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Abstract

This paper focuses on evaluation of the effectiveness of
optimization at various layers of the IO path, such as
the file system, the device driver scheduler, and the disk
drive itself. IO performance is enhanced via effective
block allocation at the file system, request merging and
reordering at the device driver, and additional complex
request reordering at the disk drive. Our measurements
show that effective combination of these optimization
forms yields superior performance under specific work-
loads. In particular, the impact on IO performance of
technological advances in modern disk drives (i.e., re-
duction on head positioning times and deployment of
complex request scheduling) is shown. For example, if
the outstanding requests in the IO subsystem can all be
accommodated by the disk queue buffer then disk level
request scheduling is as effective as to close any gaps in
the performance between IO request schedulers at the de-
vice driver level. Even more, for disk drives with write
through caches, large queue depths improve overall IO
throughput and when combined with the best perform-
ing disk scheduling algorithm at the device driver level,
perform comparably with an IO subsystem where disks
have write-back caches.

1 Introduction

The IO hierarchy has grown long and complex as its main
goal is to close as much as possible the performance gap
between memory and disk drives. While this gap has re-
mained significant, the amount of resources added in the
IO path has increased and allows for advanced optimiza-
tion in various levels of the IO path. In this paper, we
take a look at the effectiveness of various optimization
techniques applied at main components of the IO path
such as the file system, the device driver scheduler, and
the disk drives themselves. In particular, our focus is re-
ordering of IO activity throughout the IO subsystem to

improve IO performance.
Reordering of the IO work is non-work conserving

because the overhead of disk head positioning associ-
ated with each disk request is different with different
request schedules. Hence it becomes critically impor-
tant to order the same set of requests such that the
overall IO work is minimized. Early on, disk schedul-
ing aimed at minimizing the linear disk head move-
ment (i.e., seeks) [3, 4, 7, 20] and later evolved to min-
imizing the overall head positioning phase of a disk re-
quest service [1, 10, 21]. Request reordering can take
place effectively only at certain layers of the IO path,
which is commonly composed of a device driver, an ar-
ray controller, and multiple disks that communicate with
each-other through interfaces such as SCSI. For exam-
ple, seek-based request reordering is traditionally done at
the device driver and/or array controller, while position-
based request reordering can only be done at the disk
level where the accurate information about head’s posi-
tion is available.

In addition to effective reordering of IO requests, IO
optimization techniques aim at reducing the number of
requests sent down the IO path, by exploiting the tem-
poral and spatial locality in the stream of requests and
merging consecutive ones. Request merging enhances IO
performance because it reduces the overall head position-
ing overhead which is associated with each request and
it is independent of the request size. Actually, the cur-
rent default disk scheduler for Linux is Anticipatory [9],
which even waits idle, if necessary, to fully explore the
sequentiality in the stream of IO requests.

In this paper, we focus on identification of the IO path
layers, where specific IO optimization techniques are ef-
fective. For this, we conduct measurements in a system
whose IO hierarchy consists of the file system, device
driver, and the disk itself. Experimenting with an array
controller in this path did not indicate qualitatively dif-
ferent results and we opted not to include it in the IO
path for the bulk of the experiments. The effectiveness
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of IO optimization is evaluated at the application level by
quantifying the effect that request merging and reorder-
ing at different IO layers have on overall system perfor-
mance.

We find that effective request merging is the key ap-
proach to achieve the maximum throughput in the IO
subsystem, under heavy load. Although such optimiza-
tion happens at the device driver level, via scheduling,
its effectiveness is determined at the file system level.
Specifically, the Reiser file system sends down more re-
quests than all other file systems evaluated, but after
merging at the device driver results to the smallest num-
ber of disk requests. Consequently, ReiserFS achieves
the highest application throughput, which for a specific
workload, is double the throughput of other file systems.

Our measurements show that disk level optimization
in the form of scheduling is particularly effective and,
although, disks are at the end of the IO path, it effects
the overall application throughput. Specifically, if the
load in the IO subsystem is medium, (i.e., a scenario
that diminishes the importance of request merging) then
by scheduling effectively at the disk level, one can close
the application-level performance gap resulting from in-
effective scheduling at the device driver. The effective-
ness of disk level scheduling is also noticeable when
comparing write-back and write-through disk cache poli-
cies. While write-back is better performing with low
disk queue depths, write-through gains the performance
difference as the disk queue depth is increased, which
makes the latter a more attractive alternative given the
enhanced data reliability and consistency it provides.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the measurement environment. Sec-
tion 3 explains and evaluates the applications, that we
run to generate IO load. We analyze the file system level
of the IO path in Section 4 and the device driver level in
Section 5. The disk drive level of the IO path is evaluated
in Section 6. We discuss related work in Section 7. Sec-
tion 8 concludes the paper by summarizing our findings.

2 Measurement Environment

Our intention is to analyze the effectiveness of IO work
optimization throughout the IO path, which (in our case)
consists of the file system, the device driver disk sched-
uler, and a single disk drive. While we did not conduct
measurements with multi-disk systems, we measured a
system where the disk was attached to an array controller.
The presence of an array controller (i.e., more resources
and another level of scheduling) did not affect our results
qualitatively and is not discussed here in detail for sake
of presentation clarity.

We conduct measurements in a system (i.e., Dell
Power Edge 1750) that runs the Postmark bench-

mark [11] on top of a Linux operating systems (i.e., Gen-
too Linux 2.6.16-git11 distribution). Postmark is con-
figured for four different scenarios as described in Sec-
tion 3, that generate IO workloads with different charac-
teristics. Postmark loads the system heavily. Building
the Linux kernel multiple times simultaneously serves
as our second application which loads the system with
a range of load levels.

We also evaluate four file systems, (Ext2, Ext3, Reis-
erFS, and XFS), four disk scheduling, (No-Op, Deadline,
CFQ, and Anticipatory), and three different SCSI Sea-
gate disk drives (Cheetah ST318453LC, ST3146854LC,
and ST3300007LC which we refer to as the 18 GB, 146
GB, and the 300 GB disks, respectively). Table 1 sum-
marizes the details of our measurement testbed, while
further details for each component, such as the file sys-
tems, device driver schedulers, and disk drives param-
eters, are given in the corresponding sections later on.
Unless otherwise stated, the disks in our measurement
testbed have write-through cache enabled.

System Dual Intel Xeon CPU 2.40GHz,
1GB memory,
LSI Fusion MPT SCSI Controller

OS Gentoo Linux 2.6.16-git11
Application Postmark / Linux kernel build
File System Ext2, Ext3, ReiserFS, XFS
IO scheduler No-Op, Deadline, CFQ, Anticipatory
Disk Drive 18 GB/15Krpm, 146 GB/15Krpm, 300 GB/10Krpm

Table 1: Specifications of the measurement system.

The blktrace tool that comes with the Linux 2.6
kernel module is used to trace the IO activity at the device
driver level. The data obtained is further parsed using
blkparse. Tracing using the blk tools captures the
entire activity at the IO device driver and includes queu-
ing a request, merging it with an already queued request
(if predefined sequentiality criteria holds), dispatching it
to the SCSI interface, and handling its completion. In
addition to collecting and processing data via the blk
tools, we conduct our own data post-processing to iden-
tify the work incoming to the device driver from the file
system and the work outgoing from the device driver and
completed by the disk. In our measurement system, the
working set is located in a different disk from the disk
that hosts the OS. Also the data collected via blktrace
was sent through the network and not stored in the local
machine to minimize effects to the targeted SCSI bus.

All our measurements are conducted on clean file sys-
tems. We argue that our conclusions hold in the case
of an aged file system, because mostly our evaluation is
related to the workload characteristics within the work-
ing set. Once the working set is stationary over a pe-
riod of time then optimization depends mostly on the
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working set size, request interarrival times, and ran-
domness/sequentiality of workloads. With Postmark and
Linux kernel builds, we cover a range of workloads with
respect to working set size, request interarrival times, and
randomness/sequentiality and expect the aged file system
behavior to fall in any of the above evaluated categories.

We measure the IO subsystem performance via the ap-
plication throughput. We chose this measure of interest,
because our goal is to evaluate the overall effectiveness
of combining various optimization techniques at differ-
ent levels of the IO path.

3 Application Layer

Our first application is Postmark [11], which benchmarks
the performance of e-mail, netnews, and e-commerce
classes of applications. Postmark works on a pool of
changing files, (i.e., the working set), and generates an
IO-bound write-dominated workload. Because Postmark
heavily loads the storage subsystem, it is our benchmark
of choice for evaluating optimization efficiency in the IO
path.

Postmark generates an initial working set of random
text files ranging in size from a configurable low bound
to a configurable high bound. The range of file sizes
determines Postmark’s workload sequentiality because
Postmark’s activity in each file is proportional to its size.
Postmark’s working set is also of configurable size by
specifying the number of files in it. Postmark starts with
creating the working set (first phase). A number of trans-
actions are executed (second phase). Finally, all files are
deleted (third phase). Each Postmark transaction con-
sists of a pair of smaller transactions, which are create
file or delete file and read file or append file. Postmark’s
throughput, used here as a measure of system perfor-
mance, is the number of transactions per second during
the second phase of the benchmark execution, which rep-
resents another reason why an aged file system with sim-
ilar working set and workload characteristics should be-
have similarly.

Work File Work File No. of Trans-
load Size Set size Files actions

SS Small Small 9-15 KB 10,000 100,000
SL Small Large 9-15 KB 200,000 100,000
LS Large Small 0.1-3MB 1,000 20,000
LL Large Large 0.1-3MB 4,250 20,000

Table 2: Postmark specifications for each workload for
the 18 GB disk. Specifications hold for the other two
disks, except that for the LL workload 40,000 transac-
tions are completed.

We benchmark four different Postmark workloads by

varying the low and high bounds of file sizes and the
number of files in the working set. We aim at having
small working sets, i.e., occupying a few percentage of
the available disk space and large working sets, i.e., oc-
cupying 25% for the largest capacity disk (i.e, the one
with 300 GB) to approximately 50% for the smaller ca-
pacity disks ((i.e, the 18 GB and the 146 GB ones). The
working set size affects the amount of seeking that is as-
sociated with each transaction. The working set size is
controlled via the number of files.

Although Postmark generates a workload that ran-
domly accesses the files within the working set (see Fig-
ure 1), the disk-level randomness depends on the average
file size in the working set. We get a more random work-
load by setting the file size boundaries to be only a few
KBytes and a more sequential workload by setting the
file size boundaries to a few MBytes. Table 2 describes
in detail how Postmark is configured to generate four dif-
ferent workloads. Throughout this paper, Postmark is
configured with its buffer parameter set. Exploring the
cache impact on IO performance, although important, is
not addressed here.

0
1
2
3
4
5
6
7
8
9

0 5 10  15  20

L
B

A
B

lo
ck

in
G

B

Time in minutes

Figure 1: Access patterns for the LL workload in Table 2.
The system configuration is: Ext3, anticipatory, and the
18 GB disk.

Figure 1 shows the disk access pattern for the LL
workload of Table 2, by plotting the start LBA of each
request on the y-axis as a function of request arrival time.
The other workloads have similar access patterns and are
not shown here for sake of brevity.

During the file creation phase, the disk access pattern
is mostly sequential, which in the plot appears as straight
lines. The sequentiality in this phase is one of the rea-
sons that later on the read and write average request size
is (in some cases) larger than the maximum file size in
the working set. For the file access phase of the bench-
mark, the access pattern is random within the working
set, which appears in the plots as a block of numerous
dots (each marking a single disk request). The SS and
LS workloads are localized and entail less disk head po-
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Workload SS SL LS LL
IOPS 424.62 310.87 278.68 227.91
Bandwidth 60.61 62.15 228.19 269.80

Figure 2: The plot depicts Postmark’s throughput in
transactions per second for the four workloads of Table 2.
The system configuration is: Ext3, anticipatory, and the
18 GB disk. The table gives disk IOPS and bandwidth.

sitioning overhead than for the SL and LL workloads.
The large working sets that span over 50% of the avail-
able space (for the 18 GB and 146 GB disks) experience
more seeking overhead. Also the sequentiality in work-
loads increases with the file size in the working set.

Figure 2 plots the Postmark throughput, measured in
transactions per second, during the file access phase of
the benchmark, for each of the four workloads of Ta-
ble 2. The measurement testbed is configured with its
default setting, i.e., Ext3 file system, Anticipatory disk
scheduling algorithm, and the 18 GB disk drive with a
queue depth of 4. The highest Postmark throughput is
achieved for the SS workload. This is expected because
Postmark’s transaction size is linear to the file size. Con-
sequently, workloads with large files have longer trans-
actions than the workloads with small sizes. Transac-
tion length affects Postmark throughput by as much as 5
times (i.e., the difference between throughput under the
SS workload and throughput under the LL workload.

A similar trend is captured also by the IOs per second
(IOPS) shown in the table of Figure 2. Again, the SS
workload achieves the highest number of disk requests
completed in each second. Between the workloads with
the same file sizes, the difference in Postmark throughput
(and IOPS) is related to the seeking through different file
locations. For small working sets the seeking is shorter
than for large working sets. The seeking overhead re-
duces Postmark throughput by as much as 50%. LS and
LL workloads perform similarly with regard to Postmark
throughput because their sequentiality (lack of random-

ness) causes the optimization down in the IO path to be
similarly (in)effective for both of them. This is not the
case for the random SS and SL workloads.

A second application that we use to benchmark the
effectiveness of the optimization in the IO path is build-
ing multiple Linux kernels simultaneously. The Linux
kernel builds yield similar access patterns to the disk as
Postmark (when it comes to randomness) but the request
interarrival times are longer and the working set spans
in bands over some area of the disk. We use this sec-
ond benchmark to evaluate how effective request merg-
ing and reordering becomes at the device driver and the
disk drive when the system is loaded moderately.

4 File System Level

In our evaluation, we conduct measurements in four dif-
ferent file systems, namely, Ext2, Ext3, ReiserFS, and
XFS, which are supported by any Linux distribution. The
main characteristics of these file systems are summarized
in the following:

• Ext2 is a standard FFS-like file system, which uses
cylinder groups for data placement and single, dou-
ble, or triple indirect metadata blocks.

• Ext3 is also an FFS-like file system, whose data
structures are backward compatible with Ext2.
However, Ext3 uses a special file as a journal to en-
hance file system consistency and data reliability.

• Reiser file system has also single contiguous jour-
nal and uses a B+-tree as its metadata structure.

• XFS uses also a single contiguous journal, as well
as, allocation groups, and extent-based B+-tree for
its metadata management.

The throughput of the four different workloads de-
scribed in Table 2 under the four file systems in our study
is shown in Figure 3. The device driver scheduler is An-
ticipatory, and the queue depth at the 18 GB disk is 4.
Under the more sequential workloads, as it is the case
of the LS and LL workloads with large files, the differ-
ence in Postmark throughput between the four file sys-
tems is minimal. They behave very similarly because the
sequentiality in the workload provides an almost opti-
mal ordering with little room for further optimization at
the file system level. This is not the case for the small
files workloads, which have more randomness and con-
sequently more room for optimization. In particular, we
observe superior Postmark performance under ReiserFS
for the SS workload with as much as twice the through-
put of the other file systems.

The work in MBytes of data read and written by Post-
mark and processed by the file system is presented in
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Figure 3: Postmark throughput for the four file systems
and the workloads of Table 2. Measurements are done
on the 18 GB disk and Anticipatory scheduling.

Figure 4. In our testbed, we do not have a measurement
point in front of the file system to exactly measure the
amount of work added to the IO subsystem by the file
system itself. The work processed by the Ext2 file sys-
tem (i.e., no journaling) is the best approximation to the
Postmark generated IO workload.

With a few exceptions, there is no substantial differ-
ence in the amount of work for either reads or writes.
In particular, when comparing the amount of work under
the Ext2 file system and the other three file systems that
maintain a journal for metadata management. The XFS
file system seems to be an outlier when it comes to the
extra amount of work to manage the journal under the
small files workloads (see the last bar of the first two sets
of bars in Figure 4). Because the application (i.e., the
scenario under the Ext2 file system) and the file system,
approximately request the same amount of work (either
reads or writes) to be processed by the storage subsys-
tem, any differences in the overall application through-
put (within the same workload) as reported in Figure 3
is attributed to the effectiveness of work optimization in
the IO path.

By changing only the file system and fixing the IO
workload, disk scheduling, disk queue depth, and other
system parameters, the measured difference in applica-
tion level performance (i.e., Postmark throughput) is at-
tributed to the average disk request size, since we con-
cluded that all file systems process the same amount of
work in Figure 4. That is because, for the same amount
of data to be transferred, the traffic composed of large
disk requests has fewer requests than the traffic com-
posed of small disk requests. Consequently the overhead
associated with the disk head positioning is less for the
workload composed of large requests than for the work-
load composed of small requests. Although, small re-
quests get served faster than large requests, in all our
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Figure 4: The amount of data read and written by each
file system under the four different workloads of Table 2.
Measurements are done on the 18 GB disk and Anticipa-
tory scheduling.

measurements, a stream of few large requests always out-
performed a stream of many small requests.

Figure 5 shows the average request size for the four
workloads in our evaluation and the four file systems.
Request size is measured in the incoming and the outgo-
ing traffic of the device driver which corresponds, respec-
tively, to the outgoing traffic of the file system and the
incoming traffic at the disk drive. The scheduler at the
device driver is Anticipatory and the disk is the 18 GB
one with queue depth of 4. Generally, write disk traffic
has longer requests than read disk traffic, in particularly
for the workloads with large files. There is noticeable
difference between the average disk request size under
ReiserFS and the other three file systems. The incoming
disk traffic under ReiserFS has the largest read and write
request size.

While disk read and write requests under ReiserFS are
of comparable size, the read and write requests outgo-
ing from ReiserFS have different sizes. ReiserFS and the
other three file systems send down the IO path requests
for large reads, while only Ext2 and XFS do the same
also for writes. Ext3 and ReiserFS send down the IO
path constant size write requests of 4 KB relying on the
device driver scheduler to merge the sequential ones. Al-
though, Ext3 and ReiserFS do send down to the device
driver, 4 KB write requests, the outgoing write requests
are larger for ReiserFS than for Ext3. Overall, ReiserFS
is more effective at data allocation.

The same points made in Figure 5, are reinforced
with the results presented in Figure 6, where we plot
the number of requests in the traffic stream incoming at
the disk drive (results are similar for the stream outgoing
FS). Note that while ReiserFS results consistently in the
smallest number of requests sent to disk, XFS (with the
exception of one case) is the second best. This indicates
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Figure 5: The average request size of reads (left) and writes (right) in the outgoing stream of requests from the file
system and the incoming request stream at the disk. The four workloads of Table 2 are evaluated under four file
systems. Measurements are done on the 18 GB disk and Anticipatory scheduling.
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Figure 6: Number of requests in the incoming request
stream at the disk, (i.e., the outgoing request stream at
the device driver). The four workloads of Table 2 are
evaluated for four file systems. Measurements are done
on the 18 GB disk and Anticipatory scheduling.

that the constant size write requests sent to the device
driver from the file system are not the reason for Reis-
erFS superiority. Instead, block allocation and maintain-
ing of the journal should be considered as main factors
for ReiserFS best performance for the workloads under
evaluation. Although the final request merging does hap-
pen at the device driver level and, as we discuss it further
in the following section, it is a characteristic that sets
apart the disk schedulers at the device driver, we stress
that it is the data management within the file system level
that facilitates the effective outcome of request merging.

Figure 5 indicates that the main differences between
the file systems are on handling write traffic rather than
read traffic. The latter is mostly handled at or above the
file system level (exploiting all the semantics available
from the application) and also the system cache avail-
ability. Write traffic on the other hand is left to be op-

timized by the IO subsystem (starting with the file sys-
tem). Consequently, the impact of write optimization on
overall application throughput is high, because Postmark
workload is write-dominated.

For the reminder of this paper, we focus mostly on the
effectiveness of device driver disk scheduling and disk
level queuing. To facilitate a concise presentation, we
limit ourselves on measurements in one file system only
and we choose ReiserFS because we identified it as the
most effective file system when it comes to IO work opti-
mization at the file system level for the workloads under
our evaluation.

5 Device Driver Level

In the previous sections, we analyzed the work generated
at the application level and its first optimization at the
file system level. In this section, we focus on the device
driver level and discuss the tools available at this level to
further optimize the stream of IO requests.

At the device driver level, request scheduling is the
main tool to optimize work. Ordering of requests in the
elevator fashion reduces the seek overhead experienced
by each request sent down to the disk. Here, we test four
different disk scheduling algorithms, which are available
in any Linux distribution. Three of the disk scheduling
algorithms that we evaluate (namely, Deadline, Antici-
patory, and Command Fair Queuing) are elevator-based
and the fourth one (i.e., No-Op) is a variation of the First-
Come-First-Serve algorithm (as explained below).

Apart from ordering requests, disk scheduling algo-
rithms try to merge consecutive requests so that as few
as possible are sent down to the disk. In Section 4, we
discussed the importance and the impact of IO request
merging on overall system performance. All evaluated
disk scheduling algorithms differ in their way they merge
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Figure 7: Postmark throughput under four different de-
vice driver schedulers and the four workloads of Table 2.
Measurements are done on the 18 GB disk and ReiserFS.

requests, and their effectiveness depends on that. In the
following, we describe in detail the four evaluated disk
scheduling algorithms:

• No-Op is a first come first serve algorithm that
merges sequential requests only if they arrive one
after the other preserving the FCFS order.

• Deadline behaves as a standard elevator algorithm,
i.e., it orders the outstanding requests in the order
of the increased estimated seek distances, unless a
read has been waiting for 300 ms or a write has been
waiting for 5 seconds.

• Anticipatory (default) is the same as Deadline,
when it come to ordering requests based on their
seek distance. However sometimes it pauses for
up to 6ms, in order to avoid seeking, while wait-
ing for more sequential read requests to arrive. An-
ticipatory is a non-work conserving scheduler, be-
cause there are cases when it holds the system idle
although there are outstanding requests waiting for
service.

• CFQ (Command Fair Queuing) is also an elevator-
based scheduler that, that in a multi-process envi-
ronment, attempts to give every competing process
the same number of IOs per unit of time in a round-
robin fashion.

Figure 7 plots Postmark throughput for the four dif-
ferent workloads of Table 2 and the four different device
driver scheduling algorithms. The file system is Reis-
erFS and the disk is the 18 GB one with a queue depth of
4. By fixing all system parameters, such as the file sys-
tem, disk queue depth, and workload, we attribute the
differences in Postmark throughput only to the device
driver disk scheduling algorithm. Postmark throughput is

clearly higher for scheduling algorithms that reorder the
IO traffic based on inter-request seek distances. The dif-
ferences are more noticeable under more random work-
loads (i.e., workloads SS and SL) than under more se-
quential workloads (i.e., workloads LS and LL).

No-Op is in clear disadvantage, with throughput as
low as one fourth of the best performing scheduling algo-
rithm (under the SS and LS workloads). As we explained
earlier, this is an outcome of the non-work conserving
nature of the disk scheduling algorithms where request
reordering does result in less work to be done at the disk.
In addition, No-Op performs poorly even for the more
sequential LL workload, because it merges only consec-
utive sequential requests. Among the elevator-based disk
schedulers, Deadline performs the best in our system,
with a noticeable advantage only for the SS workload
where randomness is high and working set size small.

Under all scenarios that we measured at the device
driver level, the highest relative gain for a disk schedul-
ing algorithm is approximately 20% once all other sys-
tem parameters remain unchanged (this is for the case of
ReiserFS, SS workload and Deadline and Anticipatory
schedulers). This gain is much smaller than the case de-
picted in Figure 3 where the file system rather than the
scheduling algorithm is the changing system parameter
and the performance gains is as much as 80% for Reis-
erFS when compared with XFS under the SS workload.

Disk scheduling algorithms, including No-Op, merge
incoming file system requests to exploit their temporal
and spatial locality. Anticipatory scheduling is the most
aggressive algorithm with respect to merging, because it
waits up to 3 ms (in our configuration) for new read ar-
rivals that could be merged with outstanding ones, even
though the storage system might be idle. No-Op schedul-
ing is the least efficient algorithm because it merges only
consecutive requests that are sequentially located on the
disk. Deadline and CFQ do not put conditions on con-
secutive arrivals of sequential requests as No-Op does.

Differences in disk scheduling algorithms with respect
to request merging are depicted in Figure 8, where we
plot the average request size for the read and write traf-
fic in and out of the device driver for the four workloads
of Table 2 under the four different disk scheduling al-
gorithms. The file system is ReiserFS and the disk is
the 18 GB one with a queue depth of 4. There is a sub-
stantial difference between No-Op write request size out
of the device driver and other schedulers write request
size out of the device driver. No-Op does not succeed
to merge any write requests at all because their sequen-
tiality is broken by other IO requests. In particular, un-
der ReiserFS, which we plot in Figure 8, No-Op is un-
der disadvantage because the file system chops appli-
cation write requests to 4 KB. All other disk schedul-
ing algorithms perform comparably, because the high IO
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Figure 8: Average request size of reads (left) and writes (right) at the device driver for the incoming and outgoing
traffic for the four workloads of Table 2 and four scheduling algorithms. Measurements are done on the 18 GB disk
and ReiserFS.
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Figure 9: Number of requests in and out of the device
driver level, for the four workloads of Table 2 and the
four disk scheduling algorithms. Measurements are done
on the 18 GB disk and ReiserFS.

load with short interarrival times causes these schedul-
ing algorithms to meet their parameter thresholds for re-
quest merging. Generally, device driver disk scheduling
merges more effectively writes than reads for the Post-
mark workloads evaluated here.
The same conclusion is drawn from the results pre-

sented in Figure 9, where we plot the number of requests
in and out the device driver level for each scheduler and
the four workloads of Table 2. For the workloads that ac-
cess large files (i.e., LS and LL) the degree of merging is
higher than for workloads that access small files (i.e., SS
and SL), because the workload is sequential and, on its
own, represents more opportunities for request merging.

In Figure 10, we show the average response time and
queue length at the device driver level for the four work-
loads of Table 2, the four disk scheduling algorithms,
ReiserFS, and the 18 GB disk with queue depth of 4.
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Figure 10: Average response time and queue length at
the device driver for the four scheduling algorithms and
the four workloads of Table 2. Measurements are done
on the 18 GB disk and ReiserFS.
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Figure 11: Response time distribution at the device driver and disk for the SS workload. Measurements are done on
the 18 GB disk and ReiserFS.

The results of Figure 10 clearly indicate that the device
driver operates under very high load with queue lengths
in the hundred and response times in the level of seconds.
Request response time under No-Op is better than under
the other scheduling algorithms because the requests and,
consequently, the disk transfer times are shorter under
No-Op than under the other disk scheduling algorithms
(see Figure 8). The difference is reflected in overall av-
erage request response time.

We also plot the cumulative distribution function of
response times at the device driver and at the disk for
only one workload (i.e., SS) and the four scheduling al-
gorithms.in Figure 11 Indeed the disk scheduling algo-
rithms other than No-Op do introduce more variability in
the system as the distribution at the device driver indi-
cates. However this variability does not affect the over-
all system performance since under these scheduling al-
gorithms the application throughput is noticeably better
than under the fair No-Op scheduler. The variability in-
jected in the workload because of scheduling at the de-
vice driver level, does not get more pronounced at the
disk level as the distribution of disk response time in-
dicate. The difference between the four device driver
schedulers in the disk response time distribution is at-
tributed to the difference in request size between No-Op
and the other three disk schedulers.

5.1 Second application: Linux kernel build

Previously, we showed that Postmark fully utilizes the
storage subsystem (see Figure 10). As indicated in Sec-
tion 4, under heavy load, request merging becomes the
determining factor on IO performance and the best per-
former, i.e., ReiserFS, distinguishably sets itself apart
from the other file systems. In order to evaluate be-
havior under lighter load conditions, we chose to gen-
erate IO workloads by compiling the Linux 2.6 kernel,
twice and four times simultaneously. Note that a sin-
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Figure 12: Throughput in builds per second for the Linux
kernel compilation benchmark.

gle Linux kernel compilation in our dual processor sys-
tem performs the same as two simultaneous Linux kernel
builds and more than four simultaneous builds load the
system heavily (similarly to Postmark).

Linux kernel compilation generates a write-dominated
random workload. Different builds were placed in differ-
ent disk partitions which means that disk head position-
ing is involved when multiple simultaneous builds are
running. Because the average request size is different for
the Linux build measurements and the Postmark ones,
we compare the load level by looking at the request in-
terarrival times. While for Postmark the average interar-
rival time is 3 ms, for the Linux build is 19 ms and 12 ms
for the two and four simultaneous builds.

Figure 12 shows the throughput of this benchmark
measured in builds per second. Note that the differ-
ences between the disk scheduling algorithms at the de-
vice driver level are not as pronounced as in the case of
the heavy Postmark load. Even No-Op is not far be-
hind the seek-based scheduling algorithms. In the next
section, we come back to the Linux kernel build bench-
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mark and discuss the effectiveness of disk level request
scheduling under medium IO load, where request merg-
ing has smaller effect on IO optimization than under the
Postmark benchmark. Under the Linux build benchmark,
request reordering is of more importance than request
merging.

6 Disk Drive Level

The disk drive is the last component in the IO path that
we analyze in this paper. With the advances in chip
design, modern disks have more CPU and more mem-
ory available than before. Although various optimization
techniques such as request merging are best suited for the
upper levels of the IO path such as the file system and the
device driver, the disk itself does offer various optimiza-
tion opportunities, mostly related to caching of data and
scheduling of requests. We stress that disk scheduling at
the disk level is the most effective IO request scheduling
in the IO path [21], because it uses information on head
position that is available only at the disk drive level. In
this section, we focus on evaluating disk level scheduling
by analyzing the effectiveness of disk level queuing.

We use three different disks in our evaluation man-
ufactured by Seagate Technology. The main differences
between them are the linear density, rotational speed, and
capacity, which determine the average head positioning
time and the associated overhead for each disk request.
Details on the three disks used in our evaluation are given
in Table 3. Note that the linear density of the 300 GB
disk is approximately 24% and 64% higher than the lin-
ear density of the 146 GB disk and the 18 GB disk, re-
spectively, while its average seek time is higher by ap-
proximately 30%. Although seek time is expected to im-
prove if disk tracks are closer together, in the case of the
300 GB drive, the platters are larger to accommodate the
large capacity and consequently the arm itself becomes
heavier, which results in longer seek times for the 300
GB disk than the 18 GB and 146 GB disks.

ST318453LC ST3146854LC ST3300007LC

Capacity 18 GB 146 GB 300 GB
RPM 15,000 15,000 10,000
Platters 1 4 4
Linear density 64K TPI 85K TPI 105K TPI
Avg seek time 3.6/4 ms 3.4/4 ms 4.7/5.3 ms
Cache 8 MB 8 MB 8MB

Table 3: Specifications for the three Seagate disks.

In Figure 13, we show the Postmark throughput for
the three disks of Table 3 and the SS and LL workloads
of Table 2. The file system is changed while the disk
scheduling is set to Anticipatory. The highest application
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Figure 13: Postmark throughput for all disks of Table 3,
two of the workloads of Table 2, the four file systems,
anticipatory scheduling, and disk queue depth of 1.
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Figure 14: Postmark throughput for all disks of Table 3,
two of the workloads of Table 2, the four disk scheduling
algorithms, ReiserFS, and disk queue depth of 1.

throughput is achieved for the 146 GB disk, with the 18
GB to a close second. The higher average seek times and
the slower rotation speed cause the 300 GB disk drive, al-
though with the highest linear density, to achieve the low-
est application throughput among the three disk drives.

Figure 14 is similar to Figure 13, but now the file sys-
tem is fixed to ReiserFS and the Postmark performance
is measured under four disk scheduling algorithms. As
pointed out above, the 146 GB disk is the one performing
best under all device driver disk scheduling algorithms.
Note that the relative gap between No-Op and the other
seek-based algorithms is smaller for the newer disks (i.e.,
146 GB and 300 GB) than the older one (i.e., 18 GB).

6.1 Disk Level Queuing

As we mentioned previously, disk request scheduling is
non-work conserving and the optimal algorithm, which
is also NP-complete, uses the positioning time rather
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than the seek time per request, when it comes to com-
pute the optimal schedule [1]. Disk head positioning
time is only accurately predicted at the disk drive itself,
rather than any other level of the IO path. This is be-
cause the SCSI interface does not support sharing such
information and because disks conduct various internal
background activities to enhance their performance and
reliability. Consequently, predicting disk head position
at the device driver level is difficult, although, various
efforts have been made to enhance disk scheduling at the
device driver beyond the seek-based schedulers [5, 16].

Computing the optimal schedule is computationally
expensive and impractical. Consequently, newer disks
with more CPU and memory resources than before can
easily accommodate long queue depths at the disk level
and exploit almost all the performance enhancement
available via disk level request reordering based on ad-
vanced heuristics rather than the optimal scheduling. The
queuing buffer of the disks of Table 3 can hold up to 64
outstanding requests and they implement variants of the
Shortest Positioning Time First algorithms [27].

The queue depth at the disk drive level is a parame-
ter set at the device driver and often set to 4 (the default
value for many SCSI device drivers). The queue depth
at the disk is commonly kept low to avoid request starva-
tion, because disk drive scheduling introduces variability
in request response time, which can be controlled easily
by the operating system at the device driver with algo-
rithms such as Deadline but not at the disk drive level.

Here, we set the disk queue depth beyond the default 4
to evaluate the overall system benefits by queuing more
at the disk drive level. To ease our presentation, we use
only the 18 GB and the 300 GB disks from Table 3.
The rest of the system configuration is: ReiserFS and
the SS workload from Table 2. We use these settings be-
cause they represent the case with the most efficient and
pronounced optimization (among all cases evaluated in
the previous sections). We plot the measured Postmark
throughput in Figure 15. The plot shows that, although
the disk is the lowest component in the IO path, by only
increasing the disk queue depth, we improve overall ap-
plication performance and throughput.

The relative gain of deeper queues at the disk in Fig-
ure 15, is more pronounced for the newer 300 GB disk
than the older 18 GB one. Actually for the best perform-
ing device driver scheduling algorithm (i.e., Deadline),
the throughput of the 300 GB disk which we showed in
Figures 14 and 13 to be lower than that of the other disks
for the same workload, is very close to the throughput of
the 18 GB disk.
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Figure 15: Postmark throughput as a function of the disk
queue depth for the 18 GB and the 300 GB disks, Reis-
erFS, and the SS workload.

6.2 Disks with Write Cache Enabled

The cache at the disk, as anywhere else in the system,
is an important resource that aids performance enhance-
ment in the IO path. While evaluation of disk cache ef-
fectiveness is outside the scope of our analysis, in this
section, we evaluate the relation between the effective-
ness of disk level queuing and two different policies for
using the available cache by the incoming write traffic,
specifically, the “write-back” and the “write-through”
polices.

The write-back policy is proposed to further enhance
performance at the disk drive level. Under the write-back
policy, once a write request has arrived at the disk cache,
the host is notified for its completion. From the host per-
spective the write service time is equal to the disk cache
hit time rather than the time to actually completely store
the write on the disk media. The drawback of this pol-
icy is that it might lead to inconsistencies during system
crashes or failures, because the data is not permanently
stored while it appears so for the host system. Disk write-
back policy is the default one for all the SATA drives,
which are installed in systems with moderate reliabil-
ity requirements. Interestingly enough, even the newer
SCSI Seagate disks (i.e., the 146 GB and the 300 GB
ones) came with the write cache enabled. It is true that
if non-volatile memory is available in the IO path, then
inconsistencies because of data loss during crashes are
reduced. As such “write-back” is the default policy for
disk drives.

The other option is to write the data through on the
disk and notify the host that a write is completed only
when the data is actually stored safely on the disk media.
This means that read and write traffic are handled simi-
larly and for almost all writes the disk service time is not
going to be the disk cache-hit time anymore. This pol-
icy is called “write-though” and provides high levels of
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data reliability and consistency. Disk level performance
under the “write-through” policy is worse than under the
“write-back” policy, which explains why the former is
used only in systems with the highest level of data reli-
ability and consistency requirements. All our previous
results in this paper are generated with “write-through”
disk caches.

In this subsection, we evaluate the system and appli-
cation behavior when the only parameter that changes
in our testbed is the disk queue depth while we set the
file system to be ReiserFS and run the SS workload. We
also set the disk cache to be “write-back”. We conduct
measurements for all four device driver schedulers in our
evaluation.

We present Postmark throughput in Figure 16. With-
out disk-level queuing (i.e., queue depth of one) Post-
mark achieves the highest (or very close to it) through-
put possible for the configuration. Additional queuing
at the disk, commonly results in performance degrada-
tion. In particular, this is the case when the device driver
scheduler, such as No-Op, is not effective on IO request
ordering and merging.

The adversary affect of disk level queuing on overall
system performance when “write-back” is enabled is re-
lated to the limited queueing buffer space at the disk. If
write cache is enabled, the effective disk queue is longer
than what disk advertises at the device driver. Hence,
under heavy loads, as it is the case for Postmark, the
actual disk queue reaches the physical maximum allow-
able queue of 64 for the disks under our evaluation. If
the buffer queue at the disk is full, the disk responds to
the host with a “disk full” message, which indicates that
it can not accept more requests. Consequently, the de-
vice driver delays the requests longer and because the IO
subsystem does operate as a closed system, these delays
propagate and affect overall system performance, i.e., the
system slows down. As it can be seen from Figure 16, the
negative disk queuing effect is not consistent. Specifi-
cally, the minimum throughput is often at queue depth of
4 and not at the higher queue depth of 16.

Comparing results in Figure 15 with results in Fig-
ure 16, we observe that if the disk “write-through” pol-
icy is enabled as well as the queue depth is set to a high
value, then highest Postmark throughput achieved un-
der “write-through” and “write-back” policies are very
close. This means that the level of optimization offered
in the IO path, in particular disk level queuing, is as ef-
fective as to close the performance gap between the disk
“write-through” and “write-back” policies. We conclude
this subsection, by stressing that deep disk queues and
“write-through” policy not only achieve application-level
throughput as high as under the performance-enhancer
“write-back” policy, but enhance the always needed data
consistency and reliability.
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Figure 16: Postmark throughput as a function of the disk
queue depth for the 18 GB and 300 GB disks, ReiserFS
and the “small files, small working set” (SS) workload.
Write-back cache is enabled at the disk.

6.3 Second application: Linux kernel build

As we discussed in more length in Subsection 5.1, Post-
mark load is high and we choose to benchmark also a
case of medium load in the system by compiling simul-
taneously two and four Linux kernels. Under high load,
as it is the case of Postmark, IO requests wait mostly at
the device driver, because the number of outstanding IO
requests is higher than the maximum disk queue depth.
Hence disk level queuing is effective only for a small
portion of the outstanding IO requests and optimization
effectiveness at the device driver becomes more impor-
tant than queuing at the disk drive level.

Under medium loads, as it is the case of the Linux ker-
nel compilation, which we described in Subsection 5.1,
the impact of disk queuing in the overall system perfor-
mance is higher than under high loads. This holds in
particular for cases when the optimization at the device
driver level (or any other level in the IO path) is not as
effective as it could be (as it is the case of the No-Op
scheduler).

In Figure 17, we show the effectiveness of disk queu-
ing when compiling 2 and 4 Linux kernels simultane-
ously. Note that No-Op benefits the most from disk queu-
ing and the result is that the overall system performance
(measured in builds per seconds) is very close for all four
device driver disk schedulers when disk queue depth is
16 or higher. Hence, we conclude that disk level queuing
and scheduling is effective and does close any perfor-
mance gaps in the IO request reordering from the higher
levels in the IO path.
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Figure 17: Throughput in builds per second for the
four disk scheduling algorithms, and different disk queue
depths. Measurements are done on the 18 GB disk and
ReiserFS.

7 Related Work

Because the performance gap between memory and disk
drives has remained significant, even with the latest ad-
vances in technology, optimizing performance in the IO
path has been the focus of work for many researchers.
In addition to adding resources such as caches [2] in the
IO path and managing them more efficiently [14], opti-
mization of the IO activity itself is one of the main tools
to enhance IO performance. IO workload optimization
consists mostly of request merging and request reorder-
ing at various levels of the IO hierarchy, such as the file
system, the device driver, and the disk drive.

IO work reordering via scheduling early on aimed
at minimizing the linear disk head movement (i.e.,
seeks) [3, 4, 7, 20] and later evolved to minimizing the
overall head position phase [1, 10, 21] of a disk request
service. Because IO request reordering introduces vari-
ability in request response time, multiple variations are
proposed to mitigate the problem [27]. On the ana-
lytic side, there are studies that compare analytically disk
scheduling algorithms [25] and derive empirical models
of disk access patterns to facilitate such comparison [26].

Recent advances in disk scheduling include specula-
tive waiting to better exploit temporal and spatial locality
of IO requests [9], predicting disk service times [16] and
disk head position [5] to enhance performance of seek-
based schedulers at the device driver, increasing disk
head utilization by reading “for free” data on the path
of the disk head movement [13], and other hierarchical
approaches [22], which are mostly used for performance
virtualization in large systems [12].

Performance optimization at the disk drive level is
mostly related to request scheduling and evaluated in as-
sociation with it [27]. IO performance improvement is

also evaluated in association with workload characteri-
zation studies [19]. Performance enhancement related to
advancements in disk technology, including areal density
and rotational speed is discussed in [15]..

While most request reordering happens either at the
device driver or at the disk, file systems also represent
a critical component of the IO path capable of effective
IO work optimization. The main research efforts when
it comes to enhancing file systems, are related with im-
proving data reliability and consistency [17, 23]. How-
ever considerable work is done to enhance file system
performance as well. For example scalability of the XFS
file system is discussed in [24] and file system work-
load characteristics are analyzed in [6, 8]. A comparative
study between file systems is presented in [18].

Apart from the existing work, our paper analyzes ad-
vances in the IO path, and evaluates how effectively they
integrally optimize and enhance IO performance. Most
works evaluate the components of the IO path individu-
ally, while in this paper, we analyze their impact in over-
all application performance. Our goal is to first iden-
tify the reasons why some components in the IO path are
more effective than others in optimizing the IO workload
and secondly understand if and how such optimization
can be as effective in other tiers as well with the goal to
further enhance IO subsystem performance.

8 Conclusions

In this paper, we presented a measurement-based anal-
ysis of the optimization effectiveness in the IO subsys-
tem, focusing on the file system, device driver scheduler,
and the disk itself. We used the Postmark benchmark
to generate heavy IO write-intensive workload and the
Linux kernel compilation to generate medium IO write-
intensive workload. We analyzed four file systems, four
device driver level disk schedulers and three Seagate disk
drives.

Our measurements showed that request merging is
critical for reducing the number of disk requests and en-
hancing overall performance. Although, request merging
takes place at the device driver scheduler, it is the block
allocation and data management at the file system itself
that determines the effectiveness of the request merging
process. The most effective file system in our measure-
ments was ReiserFS which improved by as high as 100%
application-level throughput.

Under medium load though, request merging becomes
less efficient and request reordering becomes the tool to
optimize the IO traffic. Request reordering at the de-
vice driver level improved application-level throughput
by as much as 20% application-level throughput under
the Deadline device driver scheduler.
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Disk drives have become very effective on optimiz-
ing request reordering, closing any performance gaps be-
tween the elevator-based and FCFS device driver sched-
ulers. Increasing the queue depth at the disk drive under
the write-through cache policy, improves the overall ap-
plication throughput with as much as 30% if the device
driver scheduler is seek-based and more than 6 times if
the device driver scheduler is FCFS (No-Op). On the
contrary, under heavy load, disk queuing has a negative
impact on application throughput when the write-back
cache policy is enabled. Overall, combining the write-
through disk cache policy and high queue depths per-
forms similarly with the write-back disk cache policy and
it is attractive because it does not compromise data reli-
ability and consistency, as the write-back cache policy
does.

References

[1] ANDREWS, M., BENDER, M. A., AND ZHANG, L. New al-
gorithms for the disk scheduling problem. Algorithmica 32, 2
(2002), 277–301.

[2] BAKER, M., ASAMI, S., DEPRIT, E., OUSTERHOUT, J. K.,
AND SELTZER, M. I. Non-volatile memory for fast, reliable file
systems. In ASPLOS (1992), pp. 10–22.

[3] COFFMAN, E. G., AND HOFRI, M. On the expected perfor-
mance of scanning disks. SIAM Journal of Computing 10, 1
(1982), 60–70.

[4] DENNING, P. J. Effects of scheduling on file memory opera-
tions. In Proceedings of AFIPS Spring Joint Computer Confer-
ence (1967), pp. 9–21.

[5] DIMITRIJEVIC, Z., RANGASWAMI, R., AND CHANG, E. Y.
Systems support for preemptive disk scheduling. IEEE Trans.
Computers 54, 10 (2005), 1314–1326.

[6] ELLARD, D., LEDLIE, J., MALKANI, P., AND SELTZER, M.
Passive nfs tracing of email and research workloads. In FAST ’03:
Proceedings of the 2nd USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2003), USENIX Association,
pp. 203–216.

[7] GEIST, R., AND DANIEL, S. A continuum of disk scheduling
algorithms. ACM transactions on Computer systems 5, 1 (1987),
77–92.

[8] GRIBBLE, S. D., MANKU, G. S., ROSELLI, D., BREWER,
E. A., GIBSON, T. J., AND MILLER, E. L. Self-similarity in file
systems. In SIGMETRICS ’98/PERFORMANCE ’98: Proceed-
ings of the 1998 ACM SIGMETRICS joint international confer-
ence on Measurement and modeling of computer systems (1998),
ACM Press, pp. 141–150.

[9] IYER, S., AND DRUSCHEL, P. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in syn-
chronous I/O. In 18th ACM Symposium on Operating Systems
Principles (Oct. 2001).

[10] JACOBSON, D. M., AND WILKES, J. Disk scheduling algo-
rithms based on rotational position. Tech. Rep. HPL-CSP-91-
7rev1, HP Laboratories, 1991.

[11] KATCHER, J. Postmark: A new file system benchmark. Tech.
Rep. 3022, Network Appliances, Oct. 1997.

[12] LUMB, C. R., MERCHANT, A., AND ALVAREZ, G. A. Façade:
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