
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

New Tricks for an Old Terminal Driver

Eric Fischer
The University of Chicago

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

New Tricks for an Old Terminal Driver

Eric Fischer
The University of Chicago

enf@pobox.com

Abstract
Users expect more out of command lines than they did fifteen years ago, but the terminal interface has not evolved to
keep up with their expectations. With a few modifications, though, the terminal driver can provide every program
with support for the arrow keys and several common Emacs commands.

Introduction
After some significant improvements in 4BSD and

System III in the early 1980s, the Unix terminal inter-
face stopped evolving. Since then, even substantial
rewrites like 4.4BSD and completely new implementa-
tions like Linux have giv en terminals the same old set
of features without adding anything new.

Meanwhile, users have continued to demand better
and better interfaces. With stagnation in the operating
system, the responsibility for improvement has fallen to
individual programs. The result is that some programs
(the ones that do all the work themselves) have very
good interfaces, while others (the ones that depend
upon operating system services) have very bad ones.

It would be very difficult to make the kernel include
all the editing features from Emacs or vi. These editors
are large and complicated programs, and a reasonably
complete imitation of either of them must also be large
and complicated. Attempting to make the same kernel
code work on different versions of Unix makes the
complexity even worse.

But a complete clone of Emacs is more than most
programs really need. As Kernighan and Plauger put it,
‘‘most users of a tool are willing to meet you halfway;
if you do ninety percent of the job, they will be
ecstatic.’’ The standard kernel provides about fifty per-
cent of what user testing shows that people want out of
a command line editor. A few select enhancements will
raise this figure to more than ninety nine percent.

Most importantly, it turns out, people want to be
able to delete things: the previous character, the next
character, the previous word, the whole line, and to the
end of the line. They want to be able to move up and
down a history list. They also want to be able to move
left and right within the line they are editing, a charac-
ter or a word at a time, and to the start or end of the
line. Finally, they want to be able to complete partially-
typed filenames and to clear the screen.

Other, more elaborate features are occasionally use-
ful, but most users will never notice that anything is

missing if they can do the things listed above. Selecting
this small set of features to implement also means that
portability need not be a major concern, since the ideas
can easily be applied to a different kernel implementa-
tion even if the code itself cannot be.

Implementation
As you type characters, the terminal driver places

them into a structure called (on BSD systems) the raw
queue. This structure was not designed for elaborate
editing, so there is normally no way to add characters to
or remove characters from it other than at the end.

One way to work around this limitation without
introducing an entirely different representation is to use
two queues for the current input line. The raw queue
still holds the characters are to the left of the cursor, and
a new queue, the editing queue, holds the ones to the
right of it, if there are any. As the cursor is moved left,
characters are removed from the raw queue and placed
into the editing queue. When moving the other direc-
tion, the opposite happens.

So, for example, if someone had typed the line

sort file | uniq -c | sort -rn

and moved the cursor back over the i as shown, the raw
queue would contain

sort file | un

and the contents of the editing queue would be

nr- tros | c- qi

The characters in the editing queue are in reverse order
because it is really being used as a stack, not a queue.
When the characters are moved back, one at a time, into
the raw queue, they will again be in the correct order.

Since the characters after the cursor are kept in their
own queue, inserting and deleting characters before the
cursor can be done in exactly the same way as with the
standard driver. As a result, most of the code never
needs to know that the editing queue exists at all. Most
of the parts that do know about it only use the two func-
tions that move the cursor left and right.

The functions that move the cursor left and right
update the structures in memory and the image on the
terminal at the same time. The only control character
that the updating routine uses is Backspace, so it should
work with nearly any terminal.

User interface
Once this infrastructure is in place, the next task is

to make a user interface for it. Other programs have
already established a de facto standard for what this
interface should look like: people expect to be able to
use the arrow keys and some of the control characters
from Emacs. In practice, even diehard vi fans generally
seem to be willing to put up with Emacs-style com-
mand line editing.

This is lucky, because a minimal version of Emacs
is much easier to write than a minimal version of vi. A
vi editing mode would be a good thing to add eventu-
ally, but I have giv en up on it for now because vi’s com-
pound command structure and the awkward access to
data in BSD queues made it too hard to do a good job.

Most basic Emacs commands, on the other hand,
are very straightforward to implement. Control-B and
Control-F, which move the cursor left and right, respec-
tively, simply call the primitive function that performs
this task. Control-A and Control-E, which move to the
start and end of the line, do the same, but keep calling
the function until it fails, which means that the end of
the line has been reached.

The deletion commands are only slightly more com-
plicated. Control-K, which deletes up to the end of the
line, first checks to see how many characters there are
after the cursor, moves forward that many characters,
and then deletes backward the same number of times.
Control-D, which deletes a single character, is cursed
by being the same character that Unix uses for end-of-
file. If there are any characters after the cursor, it
deletes one; otherwise, it falls through to the normal
input processing which interprets it as end-of-file.

These Emacs commands, incidentally, are only
interpreted when the L_EMACS bit is set in the terminal
control flags and the terminal is in canonical mode.
This allows anyone who only wants to use the standard
terminal facilities to disable the Emacs commands with
stty -emacs. There is room for an L_VI flag for
when a more ambitious version adds support for the vi
command set.

Compounds and arrows
Other Emacs commands and ANSI-standard arrow

keys use multicharacter sequences beginning with ESC.
So when the terminal driver is in Emacs mode and
receives an ESC character, it sets a flag to record this

and then returns to wait for the next character to arrive.
This is similar to the way the literal-next character is
already handled.

If the next character that arrives is also ESC, it falls
through into the normal processing, so a csh-style file-
name completion facility can still be used by typing
ESC ESC. If the character is b or f, then the sequence
is the Emacs backward- or forward-word command and
the cursor is moved backward or forward until a word
boundary or the end of a line is reached.

If the character after ESC is [or O, then it is
assumed to be part of the sequence for a VT100-style
arrow key, and another bit is set to indicate this. When
the following character arrives, if it is A, B, C, or D, then
the appropriate arrow key action is taken.

It is a shame to hardwire these sequences into the
program, but they are used by nearly every terminal,
they are specified by an ANSI standard, and the code to
support them is much less complicated than a more
configurable version would be. The same features are
still available on non-ANSI terminals by using equiv-
alent Emacs commands rather than arrows.

History
Since the function of the up and down arrows (as

well as Control-P and Control-N) is to move through
the history list, this is an appropriate point at which to
introduce the history mechanism. In an earlier (1997)
implementation, I put all the code to manage the history
list directly in the terminal driver, but the experience
convinced me that history is too complicated and takes
too much memory to make it reasonable to put entirely
inside the kernel.

In the current version, the real work of maintaining
the history list is done by a daemon, ttyd, which runs as
a user process and makes ioctl calls to listen for instruc-
tions from the terminal driver. The driver can post
requests for the previous or next item from a terminal’s
history list or to add a new line to the list. The daemon
satisfies these by using additional ioctls to query and set
the contents of a terminal’s current input buffer.

Each process on each terminal has a separate history
list so programs do not interfere with each other. Typed
input is added to the history list only when the terminal
is in canonical mode and only when echoing is turned
on, so there should be no risk of passwords ending up in
the history by mistake.

Like the Emacs features, the history list can be
enabled or disabled for a particular terminal by setting
or resetting the L_HISTORY bit using stty.

The new ioctls that were added to support the his-
tory features also turn out to have more general uses.

The header-editing feature in Berkeley mail, for
instance, stuffs each header into the editing buffer by
faking a series of keystrokes. When rewritten using one
of the new ioctls, it is simpler, shorter, and less prone to
mysterious bugs than the current version.

Completion
Probably the most important element of an easy-to-

use command line interface, and unfortunately the hard-
est to do well, is a completion feature that can automati-
cally provide the rest of a partially-typed command or
filename. There are several ways to implement this,
none of which is completely satisfactory.

As mentioned above, csh-style completion still
works with the modified terminal driver. The csh fea-
ture works by making the system return a partially
typed line and then faking keystrokes to get the com-
pleted version back into the editing buffer. As the man-
ual notes, this approach is ‘‘ugly and expensive,’’ and it
requires each program that needs a completion feature
to do all the work itself.

A variation on this theme gives control back to the
user program by sending it a signal when the comple-
tion character is typed. The signal handler then uses
one of the new ioctls mentioned above to retrieve the
contents of the current input line. It completes the line
and uses another ioctl to put the modified line back into
the terminal driver’s queue. This approach still requires
the cooperation of each program, and also requires the
addition of a new signal to the system. The current ver-
sions of NetBSD, OpenBSD, FreeBSD, and Linux each
have only one slot left for a new signal, and it doesn’t
seem very nice to take the last one.

A third approach gives the responsibility for com-
pletion to the daemon that is already providing history
services. This eliminates the need to include comple-
tion code in every program, but it also means that pro-
grams cannot tailor the completion routines to meet
their specific needs. This is also difficult to implement
on a BSD system, because there is no easy way for a
BSD user program to find out the working directory of
another process, and filenames cannot be completed
without knowing this.

Because of these problems, I am still experimenting
with other ways the operating system might be able to
provide a generalized completion facility.

Conveniences
Some keyboards have Backspace keys, some have

Delete keys, some have both, and some have keys
labelled Backspace that actually transmit the Delete
character or vice versa. Most programs that do their
own editing work around this by making both

Backspace or Delete erase the previous character no
matter which has been set as the erase character. This is
just as easy to do in the terminal driver as it is to do in
any other program.

In addition, the modified terminal driver can auto-
matically set the erase character appropriately whenever
either Backspace or Delete is typed in canonical mode,
so raw mode programs are also informed which key is
correct. This special treatment for Backspace and
Delete can be enabled or disabled by setting or resetting
the L_SETERASE bit with stty. People who prefer to
use Delete as their interrupt character will obviously
choose to disable it.

Finally, as mentioned earlier, a surprisingly popular
feature of tcsh is its ability to clear the screen when a
user types Control-L. Since the terminal driver does
not have access to the termcap or terminfo database, it
does not know what control sequence (if any) will clear
the screen. It does, however, usually know how many
lines tall the screen is, and outputting that number of
blank lines is not a bad substitute.

Conclusions
I hav e been using various versions of the software

described here since early 1997. During that time I
have found it very useful to have command line editing
features consistently available in every program. If you
would like to try this software on your own computer,
copies of the source code are available at

http://pobox.com/˜enf/ttyedit/

