
Proceedings of 2000 USENIX Annual Technical Conference
San Diego, California, USA, June 18–23, 2000

A C O M P A R I S O N  O F 
F I L E  S Y S T E M  W O R K L O A D S 

Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



A Comparison of File System Workloads
Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson

University of California, Berkeley and University of Washington
{drew, lorch}@cs.berkeley.edu, tom@cs.washington.edu

Abstract

In this paper, we describe the collection and analysis of
file system traces from a variety of different environ-
ments, including both UNIX and NT systems, clients and
servers, and instructional and production systems. Our
goal is to understand how modern workloads affect the
ability of file systems to provide high performance to
users. Because of the increasing gap between processor
speed and disk latency, file system performance is
largely determined by its disk behavior. Therefore we
primarily focus on the disk I/O aspects of the traces. We
find that more processes access files via the memory-map
interface than through the read interface. However,
because many processes memory-map a small set of files,
these files are likely to be cached. We also find that file
access has a bimodal distribution pattern: some files are
written repeatedly without being read; other files are
almost exclusively read. We develop a new metric for
measuring file lifetime that accounts for files that are
never deleted. Using this metric, we find that the average
block lifetime for some workloads is significantly longer
than the 30-second write delay used by many file systems.
However, all workloads show lifetime locality: the same
files tend to be overwritten multiple times.

1  Introduction

Like other computer systems, file systems provide good
performance by optimizing for common usage patterns.
Unfortunately, usage patterns vary both over time and
across different user communities. To help delineate cur-
rent workload patterns, we decided to measure a wide
range of file systems in a number of different environ-
ments, specifically, UNIX and Windows NT, client and
server, instructional, research, and production. We com-
pare our results with those from the Sprite study, con-
ducted in 1991. Although we were interested in tracking
how behavior has changed since the Sprite study, we do
not directly reproduce all of their results. Their study

focused on cache and virtual memory behavior. Since the
relative performance of hardware has changed since that
time, we focus instead on the I/O bottleneck.

We collected traces from four different groups of
machines. Three of the groups run HP-UX, a variant of
the UNIX operating system. One of these is an instruc-
tional laboratory, another is a set of computers used for
research, and another is a single web server. The last
group is a set of personal computers running Windows
NT. This diversity of traces allows us to make conclu-
sions not only on how current file system usage differs
from past file system usage, but also how file system
usage varies among machines used for different pur-
poses.

Because improvements in disk latency are increasingly
lagging behind those of processors and disk bandwidth,
we chose to focus our study on measurements that eluci-
date how disk behavior is affected by workload and file
system parameters. As the I/O gap grows, one way to
provide good performance is to cache as many file reads
and writes as possible and to minimize latencies for the
remainder. For example, one way to avoid disk reads is
by employing large file caches. Our results show that
while small caches can avert many disk reads, there are
diminishing benefits for large cache sizes. In addition to
file reads, memory-mapping has become a popular file
access method. We examine memory-mapping behavior
in order to see the effect of memory-mapped files on the
file cache. We find that more processes access files via
memory-mapping than through reads or writes. For the
UNIX workloads, we find that a small set of memory-
mapped files tend to be shared among many processes.
As a result, cache misses on these files are unlikely.

To avoid disk writes, the file system can increase the
time between an application’s write and flushing the data
to disk, for example, by using NVRAM. By delaying
writes, blocks that are deleted in the interval need not be
written at all. We find that most blocks live longer than
the standard 30-second write delay commonly employed
by file systems. In UNIX systems, most blocks die
within an hour; in NT, many blocks survive over a day.
Most blocks die due to overwrites, and these overwrites
have a high degree of locality—that is, most overwritten
files are multiply overwritten. Because of this locality,
even a small write buffer is sufficient to handle a day’s
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worth of write traffic.

To reduce disk seeks, most file systems organize their
layout to optimize for either reads or writes. We find that
whether read traffic or write traffic dominates varies
depending on the workload and the file system configu-
ration. However, for all workloads, we find that individ-
ual files tend to have bimodal access patterns—they are
either read-mostly or write-mostly. This tendency is most
clear in frequently accessed files.

2  Related Work

Characterizing file system behavior is difficult due to
both the wide range of workloads and the difficulty in
obtaining data to analyze. Obviously, no trace analysis
project has the scope to analyze all relevant features of all
relevant workloads. Instead, each study lets us under-
stand a piece of the greater picture.

In order to minimize the complexity of trace collection,
many studies concentrate on static data, which they col-
lect by examining file system metadata at one or several
frozen instants in time [Douc99] [Sien94] [Chia93]
[Benn91] [Saty81] [Smit81]. These studies of snapshots
are useful for studying distributions of file attributes
commonly stored in metadata, such as file size, last
access time, last modification time, file name, and direc-
tory structure.

Dynamic traces of continuous file system access patterns
yield more detailed information about file system usage.
However, these traces are considerably more difficult to
collect both because of the volume of data involved and
because the collection process typically involves modify-
ing the operating system kernel. Some tracing methods
avoid altering the kernel by recording file system events
that pass over a network [Blaz92] [Dahl94]. However,
this method misses file system events that do not cross
the network, such as local file system calls. Also, arti-
facts of the network file system being measured can
affect these types of traces.

Modifying the kernel to obtain local file system behavior
has its own set of drawbacks. First, the kernel source
code is not always available. Second, the modified ker-
nels must be deployed to users willing to run their appli-
cations on an altered kernel. Finally, the overhead of
collecting fine-grained traces must be kept low so that
overall system performance is not significantly
degraded. Due to these limitations, most researchers
limit their trace collection to only the data that is neces-
sary to perform specific studies. For example, the traces
collected to perform analysis of directory access behav-

ior in [Floy89] do not include file read or write requests.
The disk activity study in [Ruem93] is at the disk level
and does not include specific file system calls. Mummert
et al. focused on results relevant to disconnected file sys-
tem operation [Mumm94]. Zhou and Smith collected
traces on personal computers for research in low-power
computing [Zhou99].

In 1985, Ousterhout et al. presented a general character-
ization of dynamically collected traces [Oust85]. In this
work, they traced three servers running BSD UNIX for
slightly over three days. This paper introduced a frame-
work for workload analysis using metrics such as run
length, burstiness, lifetime of newly written bytes, and
file access sequentiality. Henceforth, we refer to this
work as the BSD study. In 1991, Baker et al. conducted
the same type of analysis on four two-day sets of traces
of the Sprite file system [Bake91]. They collected these
traces at the file servers and augmented them with client
information on local cache activity. For the rest of this
paper, we refer to this work as the Sprite study. The data
analysis techniques developed in the BSD and Sprite
studies were repeated in several subsequent studies. In
1991, Bozman et al. repeated many of the Sprite studies
using traces from two separate IBM sites [Bozm91].
This study confirmed that the results from the Sprite
study applied to non-academic sites. In 1999, the same
studies were repeated on three sets of two-week traces
taken from 45 hosts running Windows NT [Voge99].
This workload is close to our NT workload, and for the
analyses that are directly comparable (file size, file life-
time and access patterns), our results are similar.

In this work, we repeat some of the influential studies
introduced by the BSD study, such as file access pat-
terns. In addition, we contribute new studies that have
become relevant to modern systems, such as the effect of
memory-mapping files on the file cache. A more com-
plete comparison of the Sprite studies against our UNIX
traces can be found elsewhere [Rose98]. Because the
Sprite traces are publicly available, we generate results
for the Sprite traces wherever possible for purposes of
comparison.

3   Trace Collection

3.1  Environment

We collected the traces discussed in this paper in four
separate environments. Three of these environments use
Hewlett-Packard series 700 workstations running HP-
UX 9.05. Each of the HP-UX machines has 64MB of
memory. The first group consists of twenty machines



located in laboratories for undergraduate classes. For the
rest of this paper, we refer to this workload as the Instruc-
tional Workload (INS). The second group consists of 13
machines on the desktops of graduate students, faculty,
and administrative staff of our research group project.
We refer to this workload as the Research Workload
(RES). Of all our traces, the environment for this work-
load most closely resembles the environment in which
the Sprite traces were collected. We collected the third
set of traces from a single machine that is the web server
for an online library project. This host maintains a data-
base of images using the Postgres database management
system and exports the images via its web interface. This
server received approximately 2,300 accesses per day
during the period of the trace. We refer to this as the
WEB workload. The INS machines mount home directo-
ries and common binaries from a non-traced Hewlett-
Packard workstation. In total, we collected eight months
of traces from the INS cluster (two semesters), one year
of traces from the RES cluster, and approximately one
month of traces from the WEB host.

We collected the fourth group of traces from eight desk-
top machines running Windows NT 4.0. Two of these
machines are 450 MHz Pentium IIIs, two are 200 MHz
Pentium Pros, and the other four are Pentium IIs ranging
from 266–400 MHz. Five of them have 128 MB of main
memory, while the others have 64, 96, and 256 MB.
These hosts are used for a variety of purposes. Two are
used by a crime laboratory director and his supervisor, a
state police captain; they use these machines for time
management, personnel management, accounting, pro-
curement, mail, office suite applications, and web brows-
ing and publishing. Another two are used for networking
and system administration tasks: one primarily runs an X
server, email client, web browser, and Windows NT sys-
tem administration tools; the other primarily runs office
suite, groupware, firewall, and web browsing applica-
tions. Two are used by computer science graduate stu-
dents as X servers as well as for software development,
mail, and web browsing. Another is shared among the
members of a computer science graduate research group
and used primarily for office suite applications. The final
machine is used primarily as an X server, but occasion-
ally for office suite and web browsing applications.
Despite the different uses of the NT machines, the results
are similar for all the machines, so we include them
together as one group.

3.2  Trace Collection Methodology

We used separate tools to collect traces for the HP-UX
and Windows NT systems. While both of our collection
techniques trace similar file system events, their imple-

mentations are quite different.

3.2.1  HP-UX Collection Methodology

For the UNIX machines, we used the auditing subsystem
to record file system events. Although the auditing sys-
tem was designed for security purposes, it is ideal for
tracing since it catches the logical level of requests using
already-existing kernel functionality. The auditing sub-
system gets invoked after a system call and is configured
to log specified system calls with their arguments and
return values. However, it does not record kernel file
system activity, such as paging from executable images.

The major problem we faced in using the auditing sys-
tem was that HP-UX records pathnames exactly as spec-
ified by the user, and users often specify paths relative to
the current working directory instead of with their com-
plete paths. Since some file systems use a file’s parent
directory to direct file layout, we needed to record the
full pathname. We solved this problem by recording the
current working directory’s pathname for each process
and configuring the auditing system to catch all system
calls capable of changing the current working directory.
These changes required only small changes to the kernel
(about 350 of lines of C code) and were wholly con-
tained within the auditing subsystem.

3.2.2  Windows NT Collection Methodology

We collected the Windows NT traces using a tool we
developed that traces not only file system activity, but
also a wide range of device and process behavior
[Lorc00]. We focus here on the aspects of the tracer rel-
evant to tracing file system activity.

We perform most of the file system tracing using the
standard mechanism in Windows NT for interposing file
system calls: a file system filter driver. A file system fil-
ter driver creates a virtual file system device that inter-
cepts all requests to an existing file system device and
handles them itself. Our filter device merely records
information about the request, passes the request on to
the real file system, and arranges to be called again when
the request has completed so it can record information
about the success or failure of the request. The design of
our filter driver borrows much from the Filemon file sys-
tem monitoring program [Russ97b].

A Windows NT optimization called the fast path com-
plicates tracing these file systems. The operating system
uses this optimization whenever it believes a request can
be handled quickly, for example, with the cache. In this



case, it makes a call to a fast-dispatch function provided
by the file system instead of passing requests through the
standard request path. In order to intercept these calls, we
implemented our own fast-dispatch functions to record
any calls made this way.

In order to collect data on memory-mapping operations,
we needed to interpose Windows NT system calls. This
is difficult because Microsoft gives no documented way
to do this. Fortunately, a tool called Regmon solves this
problem; it finds the system call entry point vector in
memory and overwrites certain entry points with our own
[Russ97a].

Because we interpose at the file system layer and not at
the system call layer, there were some challenges in con-
verting our traces to a format comparable with the UNIX
traces. The first problem arises when the file system calls
the cache manager to handle a read request, and there is
a miss. The cache manager fills the needed cache block
by recursively calling the file system. We need to iden-
tify the recursive requests because they do not reflect
actual read requests and should be elided. We distinguish
them by three of their properties: they are initiated by the
kernel, they have the no-caching flag set (in order to pre-
vent an infinite loop), and they involve bytes that are
being read by another ongoing request. The second prob-
lem is that we cannot distinguish a read caused by an
explicit read request from one caused by kernel-initiated
read-ahead. We distinguish the latter by looking for read
requests with the following four properties: they are ini-
tiated by the kernel, they have the no-caching flag set,
they do not involve bytes currently being read by another
request, and they are made to a file handle that was
explicitly read earlier. Finally, it is also difficult to deter-
mine which read and write requests are due to paging of
memory-mapped files. If a request is initiated by the ker-
nel with the no-caching flag set and it does not belong to
any of the previous characterizations, we classify it as a
paging request.

The file system interface of Windows NT is quite differ-
ent from that of UNIX. For instance, there is no stat
system call in Windows NT, but there is a similar system
call: ZwQueryAttributesFile. For the purpose of
comparison, we have mapped the request types seen in
Windows NT to their closest analogous system calls in
UNIX in this paper.

4  Results

Due to the time-consuming nature of collecting statistics
on the entire length of our traces (which are currently
over 150GB compressed), we present results in this

paper based on subsets of the traces. For the INS and
RES traces, we used traces collected from the month of
March 1997. For WEB, we used the traces from January
23 to February 16, 1997. Because this trace includes
activity not related to the web server, we filtered it to
remove non-web-server activity. Because the NT traces
begin at different times, we chose a 31-day period for
each host. All but one of these periods were within the
first quarter of the year 2000; the other trace was taken
from October and November of 1999. For the Sprite
results, our results differ slightly from those presented
by Hartman and Ousterhout [Hart93] because we filter
them differently. For example, we do not include non-
file, non-directory objects in any results.

None of our results include paging of executables. For
the NT workload, executable paging constitutes 15% of
all reads and nearly 30% of all writes. Paging activity for
the UNIX workloads is unknown.

4.1  Histogram of Key Calls

To provide an overview of our workloads, we first
present counts of the most common events traced; these
are summarized in Table 1. The results reveal some
notable differences among the workloads. For example,
the WEB workload reads significantly more data than
the other workloads; its read to write ratio is two orders
of magnitude higher than any other workload. The NT
workload reads and writes more than twice the amount
of data per host per day than the INS and RES work-
loads, despite having significantly fewer users. Also,
notable in all workloads is the high number of requests
to read file attributes. In particular, calls to stat
(including fstat) comprise 42% of all file-system-
related calls in INS, 71% for RES, 10% for WEB, and
26% for NT.

Two common usage patterns could account for the large
number of stat calls. First, listing a directory often
involves checking the attributes of each file in the direc-
tory: a stat system call is made for each file. Second,
a program may call stat to check attributes before
opening and accessing a file. For example, the make
program checks the last modification times on source
and object files to determine whether to regenerate the
object file. We measured the percentage of stat calls
that follow another stat system call to a file from the
same directory to be 98% for INS and RES, 67% for
WEB, and 97% for NT. The percentage of stat calls
that are followed within five minutes by an open to the
same file is 23% for INS, 3% for RES, 38% for WEB,
and only 0.7% for NT.



Since this system call is so common, it would be worth-
while to optimize its performance. Since it is most com-
monly invoked near other stat calls in the same
directory, storing the attribute data structures together
with those from the same directory [McKu84] or within
the directory structure [Gang97] may provide better per-
formance than storing each file’s attribute information
with its data blocks.

4.2  Data Lifetime

In this section, we examine block lifetime, which we
define to be the time between a block’s creation and its
deletion. Knowing the average block lifetime for a work-

TABLE 1. Trace Event Summary
INS RES WEB NT Sprite

 hosts 19 13 1 8 55

users 326 50 7 8 76

days 31 31 24 31 8

data read (MB) 94619 52743 327838 125323 42929

data written (MB) 16804 14105 960 19802 9295

read:write ratio 5.6 3.7 341.5 6.3 4.6

all events (thousands) 317859 112260 112260 145043 4602

fork (thousands) 4275 1742 196 NA NA

exec (thousands) 2020 779 319 NA NA

exit (thousands) 2107 867 328 NA NA

open (thousands) 39879 4972 6459 21583 1190

close (thousands) 40511 5582 6470 21785 1147

read (thousands) 71869 9433 9545 39280 1662

write (thousands) 4650 2216 779 7163 455

mem. map (thousands) 7511 2876 1856 614 NA

stat (thousands) 135886 79839 3078 37035 NA

get attr. (thousands) 1175 826 15 36 NA

set attr. (thousands) 467 160 23 273 NA

chdir (thousands) 1262 348 80 NA NA

read dir. (thousands) 4009 1631 172 12486 NA

unlink (thousands) 490 182 2 285 106

truncate (thousands) 37 4 0 1981 42

fsync (thousands) 514 420 2 1533 NA

sync (thousands) 3 71 0 NA NA

This table summarizes the number of events for the time
period indicated for each trace. For all workloads, the
above calls represent over 99% of all traced calls. The get
attribute category includes getacl, fgetacl,
access, and getaccess. The set attribute category
includes chmod, chown, utime, fchmod, fchown,
setacl, and fsetacl. The number of users is esti-
mated from the number of unique user identifiers seen.
This may be an overestimate since some user identifiers
are simply administrative. For the NT traces, exec and
chdir calls were not recorded, and process forks and
exits were recorded only periodically during the NT
traces.

load is important in determining appropriate write delay
times and in deciding how long to wait before reorganiz-
ing data on disk. Our method of calculating lifetime dif-
fers from that used in the Sprite study, and, in some
cases, results in significantly longer lifetimes. We find
that most blocks live longer than 30 seconds—the stan-
dard write-delay used in many file systems. In particular,
blocks created in the NT workload tend to be long-lived.
Most blocks die by being overwritten, and these blocks
are often overwritten many times.

4.2.1  Create-based Method

We calculate lifetime by subtracting a block’s creation
time from its deletion time. This is different from the
delete-based method used by [Bake91] in which they
track all deleted files and calculate lifetime by subtract-
ing the file’s creation time from its deletion time. In our
create-based method, a trace is divided into two parts.
We collect information about blocks created within the
first part of the trace. We call the second part of the trace
the end margin. If a tracked block is deleted during
either part of the trace, we calculate its lifetime by sub-
tracting the creation time from the deletion time. If a
tracked block is not deleted during the trace, we know
the block has lived for at least the end margin.

The main difference between the create-based and
delete-based methods is the set of blocks that we use to
generate the results. Because the delete-based method
bases its data on blocks that are deleted, one cannot gen-
eralize from this data the lifetime distribution of newly
created blocks. Because that is the quantity which inter-
ests us, we use the create-based algorithm for all results
in this paper. One drawback of this approach is that it
only provides accurate lifetime distributions for life-
times less than the end margin, which is necessarily less
than the trace duration. However, since our traces are
long-term, we are able to acquire lifetime data sufficient
for our purposes; we use an end margin of one day for all
results in this section. Figure 1 shows the difference in
results of create-based and delete-based methods on one
of the Sprite traces. Due to the difference in sampled
files, the delete-based method calculates a shorter life-
time than the create-based method.

If the traces collected reflect random samples of the
steady state of creation and deletion, the principal differ-
ence between the methods would result from blocks that
are created and never deleted. As a result of this differ-
ence, the create-based method predicts that disk space
used will tend to increase with time—something disk
sales confirm.



4.2.2  Block Lifetime

Using the create-based metric for both our traces and the
Sprite traces, we calculate block lifetimes using a block
size of 512 bytes. Figure 2 shows these results. Block
lifetime for a combination of the Sprite traces is included
for comparison. Because most activity occurred during
the second trace, this trace dominates Sprite’s lifetime
results. The graph shows a knee in the WEB workload
that is mainly due to database working space files and
http log files. RES has a knee at ten minutes caused pri-
marily by periodic updates to Netscape database files.
The Sprite trace has a knee just before five minutes con-
tributed mainly by activity in the second trace. Since the
Sprite traces do not include information on filenames, we
do not know which files were deleted at that time. Nei-
ther INS nor NT has a knee; instead, block lifetimes grad-
ually decrease after one second. Unlike the other
workloads, NT shows a bimodal distribution pattern—
nearly all blocks either die within a second or live longer
than a day. Although only 30% of NT block writes die
within a day, 86% of newly created files die within that
timespan, so many of the long-lived blocks belong to
large files. Some of the largest files resulted from newly
installed software. Others were in temporary directories
or in the recycle bins on hosts where the bin is not emp-
tied immediately. Of the short-lived blocks, many belong
to browser cache and database files, system registry and
log files, and files in the recycle bin on hosts where users
immediately empty the bin.

FIGURE 1. Create-based versus Delete-based Lifetime
Distributions. This graph shows byte lifetime values
calculated using a create-based and a delete-based
algorithm. The trace used comprises the two contiguous
days represented in the fourth Sprite trace (days 7 and 8);
this trace showed the most difference between the two
methods of all the Sprite traces. Unlike the results
reported in [Bake91], these results include blocks
overwritten in files that were not deleted, however this
difference has only minor effects on the results.
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4.2.3  Lifetime Locality

By recording whether blocks die due to file deletion,
truncation, or overwriting, we observe that most blocks
die due to overwrites. For INS, 51% of blocks that are
created and killed within the trace die due to overwrit-
ing; for RES, 91% are overwritten; for WEB, 97% are
overwritten; for NT, 86% are overwritten. A closer
examination of the data shows a high degree of locality
in overwritten files. For INS, 3% of all files created dur-
ing the trace are responsible for all overwrites. These
files are overwritten an average of 15 times each. For
RES, 2% of created files are overwritten, with each file
overwritten an average of 160 times. For WEB, 5% of
created files are overwritten, and the average number of
overwrites for these files is over 6,300. For NT, 2% of
created files are overwritten; these files are overwritten
an average of 251 times each. In general, a relatively
small set of files are repeatedly overwritten, causing
many of the new writes and deletions.

An important result from this section is that average
block lifetime is longer than delete-based lifetime esti-
mates would predict. For some workloads, average
block lifetime is significantly longer than the standard
file system write delay of 30 seconds. Since it is unrea-
sonable to leave data volatile for a longer period of time,
file system designers will need to explore alternatives
that will support fast writes for short-lived data. Some
possibilities are NVRAM [Bake92] [Hitz94], reliable
memory systems [Chen96], backing up data to the mem-
ory of another host, or logging data to disk. Most file
blocks die in overwrites, and the locality of overwrites
offers some predictability that may prove useful to the
file system in determining its storage strategy.
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FIGURE 2. Block Lifetime. This graph shows create-
based block lifetimes using a block size of 512 bytes.
Points demarcate the 30 second, 5 minute, and 1 hour
points in each curve. The end margin is set to 1 day for
these results.



4.3  Effect of Write Delay

Since newly written blocks often live longer than thirty
seconds, increasing the write delay period should reduce
disk write traffic. However, two factors limit the effec-
tiveness of increasing write delay. First, user requests to
sync and fsync cause data to be written to disk
whether or not the write delay period has passed. Second,
the operating system may limit the amount of dirty data
that may be cached. This limit is generally imposed so
that reading a new page into the cache is not slowed by
the need to write out the old page first. On systems with
NVRAM, the size limit is simply imposed by the
NVRAM capacity. In either case, we refer to the space
allocated to dirty pages as the write buffer.

In order to measure the effectiveness of increasing write
delay, we simulated a write buffer and measured the
resultant disk bandwidth while varying the write delay
and the capacity of the buffer. Figure 3 shows the results
using a 16MB buffer. For these results, we ignore calls to
sync and fsync. As expected, the efficacy of increas-
ing write delay is strongly related to the average block
lifetime for each workload. Since RES has many blocks
that live less than one hour, a one-hour write delay sig-
nificantly throttles disk write traffic. On the other hand,
the NT workload contains more long-lived blocks, so
even write delays of a day have little effect.

To estimate the memory capacity needed to increase
write delay, we tested write buffers of size 4MB and
16MB, and an infinitely-sized write buffer. For all work-
loads, the 16MB buffer closely approximates an infi-
nitely-sized write buffer. In fact, for all workloads except
Sprite, the 4MB write buffer also approximates an infi-
nitely-sized write buffer. Large simulations included in
the second Sprite trace (the third and fourth of the eight
days) are probably responsible for the large write band-

FIGURE 3. Write Bandwidth versus Write Delay.
Using a simulated 16MB write buffer and varied write
delay, we show the percentage of all writes that would be
written to disk. For these results, we ignore calls to sync
and fsync.
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width. When these traces are omitted, the 4MB write
buffer approximates an infinitely-sized buffer for the
Sprite workload as well.

The importance of user calls to sync and fsync to
flush data to reliable storage depends on the storage strat-
egy employed. For example, a file system using
NVRAM may ignore these calls since the data is already
reliably stored. On other systems, the longer the data is
kept in the write buffer, the stronger the impact of these
calls. In our study, the maximal impact would be to the
infinitely-sized write buffer with a write delay period of
one day. For INS, calls to flush data increased writes to
disk by 8% at this point; for RES, these calls increased
write bandwidth by 6%. For NT, write bandwidth
increased by 9%, and for WEB there was no increase at
all.

In summary, the efficacy of increasing write delay
depends on the average block lifetime of the workload.
For nearly all workloads, a small write buffer is suffi-
cient even for write delays of up to a day. User calls to
flush data to disk have little effect on any workload.

4.4  Cache Efficacy

An important factor in file system performance is how
effectively the cache absorbs read requests. In particular,
we are interested in how effective caches are at reducing
disk seeks and how caching affects the balance between
disk reads and writes. In this section, we examine the
effect of cache size on read misses. We find that even rel-
atively small caches absorb most read traffic, but there
are diminishing returns to using larger caches. We also
examine how caching affects the ratio of disk reads to
disk writes. In 1992, Rosenblum and Ousterhout claimed
that large caches would avert most disk reads, so file sys-
tem layout should optimize for disk writes [Rose92]. We

FIGURE 4. Read Bandwidth versus Cache Size. This
graph shows the percentage of all block read requests
that miss the cache versus cache size. The block size
used by the cache simulator is 4KB. The cache was
warmed with a day of traces before generating results.

0

20

40

60

80

100

1 2 4 8 16 32 64 128 256

M
is

s 
R

at
e

Cache Size (MB)

ins
res

web
nt



find that the read to write ratio depends not only on the
cache size, but also on the write delay and workload.
Finally, we examine how well caching works for mem-
ory-mapped files. We find that because a small number
of files tend to be memory-mapped by many processes,
chances are high that these files will be cached.

4.4.1  Effect of Cache Size

We implemented a cache simulator to test the effective-
ness of different cache sizes on read traffic. Both reads
and writes enter blocks into the simulator, and blocks are
replaced in LRU order. For all results in this section, we
modeled a local cache, so each host maintains its own
instance of the simulator.

Figure 4 shows the cache miss bandwidth for reads for
various cache sizes. For all workloads, the curves have a
knee showing the working set size, and there are dimin-
ishing benefits to increasing the cache size beyond this
point. The WEB workload has the largest working set
size; its read bandwidth does not reach the point of
diminishing returns until a cache size of 64MB. Some of
its poor performance may be due to the LRU replacement
policy interacting poorly with the database engine. For
the other workloads, even a 1MB cache reduces read
bandwidth by 65–90%. For these workloads, there is lit-
tle benefit to increasing the cache beyond 16MB. The
BSD study predicted that in the future larger caches
would significantly reduce disk reads. However, several
years later, the Sprite study found that despite its large
caches, read misses did not decrease as much as
expected. Our results show that even very large caches
have limited effectiveness in reducing read misses.

Since disk bandwidth is improving faster than disk
latency, a critical metric in evaluating cache performance
is the number of seeks caused by cache misses. Most file
systems attempt to store blocks from the same file con-
secutively on disk. For example, FFS specifically allo-
cates new file blocks as closely as possible to previous
file blocks [McVo91]. In LFS, blocks are laid out in the
order they are written [Rose92]. Since most files are writ-
ten sequentially (as we show in Section 4.6), file blocks
tend to be allocated consecutively on disk. If file blocks
are laid out on disk consecutively, a rough estimate for
the number of seeks incurred is a count of the disk reads
to different files. We call this metric file read misses and
calculate it as follows. Within a stream of cache misses,
if a cache miss is to the same file as the previous cache
miss, we count no file read miss; otherwise, we incre-
ment the number of file read misses by one. We define
the file write miss metric analogously. Although these are
crude metrics, we believe they are more accurate esti-

mates of seeks than block miss counts.

When multiple hosts share a single file system, a strict
computation of the file read count requires interleaving
the traces for those hosts. Because the INS and RES clus-
ters share file servers for most of their file system activ-
ity, we were able to estimate the effect of file server
sharing on file reads by running our measurements on
these workloads using both a single interleaved trace for
all hosts together and separate traces for each host. These
two methods show at most a 2% difference in file read
counts and no difference at all when the cache size is
over 16MB. This may be because file system traffic
tends to be bursty[Grib98]—bursts of activity from sin-
gle streams may cause a series of cache misses near
enough to each other in time that there are few interven-
ing cache misses from other processes in the same time
period.

In Figure 5, we show the effectiveness of different cache
sizes on reducing the number of file read misses, using
interleaved traces when applicable. The graph shows that
even a 1MB cache is sufficient to more than halve the
number of file read misses for all workloads. At the 1MB
cache size, the WEB workload has many fewer file read
misses than block read misses, which indicates that many
block misses are part of larger files.

4.4.2  Read and Write Traffic

File systems lay out data on disk to optimize for reads
[McKu84] or writes [Rose92] [Hitz94], depending on
which type of traffic is likely to dominate. As we have
already shown, the amount of disk write traffic depends
largely on the write delay and the amount of read traffic
depends on the cache size. In order to compare the
amount of read and write traffic, we examine two envi-
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FIGURE 5. File Reads versus Cache Size. The miss rate
is the percentage of file read misses out of the raw number
of file reads. This graph shows the file miss rate for
various cache sizes. The block size used by the cache
simulator is 4KB. The cache was warmed with a day of
traces before results were collected.



ronments. The first environment has 8MB of local cache
and a write delay of 30 seconds; we refer to this as the
impoverished environment. The second, the enriched
environment, has 64MB of local cache and a write delay
of 1 hour. Read and write traffic for each environment are
shown in Table 2. By looking at the number of blocks
read and written, we see that reads dominate writes in all
cases for the WEB workload. For the INS workload, the
number of read blocks is almost five times the number of
write blocks in the impoverished environment but is only
about 50% greater in the enriched environment. For the
RES workload, writes dominate the impoverished envi-
ronment. In the enriched environment, there are more
block reads than block writes but fewer file reads than
writes. This is most likely caused by the large number of
small writes made to various log files on the RES hosts.
For the NT workload, writes dominate reads in all cases.
However, most of the write traffic is caused by a single
host. When this host is removed, reads dominate writes
for all categories except file operations in the enriched
environment.

Whether reads or writes dominate disk traffic varies sig-
nificantly across workloads and environments. Based on
these results, any general file system design must take
into consideration the performance impact of both disk
reads and disk writes.

4.4.3  Effect of Memory Mapping

Another important factor in cache performance is the

In the impoverished environment, read results are based on
an 8MB local cache and write results are based on a 16MB
write buffer with a 30 second write delay. In the enriched
environment, read results are based on a 64MB local cache,
and write results are based on a 16MB write buffer with a 1
hour delay. In both environments, the block size is 4KB,
and calls to sync and fsync flush the appropriate blocks
to disk whether or not the write delay has elapsed.

TABLE 2. I/O Count

INS RES WEB NT

Impoverished Environment

Block Reads 4,417,055 1,943,728 70,658,318 2,820,438

Block Writes 909,120 2,970,596 1,646,023 3,420,874

File Reads 620,752 199,436 2,389,988 330,528

File Writes 524,551 247,960 144,155 341,581

Enriched Environment

Block Reads 2,114,991 613,077 6,544,037 1,761,339

Block Writes 1,510,163 585,768 1,483,862 3,155,584

File Reads 277,155 70,078 980,918 144,575

File Writes 209,113 101,621 64,246 248,883

effect of memory-mapped files. Over the last few years,
memory mapping has become a common method to
access files, especially shared libraries. To see the impact
of memory mapping on process I/O, we counted the
number of processes that memory-map files and the
number that perform reads and writes. Table 3 summa-
rizes these results. For all workloads, a greater number of
processes memory-map files than perform reads or
writes. With such a high number of processes accessing
memory-mapped files, people designing or evaluating
file systems should not ignore the effect of these files on
the I/O system.

Because our traces only monitor calls to map and unmap
files, we do not have information on how programs
access these files. For example, the traces do not indicate
which parts of a mapped file the program accesses via
memory loads. Although we do not have the precise
access patterns, we estimate the effect of memory
mapped files on the cache based on process calls to
mmap, munmap, fork, and exit. Unfortunately,
because our traces do not contain a complete record for
forks and exits for the NT workload, we cannot perform
an accurate estimate for the NT workload. For the UNIX
workloads, we estimated the effect of memory-mapped
files on the cache by keeping a list of all files that are

Processes are tracked via fork and exit system calls.
For all workloads, more processes use memory-mapped
files than read or write. Because the NT traces do not con-
tinuously record all fork and exit information, the NT
results are based on a subset of the traces.

For this data, each host maintains its own (unlimited size)
cache of memory-mapped files, and only processes active
on that host can affect the cache.

TABLE 3. Process I/O

INS RES WEB NT
Processes that
Read

209050
(10%)

103331
(12%)

8236
(9%)

1933
(36%)

Processes that
Write

110008
(5%)

80426
(9%)

18505
(19%)

1182
(22%)

Processes that
Memory Map

1525704
(72%)

584465
(68%)

37466
(39%)

4609
(85%)

TABLE 4. Memory-mapped File Usage

INS RES WEB
Avg. Mapped Files 43.4 17.6 7.4

Max. Mapped Files 91 47 10

Avg. Cache Space 23.2 MB 7.6 MB 2.4 MB

Max. Cache Space 41.2 MB 19.2 MB 3.0 MB

Cache Miss Rate 0.5% 1.5% 1.0%



mapped either explicitly through a call to mmap or
implicitly when a forked process inherits a file descriptor
to a mapped file. We remove files from the list when no
processes have the file mapped. Considering the number
of mmap system calls, the average number of mapped
files is quite low. The average and maximum number of
files is shown in Table 4, along with the average and
maximum space that would be required to keep the entire
files in memory. We found that the same files tend to be
mapped by many processes simultaneously. In fact, if the
system kept each file in memory as long as at least one
process mapped it, then cache miss rates for requests to
map a file would only be about 1%.

4.5  File Size

Knowing the distribution of file sizes is important for
designing metadata structures that efficiently support the
range of file sizes commonly in use. The Sprite study
found that most accessed files were small, but that the
size of the largest files had increased since the BSD
study. Our results show that this trend has continued.

In Figure 6, we show the file sizes across our workloads.
In this graph, file size is determined dynamically—that
is, file size is recorded for files as they are closed. With
this methodology (also used in the Sprite study), files
opened and closed multiple times are counted multiply.
Like the Sprite study, we find that small files still com-
prise a large number of file accesses. The percentage of
dynamically accessed files that are under 16KB is 88%
for INS, 60% for RES, 63% for WEB, 24% for NT, and
86% for Sprite. At the other end of the spectrum, the
number of accesses to large files has increased since the
Sprite study. The number of files over 100KB accessed
in Sprite is 4%, for INS it is 6%, for RES it is 20%, for
WEB it is 14%, and for NT it is 21%. The largest file
accessed in the Sprite traces is 38MB; the largest files in
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FIGURE 6. Dynamic File Size. We record file size for
each accessed file when it is closed. If a file is opened and
closed multiple times, we include the file in the graph data
multiple times. Points depict sizes of 10KB, 100KB, and
1MB.

the other traces are an order of magnitude larger: from
244MB (WEB) to 419MB (INS and NT).

In addition to dynamic file size distribution, we exam-
ined unique file size distribution. By this we mean a dis-
tribution computed by counting each file that occurs in
the trace only once. Of course, this does not include any
files that are never accessed, since they are not recorded
in the traces. This distribution reflects the range of file
sizes stored on disk that are actively accessed. Figure 7
shows the results. Assuming a disk block size of 8KB
and an inode structure with twelve direct data pointers,
files over 96KB must use indirect pointers. The percent-
age of files over 96KB is 4% for INS, 3% for RES, 1%
for WEB, 7% for NT, and 4% for Sprite.

The WEB workload has many files in the 1–10KB range.
A large number of these are image files. Because these
images are exported over the Internet, the WEB admin-
istrators limit the size of these files to keep access
latency small. Except for the NT workload, the unique
file size distribution has not become more skewed
towards larger files since the time of Sprite. Although
the NT traces are two years younger than the UNIX
traces, we believe its larger files are due to differences in
the operating system and applications rather than the
time difference since the six years between the UNIX
and Sprite traces show no appreciable effect.

Although the size of the largest files has increased ten-
fold since the Sprite study, the unique file distribution
indicates that, except for the NT workload, the percent-
age of large files has not increased since the Sprite study.
However, the dynamic distribution indicates that large
files are accessed a greater percentage of the time. As a
result, the number of file accesses that require indirect
pointers has increased. Since this trend is likely to con-
tinue, it may be worthwhile to redesign the inode struc-
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FIGURE 7. Unique File Size. We record file size at
the time of file close. If a file is opened and closed
multiple times, we only use the last such event in the
graph data. Points depict sizes of 10KB, 100KB, and
1MB.



ture to more efficiently support access to large files.
However, since most files are still small, their data struc-
tures must still efficiently handle file sizes for a broad
spectrum of sizes. File systems that use extent-based or
multiple block sizes [Powe77] [Hitz94] may be more
efficient at handling the range of file sizes in use today.

4.6  File Access Patterns

In this section, we examine file access patterns—that is,
whether a file is read or written and the order in which its
bytes are accessed. Knowing common access patterns is
crucial to optimizing file system performance. For exam-
ple, knowing that most files are read in their entirety,
many file systems implement a simple prefetching strat-
egy that prefetches blocks in sequential order.

4.6.1  Run Patterns

We define a run as the accesses to a file that occur
between its open and close. We classify runs into three
categories. We classify a run as entire if it reads or writes
a file once in order from beginning to end, sequential if
it accesses the file sequentially but not from beginning to
end, and random otherwise.

Table 5 compares file access patterns across workloads.
Like Sprite and BSD, the majority of runs are reads and
only a small percentage of runs contain both reads and
writes. Also like the previous studies, most files are read
in their entirety and most write runs are either entire or
sequential. However, a higher percentage of runs are
read-only in the HP-UX workloads than in NT, Sprite, or
BSD. Also, our workloads tend to have a larger percent-
age of random reads than Sprite or BSD (the only excep-
tion being that BSD has a higher percentage of random
runs than INS).

We examined random read patterns more closely and
discovered a correlation between read pattern and file
size. In Figure 8, we show the number of bytes trans-
ferred in entire, sequential, and random runs versus the
size of the file being accessed. The graphs show that files
that are less than 20KB are typically read in their
entirety. For the Sprite workload, nearly all bytes are
transferred in entire runs—even from very large files.
However, for our workloads, large files tend to be read
randomly. For INS, WEB, and NT, the majority of bytes
from files over 100KB are accessed randomly. For RES,
both entire runs and random runs are well-represented in
bytes read from large files.

Most file systems are designed to provide good perfor-
mance for sequential access to files. Prefetching strate-
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FIGURE 8. File Read Pattern versus File Size. In these
graphs, we plot the cumulative percentage of all bytes
transferred versus file size for all transferred bytes, those
transferred in entire runs, those transferred in sequential
runs, and those transferred in random runs.
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gies often simply prefetch blocks of files that are being
accessed sequentially [McVo91] [Sand85]. This pro-
vides little benefit to small files since there will not be
many blocks to prefetch. If large files tend to be accessed
randomly, this prefetching scheme may prove ineffective
for large files as well, so more sophisticated prefetching
techniques are necessary. Without effective prefetching,
the increasing number of randomly read files may result
in poor file system response time.

4.6.2  Read and Write Patterns

In Section 4.2, we noted that overwrites have significant
locality—that is, the same files tend to get overwritten
multiple times. In examining file access patterns, we
noticed that read runs also have locality—that is, many
files are repeatedly read without being written. To clarify
how files are read and written, we tabulated for each file
the number of runs that were read-only runs and the num-
ber that were write-only runs. (The number of read-write
runs is negligible.) For each file, we calculated the per-
centage of its runs that were read-only. Files that are only
read during the trace have 100% read runs, while files
that are only written have 0% read runs. We rounded the
percentage of read-runs to the nearest 10%; files having
fewer than five runs are not included. We then added up
the percentage of files that occurred in each percentage
category. The results, shown in Figure 9, indicate that
files tend to have a bimodal access pattern—they are
either read-mostly or write-mostly. Furthermore, the
larger the number of runs for a particular file, the stronger
the affiliation. Many files tend to be read-mostly. This is
evidenced by the large percentage of files that have 100%
read runs. A small number of files are write-mostly. This
is shown by the slight rise in the graphs at the 0% read-

A run is defined to be the read and write accesses that
occur between an open and close pair. BSD results are
from [Oust85].

TABLE 5. File Access Patterns

INS RES WEB NT Sprite BSD

Reads (% total runs) 98.7 91.0 99.7 73.8 83.5 64.5

Entire (% read runs) 86.3 53.0 68.2 64.6 72.5 67.1

Seq. (% read runs) 5.9 23.2 17.5 7.1 25.4 24.0

Rand. (% read runs) 7.8 23.8 14.3 28.3 2.1 8.9

Writes (% total runs) 1.1 2.9 0.0 23.5 15.4 27.5

Entire (% write runs) 84.7 81.0 32.1 41.6 67.0 82.5

Seq. (% write runs) 9.3 16.5 66.1 57.1 28.9 17.2

 Rand. (% write runs) 6.0 2.5 1.8 1.3 4.0 0.3

Read-Write (% total runs) 0.2 6.1 0.3 2.7 1.1 7.9

Entire (% read-write runs) 0.1 0.0 0.0 15.9 0.1 NA

Seq. (% read-write runs) 0.2 0.3 0.0 0.3 0.0 NA

Rand. (% read-write runs) 99.6 99.7 100 83.8 99.9 75.1

only point. Note that while the percentage of files in this
category is small, these files have many runs each. Files
that are both read and written have a read-run percentage
between 0% and 100%; however, as the number of runs
increases, fewer files fall into these middle categories.

5  Conclusions

We collected file system traces from several different
environments, consisting of an instructional workload, a
research workload, a web workload, and a Windows NT
personal computer workload. We used these traces to
compare the file system behavior of these systems to
each other and to systems studied in past research. Based
on this analysis, we draw the following conclusions.

First, different systems show different I/O load. The
WEB workload has far more read bandwidth than any
other workload but has relatively little write bandwidth.
The NT workload has more than twice the read and write
bandwidth as the other workloads.

Second, we found that average block lifetime, and even
the distribution of block lifetimes, varies significantly
across workloads. In the UNIX workloads, most newly
created blocks die within an hour. In contrast, in the NT
workload, newly created blocks that survive one second
are likely to remain alive over a day. However, common
to all workloads are that 1) overwrites cause the most
significant fraction of deleted blocks, and 2) overwrites
show substantial locality. Due to this locality, a small
write buffer is sufficient to absorb write traffic for nearly
all workloads. What differs from one workload to
another is the ideal write delay: some workloads perform
well with the standard 30-second write delay while oth-
ers benefit from a slightly longer delay.

Third, we examined the effect of caching on read traffic.
We found that even small caches can sharply decrease
disk read traffic. However, our results do not support the
claim that disk traffic is dominated by writes when large
caches are employed. Whether this claim holds depends
not only on the cache size, but also on the workload and
write delay.

Fourth, we determined that all modern workloads use
memory-mapping to a large extent. We examined how
memory-mapping is used in the UNIX workloads and
found that a small number of memory-mapped files are
shared among many active processes. From this we con-
clude that if each file were kept in memory as long as it
is memory-mapped by any process, the miss rate for file
map requests would be extremely low.
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FIGURE 9. Percentage of Runs that are Read-only.
Each line represents files categorized by the number of
runs seen in the traces, where a run is defined to be all
bytes transferred between the file’s open and its close.
The x-axis shows the percentage of runs that are read-
only rounded to the nearest 10 percent. For each line, the
percentages across the x-axis add to 100. Because most
runs are read-mostly, the percentages are highest at the
100 percent read point, especially for files with many
runs. A smaller number of files are write-mostly. These
files appear at the 0 percent read runs point on the x-axis.
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Fifth, we found that applications are accessing larger
files than previously, and the maximum file size has
increased in recent years. This is not surprising, as past
studies have seen increases in file sizes as years passed.
It might seem that increased accesses to large file sizes
would lead to greater efficacy for simple readahead
prefetching; however, we found that larger files are more
likely to be accessed randomly than they used to be, ren-
dering such straightforward prefetching less useful.

Finally, we found that for all workloads, file access pat-
terns are bimodal in that most files tend to be mostly-
read or mostly-written. We found this tendency to be
especially strong for the files that are accessed most fre-
quently. We expect file systems can make use of this
knowledge to predict future file access patterns and opti-
mize layout and access strategies accordingly.
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