Apache (from version 2 and above) also supports fil-
ters. Consider the filter chain as a data axis, orthog-
onal to the request processing axis. The request data
may be processed by input filters before reaching the
content generator. After the generator has finished gen-
erating the response various output filters may process
it before being sent to the browser.We have created an

2For the definition of theAccept field in HTTP requests, see:
http://www.w3.org/Protocols/HTTP/HTRQ Headers.
html#z3
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Apache module which operates as a content generator.
For every request, that corresponds to an HTML file in
the disk, the file is fetched and processed by our mod-
ule. The file is loaded in memory and stored in a buffer.
The buffer is transfered to an HTML parser (based on
theHTMLParser module from libxml2 [39]). This is
an HTML 4.0 non-verifying parser with API compatible
with the XML parser ones. When the parsing is done
our module traverses the parser’s XML nodes in mem-
ory and searches for all nodes that contain JavaScript
(<script> nodes and events). If there is a match the
XOR operation is applied using the isolation key to each
byte of the JavaScript source. Finally all source is en-
coded in Base64.

After encoding all possible JavaScript source in the
web page, the buffer is sent to the next operating mod-
ule in the chain; this might be an output filter or the
web browser. ImplementingxJS as a content gener-
ator module has the benefit of isolating by encryption
all JavaScript source before any dynamic content, which
might include XSS attacks, is inserted. Our framework
can cooperate with other server-side technologies, such
as PHP, in two ways: (a) by using two Apache’s servers
(one runningxJS and the other one the PHP module)
and (b) by configuring PHP to run as a filter. All evalua-
tion results presented in Section 4 are collected using the
second setup.

Secret Key. The secret key that is used for theXOR
operation is a string of random alphanumeric characters.
The length of the string can be arbitrary. For all exper-
iments presented in this paper a two-character string is
used. Assuming thatSl is the JavaScript source of length
l and KL is the secret key of lengthL, the encoding
works as follows:Enc(Si) = Si ⊕ K(i % L), 0 < i < l.
It is implied that the ASCII values of the characters are
used. The secret key is refreshed per request. We do not
consider Man-in-the-Middle (MiM) attacks, since during
a MiM an attacker can alter the whole JavaScript source
without the need of an injection through XSS.

3 Attacks Covered

In this section we present a new form of XSS attack,
which we refer to asreturn-to-JavaScriptattack, in anal-
ogy with thereturn-to-libc attack in native code. This
kind of XSS attack can escape script whitelisting, used
by existing XSS mitigation schemes. We further high-
light some important issues for DOM-based XSS miti-
gation schemes. All the attacks listed in this section can
be successfully prevented byxJS.

3.1 return-to-JavaScript Attacks

A practical mitigation scheme for XSS attacks is script
whitelisting, proposed in BEEP[17]. BEEP works as
follows. The web application includes a list of crypto-

graphic hashes of valid (trusted) client-side scripts. The
browser, using ahook, checks upon execution of a script
if there is a cryptographic hash in the whitelist. If the
hash is found, the script is considered trusted and exe-
cuted by the browser. If not, the script is considered non-
trusted and the policy defines whether the script may be
rendered or not.Script whitelisting is not sufficient.De-
spite its novelty, we argue here that simple whitelisting
may not prove to be a sufficient countermeasure against
XSS attacks. To this end, consider the following.

Location of trusted scripts. As a first example, note
that BEEP does not examine the script’s location inside
the web document. Consider the simple case where an at-
tacker injects a trusted script, initially configured to run
upon a user’s click (using theonclick action), to be
rendered upon document loading (using theonload3

action). In this case the script will be executed, since it
is already whitelisted, but not as intended by the original
design of the site; the script will be executed upon site
loading and not following a user’s click. If, for example,
the script deletes data, then the data will be erased when
the user’s browser loads the web document and not when
the user clicks on the associated hyperlink.

Exploiting legitimate whitelisted code. Attacks may
be further carried out through legitimate white-listed
code. XSS attacks are typically associated with inject-
ing arbitrary client-side code in a web document, which
is assumed to be foreign, i.e., not generated by the web
server. However, it is possible to perform an XSS attack
by placing code thatis generated by the web server in dif-
ferent regions of the web page. This attack resembles the
classicreturn-to-libcattack [11] in native code applica-
tions and thus we refer to asreturn-to-JavaScript. Return
oriented programming suggests that an exploit may sim-
ply transfer execution to a place inlibc4, which may
cause again execution of arbitrary code on behalf of the
attacker. The difference with the traditional buffer over-
flow attack [29] is that the attacker has not injected any
foreigncode in the program. Instead, she transfers exe-
cution to a point that already hosts code that can assist
her goal. A similar approach can be used by an attacker
to escape whitelisting in the web environment. Instead
of injecting her own code, she can take advantage of ex-
isting whitelistedcode available in the web site. Note
that, typically, a large fraction of client-side code is not

3One can argue that theonload action is limited and usually asso-
ciated with the<body> tag. The latter is considered hard to be altered
through a code-injection attack. However, note, that theonload event
is also available for other elements (e.g. images, using the<img> tag)
included in the web document.

4This can also happen with other libraries as well, butlibc seems
ideal since (a) it is linked to every program and (b) it supports opera-
tions likesystem(), exec(), adduser(), etc., which can be
(ab)used accordingly. More interestingly, the attack can happen with no
function calls but using available combinations of existing code [36].
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executed upon document loading, but is triggered during
user events, such as mouse clicks. Below we enumer-
ate some possible scenarios for XSS attacks based on
whitelisted code, which can produce (i) annoyance, (ii)
data loss and (iii) complete takeover of a web site.

Annoyance.Assume the blog site shown in Figure 2.
The blog contains a JavaScript functionlogout(),
which is executed when the user clicks the correspond-
ing hyperlink, Logout (line 4 in Fig. 2). An attacker
could perform an XSS attack by placing a script that calls
logout() when a blog entry is rendered (see line 7
in Fig. 2). Hence, a user reading the blog story will be
forced to logout. In a similar fashion, a web site that uses
JavaScript code to perform redirection (for example us-
ing window.location.href = new-site) can
be also attacked by placing this whitelisted code in an
onload event (see line 8 in Fig. 2).

Data Loss.A web site hosting user content that can be
deleted using client-side code can be attacked by inject-
ing the whitelisted deletion code in anonload event
(see line 9 in Fig. 2). AJAX [15] interfaces are popu-
lar in social networks such as Facebook.com and MyS-
pace.com. This attack can be considered similar to a
SQL injection attack [5], since the attacker is implicitly
granted access to the web site’s database.

Complete Takeover.Theoretically, a web site that has
a full featured AJAX interface can be completely taken
over, since the attacker has all the functionality she needs
a-priori whitelisted by the web server. For example, an e-
banking site that uses a JavaScripttransact() func-
tion for all the user transactions is vulnerable to XSS at-
tacks that perform arbitrary transactions.

A workaround to mitigate the attacks presented above
is to include the event type during the whitelisting pro-
cess. Upon execution of scriptS1, which is triggered
by an onclick event, the browser should check the
whitelist for finding a hash key forS1 associated with
an onclick event. However, this can mitigate attacks
which are based on using existing code with a different
event type than the one initially intended to by the web
programmer. Attacks may still happen. Consider the
Data Lossscenario described above, where an attacker
places the deletion code inonclick events associated
with new web document’s regions. The attacker achieves
to execute legitimate code upon an event which is not ini-
tially scheduled. Although the attacker has not injected
her own code, she manages to escape the web site’s logic
and associate legitimate code with other user actions. At-
tacks against whitelisting, based on injecting malicious
data in whitelisted scripts, have been described in [26].

3.2 DOM-based Attacks

There is a number of proposals [16, 26, 13] against XSS
attacks, which are based on information and features pro-

vided by DOM [24]. Every web document is rendered
according to DOM, which represents essentially its es-
oteric structure. This structure can be utilized in or-
der to detect or prevent XSS attacks. One of the most
prominent and early published DOM-based techniques
is DOM sandboxing, introduced originally in BEEP.

DOM sandboxing works as follows. The web server
places all scripts insidediv or span HTML elements
that are attributed astrusted. The web browser, upon
rendering, parses the DOM tree and executes client-side
scripts only when they are contained intrusted DOM
elements. All other scripts are marked as non-trusted
and they are treated according to the policies defined by
the web server. We discuss here in detail three major
weaknesses of DOM sanbdoxing as an XSS mitigation
scheme: (i) element annotation and (ii) DOM presence.

Element annotation. Enforcing selective execution
in certain areas of a web page requires identification of
those DOM elements that may host untrusted code or
parts of the web application’s code that inject unsafe con-
tent. This identification process is far from trivial, since
the complexity of modern web pages is high, and web ap-
plications are nowadays composed of thousands lines of
code. To support this, in Table 1 we highlight the number
of script, div andspan elements of a few represen-
tative web page samples. Such elements can be in the
order of thousands in modern web pages. While there is
active research to automate the process of marking un-
trusted data [35, 23] or to discover taint-style vulnerabil-
ities [19, 25], we believe that, currently, the overhead of
element annotation is prohibitive, and requires, at least
partially, human intervention. On the contrary,xJS does
not require taint-tracking or program analysis to identify
trusted or untrusted parts of a web document or a web
application.

Facebook.com MySpace.com Digg.com
script 23 93 82
div 2708 264 302
span 982 91 156

Table 1: Element counts of popular home pages indicat-
ing their complexity.

DOM presence. All DOM-based solutions require the
presence of a DOM tree. However, XSS attacks do not
always require a DOM tree to take place. For exam-
ple, consider an XSS attack which bypasses the content-
sniffing algorithm of a browser and iscarried within a
PostScript file [7]. The attack will be launched when the
file is previewed, and there is high probability that upon
previewing there will be no DOM tree to surround the
injected code. As browsers have been transformed to a
generic preview tool, we believe that variants of this at-
tack will manifest in the near future.
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1: <html>
2: <head> <title> Blog! </title> <head>
3: <body>
4: <a onclick="logout();">Logout</a>
5: <div class="blog_entry" id="123"> {...} <input type="button" onclick="delete(123)"></div>
6: <div class="blog_comments"> <ul>
7: <li> <img onload="logout();" src="logo.gif">
8: <li> <img onload="window.location.href=’http://www.google.com’;" src="logo.gif">
9: <li> <img onload="delete(123);">
10: </div>
11: <a onclick="window.location.href=’http://www.google.com’;">Google</a>
12: </body>
13:</html>

Figure 2: A minimal Blog site demonstrating the whitelisting attacks.

Another example is the unofficially termedDOM-
Based XSSor XSS of the Third Kindattacks [22]. This
XSS type alters the DOM tree of an already rendered
page. The malicious XSS code does not interact with
the sever in any way. In such an attack, the malicious
code is embedded inside a URI after the fragment identi-
fier. 5 This means that the malicious code (a) is not part
of the initial DOM tree and (b) is never transmitted to the
server. Unavoidably, DOM-based solutions [16, 26] that
define trust classes in the DOM tree at server side will
fail. The exploit will never reach the server and, thus,
never be associated with or contained in a trust class.

3.3 Attacks Not Addressed
xJS aims on protecting against XSS attacks that are
based on JavaScript injections. The framework is not
designed for providing defenses againstiframe injec-
tions and drive-by downloads [30], injections that are
non-JavaScript based (for example, through arguments
passed in Flash objects) and Phishing [12]. However,
some fundamental concepts ofxJS can be possibly ap-
plied to non-JavaScript injections.

4 Evaluation
In this section we evaluate thexJS prototype. Our eval-
uation seeks to answer four questions: (a) how many real
XSS attacks can be prevented, (b) what the overhead on
the server is, (c) what the overhead on the web browser
is and, finally, (d) if the framework imposes any side-
effects in the user’s browsing experience.

4.1 Attack Coverage
We first evaluate the effectiveness of thexJS framework
to prevent real-world XSS attacks.xJS aims on prevent-
ing traditional XSS attacks, as well as the XSS attacks
described in Section 3.

Real-world exploits. To verify that xJS can cope
with real-world XSS exploits, we use the repository
hosted by XXSed.com [14] which includes a few thou-

5For more details about the fragment identifier, we refer the reader
to http://www.w3.org/DesignIssues/Fragment.html.

sands of XSS vulnerable web pages. This repository has
been also used for evaluation in other papers [26]. The
evaluation of the attack coverage through the repository
is not a straightforward process. First, XSSed.com mir-
rors all vulnerable web pages with the XSS code embed-
ded in their body. Some of them have been fixed after
the publication of the vulnerability. These updated pages
cannot be of use, sincexJS prevents the code injection
before it takes place and there is no way for us to have
a copy of the original vulnerable web page (without the
XSS code in its body). Second, we have no access to
the vulnerable web server and, thus, we cannot use our
server-side filter for the evaluation.

To address the aforementioned limitations, we conduct
the evaluation as follows. First, we resolve all web sites
that are still vulnerable. To this end, we download all
10,154 web pages listed in XSSed.com, along with their
attack vectors. As the attack vector we define the URL
along with the parameters that trigger the vulnerability.6

Since XSS attacks that are based on a redirection with-
out using any JavaScript cannot be addressed byxJS,
we remove all such cases. Thus, we exclude 384 URLs
that have aniframe as attack vector, 416 URLs that
have a redirection to XSSed.com as attack vector and 60
URLs that have both aniframe and a redirection to
XSSed.com as attack vector.

After this first pre-processing stage, the URL set con-
tains all web pages that were vulnerable at some period
in time and their vulnerability can be triggered using
JavaScript; for example, the attack vector contains a call
to thealert() function. We then exclude from the
set all web-pages for which their vulnerability has been
fixed after it became public in XSSed.com. To achieve
this, we request each potentially vulnerable page through
a custom proxy server we built using BeautifulSoup [31].
The task of the proxy is to attach some JavaScript code
that overrides thealert() function with a URL request

6For example, consider the attack vector:http://www.
needforspeed.com/undercover/home.action?lang=
\"〉〈script〉alert(document.cookie);〈/script〉
&region=us
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to a web server located in our local network. Since all
attack vectors are based on thealert() function the
web server recorded all successful attacks in its access
logs. Using this methodology we manage to identify
1,381 web pages which are still vulnerable as of early
September 2009. Our methodology suggests that about
1 in 9 web pages have not been fixed even after the vul-
nerability was published.

We use the remaining 1,381 pages as our final testing
set. Since we cannot install our modified Apache in each
of the vulnerable web sites, we use our proxy for sim-
ulating the server-side portion ofxJS. More precisely,
for each vulnerable page, we request the vulnerable doc-
ument through our proxy with a slightly altered vector.
For example, for the following attack vector,

http://site.com/page?
id=<script>alert("XSS");</script>

the proxy instead requests the URL,

http://site.com/page?
id=<xscript>alert("XSS");</xscript>.

Notice that thescript tag has been modified to
xscript. Using this methodology, we manage to build
all vulnerable web pages withthe attack vector embed-
ded but not in effect. However, the JavaScript code con-
tained in the web document is not isolated. Thus, the
next step is to force the proxy to parse all web documents
and apply the XOR function to the JavaScript code. At
this point, all vulnerable web pages have the JavaScript
code isolated and the attack vector defunct. Hence, the
last step is to re-enable the attack vector by replacing the
xscript with script and return the web page to the
browser. All web pages also include some JavaScript
code responsible for thealert() overloading. This
code modifies allalert() calls to perform a web re-
quest to a web server hosted in our local network. If our
web server records requests, thealert() function is
called or, in other words, the XSS exploit run.

To summarize the above process, our experiment to
evaluate the efficacy of thexJS framework is the fol-
lowing. We request each web page from the collected set
which includes 1,381 still vulnerable web pages through
a custom proxy that performs all actions described above.
All web pages are requested using a modified Firefox.
We select the modified Firefox in Linux, because it is
easier to instrument through a script. We manually tested
a random sample of attacks with modified versions of
WebKit and Chromium and recorded identical behavior.

After Firefox has requested all 1,381 vulnerable pages
through our custom proxy, we inspect our web server’s
logs to see if any of the XSS attacks succeeded. Our
web server recorded just one attack. We carefully exam-
ined manually this particular attack and found out that

it is a web page that has the XSS exploit stored inside
its body and not in its attack vector [4]. The particular
attack succeeded just as a side-effect of our evaluation
methodology. IfxJS were deployed in the vulnerable
web server, this particular attack would also have been
prevented. Hence,all 1,380 real-world XSS attacks were
prevented successfully by our framework.

Attacks presented in Section 3. For the attacks pre-
sented in Section 3, since to our knowledge they have
not been observed in the wild yet, we performed vari-
ous custom attack scenarios using a popular web frame-
work, Ruby on Rails [37]. We created a vulnerable blog
and then installed the vulnerable blog service to a modi-
fied Apache server and browsed the blog using all three
modified web browsers. As expected, in all cases,xJS
succeeded in preventing the attacks.

We now look at specific attacks such as the ones
based on a code injection in data and the careless use
of eval(). The injected code is in plain text (non-
isolated), but unfortunately it is attached to the isolated
code after the de-isolation process. The injected code
will be executed as if it is trusted. However, there is a
way to prevent this. In fact, the internal design of Fire-
fox gives us this feature with no extra cost. Firefox uses
ajs CompileScript() function in order to compile
JavaScript code. The design of this function is recur-
sive and it is essentially the implementation of the actual
eval() function of JavaScript. When Firefox identifies
the scripteval($ GET(’id’));, de-isolates it, calls
theeval() function, which in principle calls itself in
order to execute the$ GET(’id’) part. At the second
call, theeval() again de-isolates the$ GET(’id’)
code, which is in plain text. The second de-isolation pro-
cess fails and thus the code does not execute.

Our Firefox implementation can address this type of
attack. WebKit and Chromium must be further modi-
fied to support this functionality. We have successfully
implemented this process in Chromium after a small
amount of code changes. However, this modification af-
fects the semantics ofeval(). For a more detailed dis-
cussion, please see Section 5.

4.2 Server Overhead

We now measure the overhead imposed on the server by
xJS. To this end, we request a set of web pages that em-
bed a significant amount of JavaScript. We choose to use
the SunSpider suite [3] for this purpose. The SunSpider
suite is a collection of JavaScript benchmarks that ship
with WebKit and measure the performance of JavaScript
engines. It is composed of nine different groups of pro-
grams that perform various complex operations. We
manually select three JavaScript tests from the SunSpi-
der suite. Theheavytest involves string operations with
many lines of JavaScript. This is probably the most
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Figure 3: Server side evaluation when the Apache benchmark tool (ab) is requesting each web page through a Fast
Ethernet link. In the worst case (heavy) the server imposes delay of a factor of five greater, while in the normal case
the delay is only a few milliseconds.
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Figure 4: Server side evaluation when the Apache benchmark tool (ab) is requesting each web page through a DSL
link. In the worst case (heavy) the server imposes a fixed delay of a few tens of milliseconds, like in the case of the
Fast Ethernet setup (see Figure 3). However, this delay doesnot dominate the overall delivery time.

processing-intensive test in the whole suite, composed
of many lines of code. Thenormaltest includes a typical
amount of source code like most other tests that are part
of the suite. Finally, thelight test includes only a few
lines of JavaScript involving bit operations.

We conduct two sets of experiments. For the first set
we useab [1], which is considered the de-facto tool for
benchmarking an Apache web server, over a Fast Ether-
net (FE) network. We configureab to issue 100 requests
for the heavy, normal and light web pages, while the
xJSmodule is enabled. Then, we perform the same ex-
periments using the tests and with thexJS Apache mod-
ule removed. We repeat all the above with theab client
running in a typical downstream DSL line (8 Mbps).

Figure 3 summarizes the results for the case of theab
tool connecting to the web server through a FE connec-
tion. The modified Apache imposes an overhead that
ranges from a few (less than 6 ms and less than 2 ms
for the normal and light test, respectively) to tens of mil-
liseconds (about 60 ms) in the worst case (the heavy web
page). While the results are quite promising for the ma-
jority of the tests, the processing time for the heavy page,
which is over a factor of five greater, could be considered
significant. In Figure 4 we present the same experiments
over the DSL link. The overhead is still the same and

it is negligible (less than a roundtrip in today’s Internet)
since now the delivery overhead dominates. This drives
us to conclude that the Apache module imposes a fixed
overhead of a few milliseconds per page, which is not the
dominating overhead.

4.3 Client Overhead

Having examined the server-side overhead, we now mea-
sure the overhead imposed on the browser byxJS.
We use the SunSpider test suite with 100 iterations,
with every test executed 100 times. We use the
gettimeofday() function to measure the execution
time of the modified functions in each browser. Each
implementation has two functions altered. The one that
is responsible for handling code associated with events,
such asonclick, onload, etc., and the one that is
responsible for evaluating JavaScript code blocks. The
modifications of WebKit and Chromium are quite similar
(Chromium is based partially on WebKit). The modifica-
tions of Firefox are substantially different. In Firefox we
have modified internally the JavaScripteval() func-
tion which is recursive. These differences affect the ex-
perimental results in the following way. In WebKit and
Chromium we record fewer long calls in contrast with
Firefox, in which we record many short calls.
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Figure 5: Cumulative distribution for the delay imposed by all modified function calls in the Firefox, WebKit and
Chromium implementation, respectively. As delay we assumethe time needed for the modified function to complete
minus the time needed for the unmodified one to complete. Notice that the majority of function calls imposes a delay
of a few milliseconds.

In Figure 5 we present the cumulative distribution
of the delays imposed by all modified recorded func-
tion calls for Firefox, WebKit and Chromium, during a
run of the SunSpider suite for 100 iterations. As delay
we define the time needed for the modified function to
complete minus the time needed for the unmodified one
to complete. Observe that the Firefox implementation
seems to be the faster one. All delays are less than 1 mil-
lisecond. However, recall that Firefox is using a lot of
short calls, compared to the other two browsers. Firefox
needs about 500,000 calls for the 100 iterations of the
complete test suite. In Figure 5 we plot the first 5,000
calls for Firefox (these calls correspond to one iteration
only) of the complete set of about 500,000 calls, for vi-
sualization purposes and to facilitate comparison, and all
4,800 calls needed for WebKit and Chromium to com-
plete the test suite, respectively. Chromium imposes an
overhead of a few milliseconds per call, while WebKit
seems to impose larger overheads. Still, the majority of
WebKit’s calls impose an overhead of a few tens of mil-
liseconds.

4.4 User Browsing Experience

We now identify whether user’s browsing experience
changes due toxJS. As user browsing experience we
define the performance of the browser’s JavaScript en-
gine (i.e., running time), which would reflect the user-
perceived rendering time (as far as the JavaScript con-
tent is concerned) for the page. We run the SunSpider
suiteas-isfor 100 iterations with all three modified web
browsers and with the equivalent unmodified ones and
record the output of the benchmark. In Figure 6 we plot
the results for all different categories of tests. Each cat-
egory includes a few individual benchmark tests. As ex-
pected there is no difference between a modified and a
non modified web browser for all three platforms, Fire-
fox, WebKit and Chromium. This result is reasonable,
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Figure 6: Results from the SunSpider test suite. Notice
that for each modified browser the results are comparable
with the results of its unmodified equivalent. That is,
all de-isolated JavaScript executes as expected in both
modified and unmodified browser.

since after the de-isolation process the whole JavaScript
source executes normally as it is in the case with a
non compatible with thexJS framework web browser.
Moreover, this experiment shows thatxJS is not restric-
tive with legitimate web sites, since all the SunSpider
suite (some thousands of JavaScript LoCs) run without
any problem or side-effect.

5 Discussion
We now discuss potential limitations of our approach and
offer possible workarounds.

JavaScript Obfuscation.Web pages served byxJS
have all JavaScript encoded in Base64. Depending on the
context this may be considered as a feature or not. For
example, there are plenty of custom tools that obfuscate
JavaScript on purpose. Such tools are used by certain
web sites for protecting their JavaScript code and prevent
visitors from copying the code. We should make clear
that emitting all JavaScript encoded does not harden the
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development process, since all JavaScript manipulation
takes place during serving time. While debugging, web
developers may safely switch offxJS. Blueprint [38]
also emits parts of a web page in Base64.

eval() Semantics and Dynamic Code.As previously
discussed (see Section 4), in order forxJS to cope with
XSS attacks that are based on malicious injected data, the
semantics ofeval() must change. More precisely, our
Firefox modifications alter theeval() function in the
following way. Instead of simply evaluating a JavaScript
content, the modifiedeval() function performs de-
isolation before evaluation. This behavior can break web
applications that are based on the generation of dynamic
JavaScript code, which is executed usingeval() at
serving time. While this type of programming might
be considered inefficient and error-prone, we suggest the
following workaround. The JavaScript engine can be en-
hanced with anxeval() variant which does not per-
form any de-isolation before evaluation. The web pro-
grammer must explicitly callxeval() if this is the de-
sired behavior. Still, there is no possibility for the at-
tacker to evaluate her code (usingxeval()), since the
original call toxeval() must be already isolated.

Code Templates and Persistent XSS.Web developers
frequently use templates in order to produce the final
web pages. These templates are stored usually in a
database and sometimes they include JavaScript. The
database may also contain data produced by user in-
puts. In such cases, the code injection may take place
within the database (Persistent XSS). This may occur if
trusted code and a user input containing malicious code
are merged together before included in the final web
page. This case is especially hard to track, since it in-
volves the programmer’s logic to a great extent. The
challenge lies in that client-side code is hosted in an-
other environment (the database) which is also vulner-
able to code injections. xJS assumes that all trusted
JavaScript is stored in files and not in a database. If the
web developer wishes to store legitimate JavaScript in a
database then she can place it in read-only tables. With
these assumptions,xJS can cope with persistent XSS.
Recall from Section 2 thatxJS module is the first to run
in the Apache module chain and, thus, all JavaScript iso-
lation will take place before any content is fetched from
databases or other external sources.

6 Related Work

The closest studies toxJS are BEEP [17], Nonces-
paces [16] and DSI [26]. Throughout the paper, we
have highlighted certain cases where the aforementioned
methodologies fail (e.g., see Section 3). We have pre-
sented attacks that escape whitelisting (proposed in [17])
and cases where DOM-based solutions [16, 26] are not
efficient. Our framework,xJS, can cope with XSS at-

tacks that escape whitelisting [6], and does not require
any information related to DOM;xJS can also prevent
attacks that leverage the content-sniffing algorithms of
web browsers [7].

Our technique is based on Isolation Operators and it
is inspired by Instruction Set Randomization (ISR) [20].
Solutions based on ISR have been applied to native code
and to SQL injections [9]. Keromytis discusses ISR as
a generic methodology for countering code injections
in [21] and he mentions that the technique can be po-
tentially applied in XSS mitigation. However, to the best
of our knowledge there has been no systematic effort to-
wards this approach before.

In [40] the authors propose to use dynamic tainting
analysis to prevent XSS attacks. Taint-tracking has been
partially or fully used in other similar approaches [26,
35, 28, 27]. AlthoughxJS does not rely at all on taint-
ing, a source-code based tainting technique [43] can cer-
tainly assist in separating all server-produced JavaScript.
The server side ofxJS will be able to efficiently mark
all legitimate client-side code and also identify malicious
data. However, the performance might degrade.

Blueprint [38] is a server-only approach which guar-
antees that untrusted content is not executed. The appli-
cation server pre-renders the page and serves each web
document in a form in which all dynamic content is cor-
rectly escaped to avoid possible code injections. How-
ever, Blueprint requires the web programmer to inject
possible unsafe content (for example comments of a blog
story) using a specific Blueprint API in PHP. Spotting all
unsafe code fragments of a web application is not trivial.
Blueprint imposes further a significant overhead com-
pared to solutions based on natively browser modifica-
tions, likexJS.

Enforcing separation between structure and content is
another prevention scheme for code injections [32]. This
proposed framework can deal with XSS attacks as well
as SQL injections. As far as XSS is concerned, the ba-
sic idea is that each web document has a well defined
structure in contrast to a stream of bytes, as it is served
nowadays by web servers. This allows the authors to
enforce a separation between the authentic document’s
structure and the untrusted dynamic content from user in-
put, which is attached to it. However, in contrast toxJS,
this technique cannot deal with attacks that are based on
the content-sniffing algorithms of browsers [7] as well
as attacks that modify the DOM structure using purely
client-side code [22].

Script accenting [10] is based also onXOR for isolat-
ing scripts in the web browser. Script accenting aims on
providing an efficient mechanism for implementing the
same origin policyin a web browser, but it is not explic-
itly related with XSS. Leaks that can take place due to
the DOM separation from the JavaScript engine, inside
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a web browser, and can lead to browser compromising
have been studied in [8]. These attacks can be considered
more severe than XSS and cannot be captured byxJS.
MashupOS [41] and subsequent work Gazelle [42] view
browsers as a multi-principal OS where a principal is la-
beled by a web site’s origin following thesame-origin
policy [33]. MashupOS analyzed and proposed pro-
tection and communications abstractions that a browser
should expose for web application developers. In partic-
ular,<sandbox> is proposed to embed untrusted con-
tent and can be used by developers to prevent XSS at-
tacks as long as they can correctly differentiate trusted
content from untrusted ones. In comparison, our work
does not require explicit inclusion of untrusted content
from developers.

7 Conclusion
In this paper we presentxJS, a practical and developer-
friendly framework against the increasing threat of XSS
attacks. The motivation for developingxJS is twofold.
First, we want an XSS prevention scheme that can cope
with the newreturn-to-JavaScriptattacks presented in
this paper and second, we want the solution to be easily
adopted by web developers.

We implement and evaluate our solution in three lead-
ing web browsers and in the Apache web server. Our
evaluation shows that (a) every examined real-world XSS
attack can be successfully prevented, (b) negligible com-
putational overhead is imposed on the server and browser
side, and (c) the user’s browsing experience and per-
ceived performance is not affected by our modifications.
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