USENIX Association

Proceedings of the
2001 USENIX Annud
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Storage management for web proxies

Elizabeth Shriver
Bell Laboratories

shriver@bell-labs.com

Eran Gabber
Bell Laboratories

eran@bell-labs.com

Lan Huang
SUNY Stony Brook

lanhuang@cs.sunysb.edu

Christopher A. Stein
Harvard University

stein@eecs.harvard.edu

Abstract

Today, caching web proxies use general-purpose file
systems to store web objects. Proxies, e.g., Squid or
Apache, when running on a UNIX system, typically
use the standard UNIX file system (UFS) for this
purpose. UFS was designed for research and engi-
neering environments, which have different charac-
teristics from that of a caching web proxy. Some
of the differences are high temporal locality, relaxed
persistence requirements, and a different read/write
ratio. In this paper, we characterize the web proxy
workload, describe the design of Hummingbird, a
light-weight file system for web proxies, and present
performance measurements of Hummingbird. Hum-
mingbird has two distinguishing features: it sepa-
rates object naming and storage locality through
direct application-provided hints, and its clients are
compiled with a linked library interface for mem-
ory sharing. When we simulated the Squid proxy,
Hummingbird achieves document request through-
put 2.3-9.4 times larger than with several different
versions of UFS. Our experimental results are veri-
fied within the Polygraph proxy benchmarking en-
vironment.

1 Introduction

Caching web proxies are computer systems dedi-
cated to caching and delivering web content. Typ-
ically, they exist on a corporate firewall or at the
point where an Internet Service Provider (ISP)
peers with its network access provider. From a web
performance and scalability point of view, these sys-
tems have three purposes: improve web client la-
tency, drive down the ISP’s network access costs
because of reduced bandwidth requirements, and re-
duce request load on origin servers.

Squid and Apache are two popular web proxies.
Both of these systems use the standard file sys-
tem services provided by the host operating system.
On UNIX this is usually UFS, a descendant of the
4.2BSD UNIX Fast File System (FFS) [13]. FFS
was designed for workstation workloads and is not
optimized for the different workload and require-
ments of a web proxy. It has been observed that file
system latency is a key component in the latency
observed by web clients [21].

Some commercial vendors have improved I/O per-
formance by rebuilding the entire system stack:
a special operating system with an application-
specific file system executing on dedicated hardware
(e.g., CacheFlow, Network Appliance). Needless to
say, these solutions are expensive. We believe that
a lightweight and portable file system can be built
that will allow proxies to achieve performance close
to that of a specialized system on commodity hard-
ware, within a general-purpose operating system,
and with minimal changes to their source code; Gab-
ber and Shriver [5] discuss this view in detail.

We have built a simple, lightweight file system li-
brary named Hummingbird that runs on top of a
raw disk partition. This system is easily portable—
we have run it with minimal changes on FreeBSD,
IRIX, Solaris, and Linux. In this paper we de-
scribe the design, interface, and implementation of
this system along with some experimental results
that compare the performance of our system with a
UNIX file system. Our results indicate that Hum-
mingbird’s throughput is 2.3-4.0 times larger than
a simulated version of Squid running UFS mounted
asynchronously on FreeBSD, 5.4-9.4 times faster
than Squid running UFS mounted synchronously
on FreeBSD, 5.6-8.4 times larger than a simulated
version of Squid running UFS with soft updates on
FreeBSD, and 5.4-13 times larger than XFS and

EFS on IRIX (see Section 4). We also performed
experiments using the Polygraph environment [18]
with an Apache proxy; the mean response time for
hits in the proxy is 14 times smaller with Humming-
bird than with UFS (see Section 5).

Throughout the rest of this paper, we use the terms
prozy or web prory to mean caching web proxy. Sec-
tion 2 presents the important characteristics of the
proxy workload considered for our file system. It
also presents some background on file systems and
proxies that is important because it motivates much
of our design. Section 3 describes the Humming-
bird file system. Our experiments and results are
presented in Sections 4 and 5. Section 6 discusses
related work in file systems and web proxy caching.

2 File system limitations

The web proxy workload is different than the stan-
dard UNIX workload; these differences are discussed
in Section 2.1. Due to these differences, the perfor-
mance which can be attained for a web proxy run-
ning on UFS is limited by some of the features; these
limitations are discussed in Section 2.2.

2.1 'Web proxy workload characteristics

Web proxy workloads have special characteristics,
which are different from those of a traditional UNIX
file system workload. This section describes the spe-
cial characteristics of proxy workloads.

We studied a week’s worth of web proxy logs from
a major, national ISP, collected from January 30 to
February 5, 1999. This proxy ran Netscape Enter-
prise server proxy software and the logs were gen-
erated in Netscape-Extended2 format. For the pur-
pose of our analysis we isolated the request stream
to those that would affect the file system underlying
the proxy. Thus we excluded 34% of the GET re-
quests which are considered non-cacheable by the
proxy. If we could not find the file size, we re-
moved the log event. This preprocessing results in
the removal of about 4% of the log records, nearly
all during the first few days. We eliminated the
first few days and are left with 4 days of processed
logs containing 4.8 million requests for 14.3 GB of
unique cacheable data and 27.6 GB total requested
cacheable data.

Characteristics of a web proxy and its workload are:
Persistence. A web proxy only writes files re-

trieved from an origin server. Thus, these are just
cached files, and can be retrieved again if necessary.

Naming. The web proxy application determines
the name of a file to be written into the file system.
In a traditional UNIX file system, file names are
normally selected by a user.

Reference locality. Client web accesses are char-
acterized by a request for an HTML page followed
by requests for embedded images. The set of images
within a cacheable HTML page changes slowly over
time. So, if a page is requested by a client, it makes
sense for the proxy to anticipate future requests by
prefetching its historically associated images.

We studied one day of the web proxy log for this
reference locality. The first time we see an HTML
file, we coalesce it with all following non-HTMLs
from the same client to form the primordial local-
ity set, which does not change. The next time the
HTML file is referenced, we form another locality
set in the same manner and compare its file mem-
bers with those of the primordial locality set. The
average hit rate (the ratio between the size of the
latter sets and the size of the primordial set) across
all references is 47%. Thus, on average, a locality set
re-reference accesses almost half of the files of the
original reference. One of the reasons that this hit
rate is small might be due to the assumption that
all non-HTML files that follow a HTML file are in
the same locality set; this is clearly not true if a
user has multiple active browser sessions. Also, we
determined the type of file using the file extension,
thus possibly placing some HTML files in another
file’s locality set. We also studied the size of the lo-
cality sets in bytes, and found that 42% are 32 KB
or smaller, 62% are 64 KB or smaller, 73% are 96
KB or smaller, and 80% are 128 KB or smaller.

File access. Several older UNIX file system per-
formance studies have shown that files are usually
accessed sequentially [16, 1]. A recent study [19]
has suggested that this is changing, especially for
memory-mapped and large files. However, UNIX
file systems have been designed for the traditional
sequential workload. Web proxies have an even
stronger and more predictable pattern of behavior.
Web proxies currently always access files sequen-
tially and in their entirety. (This may change when
range requests are more popular.)

File size. Most cacheable web documents are
small; the median size of requested files is 1986 B
and the average size is 6167 B. Over 90% of the
references are for files smaller than 8 KB.

Idleness. The proxy workload is characterized by

a large variability in request rate and frequent idle

periods. Using simulation, we found, in fact, in each
1-minute interval, the disk is idle 57-99% of the du-
ration of the interval, with a median of 82%. If
the request rate in the trace doubles, the disk is
idle less of the time, with a median of 60%. In the
busiest periods, it is idle only 1%. Note that when
the request rate doubles, the disk is almost satu-
rated in the busy intervals (idle time drops to 1%),
while the disk remains idle in the low-activity in-
tervals. This idleness study used assumptions that
represent Hummingbird: the disk has 64 KB blocks,
all new files are written to the disk, and only data
needs to be written to disk (no meta-information).
The existence of idle periods is crucial for the design
of Hummingbird since Hummingbird performs back-
ground bookkeeping operations in those idle periods
(see Section 3.5).

2.2 UFS performance limitations

Due to the proxy workload characteristics presented
in the previous section, UFS has a number of fea-
tures which are not needed, or could be greatly sim-
plified, so that file system performance could be im-
proved. Table 1 presents the features on which UFS
and a desired caching web proxy file system should
differ. We now discuss these features.

UFS files are collections of fixed-size blocks, typi-
cally 8 KB in size. When accessing a file, the disk
delays are due to disk head positioning occurring
when the file blocks are not stored contiguously on
disk. UFS attempts to minimize the disk head posi-
tioning time by storing the file blocks contiguously
and prefetching blocks when a file is accessed se-
quentially, and does a good job of this for small
files. Thus, when the workload consists of mostly
small files, the largest component of disk delays are
due to the reference stream locality not correspond-
ing with the on-disk layout. UFS attempts to reduce
this delay by having the user place files into direc-
tories, and locates files in a directory on a group of
contiguous disk blocks called cylinder groups. Thus,
reference locality is tied to naming. Here, the re-
sponsibility for performance lies with the applica-
tion or user, who must construct a hierarchy with di-
rectory locality that matches future usage patterns.
In addition, to reduce file lookup times, the direc-
tory hierarchy must be well-balanced and any single
directory should not have too many entries. Squid
attempts to balance the directory hierarchy, but in
the process distributes the reference stream across
directories, thus destroying locality. Apache maps
files from the same origin server into the same direc-
tory. For specifying locality by a web proxy, a more

direct and low-overhead mechanism can be used.

Experience with Squid and Apache has shown that
it is difficult for web proxies to use directory hier-
archies to their advantage [11]. Deep pathnames
mean long traversal times. Populated directories
slow down lookup further because many legacy im-
plementations still do a linear search for the file-
name through the directory contents. The hierar-
chical name space allows files to be organized by
separating them across directories, but this is not
needed by a proxy. What the proxy actually needs
is a flat name space and the ability to specify storage
locality.

UFS file meta-data is stored in the i-node, which
is updated using synchronous disk writes to ensure
meta-data integrity. A caching web proxy does not
require file durability for correctness, so it is free
to replace synchronous meta-data writes with asyn-
chronous writes to improve the performance (which
is done with soft updates [6]) and eliminate the need
to maintain much of the meta-data associated with
persistence.

Traditional file systems also force two architectural
issues. First, the standard file system interface
copies from kernel VM into the applications’ address
space. Second, the file system caches file blocks in
its own buffer cache. Web proxies manage their
own application-level VM caches to eliminate mem-
ory copies and use private information to facilitate
more effective cache management. However, web
documents cached at the application level are likely
to also exist in the file system buffer cache, espe-
cially if recently accessed from disk. This multiple
buffering reduces the effective size of the memory.
A single unified cache solves the multiple buffering
and configuration problems. Memory copy costs can
be alleviated by passing data by reference rather
than copying. Both of these can be done using a file
system implemented by a library that accesses the
raw disk partition. Another approach for alleviating
multiple buffering is using memory-mapped files as
done by Maltzahn et al. [11].

3 File system design

The design of Hummingbird is influenced by the
proxy workload characteristics discussed in Sec-
tion 2. Hummingbird uses locality hints generated
by the proxy to pack files into large, fixed-size ex-
tents called clusters, which are the unit of disk ac-
cess. Therefore, reads and writes are large, amortiz-

Table 1: Comparison of file system features.

feature UFS

Hummingbird

name space hierarchical name space
reference locality application manages directories
file meta-data
preserve consistency
disk layout of files
disk access
interface

could be as small as a block size

meta-data kept on disk; synchronous updates
data in blocks, with separate i-node for meta-data

buffers are passed; memory copies are necessary

flat name space
application sends locality hints
most meta-data in memory

file and meta-data stored contiguously
cluster size (typically 32 or 64 KB)
pointers are passed

ing disk positioning times and interrupt processing.

Hummingbird manages a large memory cache. Since
Hummingbird is implemented by a library that is
linked in with the proxy, no memory copies or mem-
ory mappings are required to move data from the
file system to the proxy. The file system simply
passes a pointer. Likewise, the proxy passes the
file system a pointer when it writes data. We have
only designed the file system for a single client, so
protection is not necessary. Since the client (the
proxy) handles all data transfers to and from the
system, it must be trusted in any case. The proxy
may be multi-threaded or have multiple processes?,
in which case access is serialized with a single lock
on the file system meta-data that is released be-
fore blocking for disk I/O. Using a single lock may
slow the system under a heavy load. Since the file
system is I/O bound, the lock is held only when re-
ferring to Hummingbird’s data structures. The lock
is released before a thread blocks for disk I/0O. No
locking is needed when accessing file data.

Since the typical workload is bursty, Humming-
bird is designed to reduce the response time dur-
ing bursty periods, and perform maintenance activ-
ities during the idle periods present in the workload.
Hummingbird performs the maintenance activities
by calling several daemons responsible for: (1) re-
claiming main memory space by writing files into
clusters, and (2) reclaiming disk space by deleting
unused clusters.

While there are invariants across proxy workloads,
some characteristics will change. We have designed
Hummingbird to be configurable so that the sys-
tem can be optimized for a proxy workload and the
underlying storage hardware. To this effect, Hum-

ITo perform memory management for the multi-process
version of Hummingbird, the processes have a shared memory
region which is used for malloc().

mingbird has several parameters that the proxy is
free to set to optimize the system for its workload.
The parameters set at file system initialization in-
clude: size of a cluster, memory cache eviction pol-
icy, file hash table size, file and cluster lifetimes, disk
data layout policy, and recovery policies.

3.1 Hummingbird objects

Hummingbird stores two main types of objects in
main memory: files and clusters. A file is created by
awrite file() call. Clusters contain files and some
file meta-data. Grouping files into clusters allows
the file system to physically collocate files together,
since when a cluster is read from disk, all of the
files contained in the cluster are read. Clusters are
clean, i.e., they can be evicted from main memory
by reclaiming their space without writing to disk,
since a cluster is written to disk as soon as it is
created. (Section 3.5 discusses where on disk the
clusters are written.)

The application provides locality hints by the
collocate_files(fnameA, fnameB) call. The
file system saves these hints until the files are
assigned to clusters. This assignment occurs as
late as possible, that is, when space is needed
in main memory. At this point, the file system
attempts to write fnameA and fnameB in the same
cluster. It is possible for a file to be a member of
multiple clusters, and stored in multiple locations
on disk by the application sending multiple hints
(e.g., collocatefiles(fnameA, fnameB) and
collocate files(fnameC, fnameB)). For proxy
caches, this is a useful feature since embedded
images are frequently referenced in a number of
related HTML pages.

When the file system is building a cluster, it deter-
mines which files to add to the cluster using an LRU
ordering according to the last time the file was read.
If the least-recently-used file has a list of collocated

files, then these files are added to the cluster if they
are in main memory. (If a file is on the colloca-
tion list, and already has been added to a cluster,
it can still be added to the current cluster if the file
is in memory.) Files are packed into the cluster un-
til the cluster size threshold is reached, or until all
files on the LRU list have been processed. This way,
small locality sets with similar last-read times can
be packed into the same cluster. Another possible
algorithm to pack files into clusters is the Greedy
Dual Size algorithm [3].

Large files are special. They account for a very
small fraction of the requests, but a significant frac-
tion of the bytes transferred. In the log we ana-
lyzed, files over 1 MB accounted for over 8% of the
bytes transferred, but only 0.02% of the requests.
Caching these large files is not important for the
average latency perceived by clients, but is an im-
portant factor in the network access costs of the
ISP. It is better to store these large files on disk,
and not in the file system cache in memory. The
write nomem file() call bypasses the main mem-
ory cache and writes a file directly to disk; if the file
is larger than the cluster size, multiple clusters are
allocated. Having an explicit write nomem file()
function allows the application to request that any
file can bypass main memory, not just large files.

3.2 Meta-data

Hummingbird maintains three types of meta-data:
file system meta-data, file meta-data, and cluster
meta-data.

File system meta-data. To determine when
main memory space needs to be freed, Humming-
bird maintains counts of the amount of space used
for storing the files and the file system data. To
assist with determining which files and clusters to
evict from main memory, Hummingbird maintains
two LRU lists, one for files which have not yet been
packed into clusters and another for clusters that
are in memory.

File meta-data. A hash table stores pointers to
the file information such as the file number (dis-
cussed below), status, and a reference count of the
number of users that are currently reading the file.
The file status field identifies whether the file is not
in a cluster, in one cluster, in multiple clusters, or
not cacheable. Until a file becomes a member of a
cluster, the file name and file size need to be main-
tained as part of the file meta-data. We also main-
tain a list of files that should be collocated with
this file. When a file is added to a cluster, the file

meta-data must include the cluster ID and the file
reference count for that file.

It is natural for a proxy to use the URL as a file
name. URLs may be extremely long, and since we
have many small files, the file names may take up a
large portion of main memory if they were kept per-
manently in memory. Thus, we save the file name
with the file data in its cluster and not permanently
in memory. Internally, Hummingbird hashes the file
name into a 32-bit index, which is used to locate
the file meta-data. Hash collisions can be detected
by comparing the requested file name with the file
name stored in the cluster. If there is a collision, the
next element in the hash table bucket is checked.

Cluster meta-data. A cluster table contains in-
formation about each cluster on disk: the status,
last-time accessed, and a linked list of the files in the
cluster. The cluster status field identifies whether
the cluster is empty, on disk, or in memory. For
our file system, the cluster ID identifies the location
of the cluster on disk. While a cluster is in mem-
ory, the address of the cluster in memory is needed.
The last-time accessed is needed to determine the
amount of time since the cluster was last touched.

3.3 The Hummingbird interface

This section describes the basic Hummingbird calls.
All routines return a positive integer or zero if the
operation succeeds; a negative return value is an
error code.

e int write_file(char* fname, void* buf,
size_t sz); This function writes the contents of
the memory area starting at buf with size sz to
the file system with filename fname. It returns the
size of the file. Once the pointer buf is handed
over to the file system, the application should
not use it again. Hummingbird will eventually
pack the file into a cluster, free the buffer, and
write the cluster to stable storage.

e int read file(char* fname, void** buf); This
function sets *buf to the beginning of the memory
area containing the contents of the file fname. It
increments a reference count and returns the size
of the file. If the file is not in main memory, an-
other file or files may be evicted to make room, and
a cluster containing the specified file will be read
from disk.

e int done_read_file(char* fname, void* buf);
This function releases the space occupied by the
file in main memory by decrementing the reference
count; the application should not use the pointer
again. Every read file() must be accompanied

by a done_read file(). Otherwise, the file will
stay in memory indefinitely (until the application
program terminates).

e int delete_file(char* fname); This function
deletes the file fname. An error code is returned
if the file has any active read_file()’s.

e int collocate_files(char* fnameA, char*
fnameB) ; This function attempts to collocate file
fnameB with file fnameA on disk. Both files must
be previously written (by calling write_file()).

e int write_nomem file(char* fname, void*
buf, size_t sz); This function bypasses the
main memory cache and writes a file directly to
disk. This file is flagged so that when it is read,
it does not compete with other documents for
cache space and is immediately released after the
application issues the done_read file().

Missing from this API are commands such as 1s and
df. We have seen no need for such commands for a
caching web proxy. For example, the existence of a
file can be determined with read_file().

3.4 Recovery

Web proxies are slowly convergent; it takes days to
reach the maximal hit rate. Consequently, proxy
cache contents must be saved across system fail-
ures. At the same time, recovery must be quick.
With today’s disk sizes, the system cannot wait for
full disk scans before servicing document requests.
Hummingbird warms the main memory cache with
files and clusters that were “hot” before the system
reboot. Bounding file create and delete persistence
rather than attaching them to system call semantics
allows for higher performance.

Data stored on disk. Hummingbird’s disk stor-
age is segmented into four regions:

e clusters, which store the file data and meta-
data,

e mappings of files to clusters, which allow a file
to be quickly located on disk by identifying
which clusters the file is in,

e the hot cluster log, which caches frequently
used clusters, and

e the delete log, which stores small records de-
scribing intentional deletes.

The mappings of files to clusters is part of the file
meta-data described in Section 3.2.

Warming the cache. Hummingbird lacks a di-
rectory structure and all meta-data consistency de-
pendencies are contained within clusters. There is
no need for an analog of the UNIX fsck utility to
ensure file system consistency after a crash. Dur-
ing a planned shutdown, Hummingbird will write
the file-to-cluster mappings to disk. (They are also
written periodically.) During a crash, the system
has no such luxury. So, while the file system is
guaranteed to be consistent with itself, the lack
of directories might make it impossible to locate
files on disk immediately after a crash if the file-to-
cluster mapping was not up to date. Hummingbird
speeds up crash recovery time with a log contain-
ing the cluster identifiers of popular clusters. The
sync_hot_clusters_daemon () creates this log using
the cluster LRU list and writes it to disk period-
ically. After a crash, these clusters are scanned in
first, quickly achieving a hit rate close to that before
the crash.

Persistence. Hummingbird does not change disk
contents immediately for file and cluster deletions.
Research with journalling file systems has shown
that hard meta-data update persistence is expen-
sive, due to the necessity for updating stable storage
synchronously [22]. Hummingbird does not provide
hard persistence, but uses a log of intentional dele-
tions to bound the persistence of deletions. Records
describing deletions, either cluster or file, are writ-
ten into the log, which is buffered in memory. Peri-
odically, the log is written out to disk according to
the specified thresholds. The user specifies when the
log should be written by specifying either a num-
ber of files threshold (i.e., once X files have been
recorded in the log, it must be written to disk), or a
threshold on the passing of time (i.e., the log must
be written to disk at least once every Y seconds).

The log is structured as a table, indexed by cluster
or file identifier. When a file or cluster is overwritten
on disk, the delete intent record is removed from the
log. Records contain file or cluster identifiers as well
as a generation number, which is stored in the on-
disk meta-data and used to eliminate the possibility
of replayed deletes.

The recovery procedure. During recovery, all
four regions of the disk are locked exclusively by
the recovery process. The Hummingbird interface
comes alive to the application early in the process
— after the hot cluster log of the previous session
has been recovered. However, Hummingbird will
not write new files or clusters to disk until recov-
ery has completed; write file() calls will fail. It

continues to recover the clusters in the background
and rebuild the in-memory meta-data. During this
phase, requests that do not hit in the currently-
rebuilt meta-data are checked in the file-to-cluster
mappings to identify the cluster that needs to be
recovered. Since the file-to-clusters mapping can be
out-of-date (due to a crash), a file without a file-to-
cluster mapping is viewed as not in the file system.

We now outline the sequence of events during crash
recovery; recovery is much simpler during a planned
shutdown. (1) Crash or power failure. The sys-
tem reboots and enters recovery mode. (2) The hot
cluster log is scanned, the hot clusters are read in,
and their contents are used to initialize in-memory
meta-data. (3) The file-to-cluster mappings are read
in from disk. (4) The delete log is scanned and
records are applied, modifying meta-data as neces-
sary. (5) Proxy service is enabled. Hummingbird
will now service requests. (6) During idle time, the
recovery process scans the cluster region, rebuilding
the in-memory meta-data for all files and clusters.
As files are recovered, they are available to the ap-
plication. (7) Recovery is complete. All files and
clusters are now available. Hummingbird can now
write new clusters to disk.

3.5 Daemons

Hummingbird employs a number of daemons in ad-
dition to the recovery daemons mentioned above
that run when the file system is idle and can be
called on demand. In the future, we hope to support
client-provided daemons, which would, for example,
support different cache eviction policies.

Pack files daemon. If the amount of main mem-
ory used to store files exceeds a tunable threshold,
the pack_files_daemon() uses the file LRU list to
create a cluster of files and write the cluster to
disk. The daemon packs the files using the informa-
tion from the collocate file() calls, attempting
to pack files from the same locality set in the same
cluster. If a file is larger than the cluster size, it is
split between multiple clusters.

This daemon uses the disk data layout policy to de-
cide which cluster to pack next. Implemented poli-
cies include: closest cluster, which picks the clos-
est free cluster to the previous cluster on disk ac-
cessed, closest cluster to previous write, which picks
the closest free cluster to the previous cluster writ-
ten to on disk, and overwrite, which overwrites the
next cluster. All of these policies tend to write files
accessed within a short time to clusters close to-
gether on disk. Thus, long-term fragmentation does

proxy
log

workload file %
generator file system system

operations

Figure 1: Simulation environment.

not occur.

Pack files from head daemon. The pack_
files_daemon() takes files off the tail of the LRU
list to pack into clusters; pack files from head_
daemon() takes files off the head. This has the
effect of packing the most-frequently accessed files
into clusters.

Free main memory data daemon. This dae-
mon evicts data using file and cluster LRU lists
when the amount of main memory used by the file
system exceeds a tunable threshold.

Free disk space daemon. This daemon deletes
files or clusters whose age exceeds tunable thresh-
olds set by the delete file policy and the delete cluster
policy.

4 Experimental results

We built an environment to run trace-driven exper-
iments on real implementations of UFS and Hum-
mingbird. This environment consists of four com-
ponents, as depicted in Figure 1. (1) The pro-
cessed prozy log which was discussed in Section 2.1.
(2) The workload generator simulates the operation
of a caching web proxy. It reads the proxy log
events and generates the file system operations that
a proxy would have generated during processing of
the original HTTP requests. (3) The file system,
which is either Hummingbird or various implemen-
tations of UFS, EFS, or XFS. (4) The disk, which
is a physical magnetic disk that the file system uses
to store the files. The workload generators, imple-
mentation details, and experiments are described in
the following section.

4.1 Workload generators

We developed two workload generators: wg-Squid
which mimics Squid’s interaction with the file sys-
tem, and wg-Hummingbird which issues Humming-
bird calls. The same wg-squid workload genera-
tor was used with the various UFS implementation,
EFS and XFS. The generators take as input the
modified proxy access log. The workload genera-
tors operate in a trace-driven loop which processes

logged events sequentially without pause?. This
simulates a heavily loaded server.

UFS workload generator: wg-Squid. The
wg-Squid simulates the file system behavior of
Squid-2.2. The Squid cache has a 3-level directory
hierarchy for storing files; the number of children at
each level is a configurable parameter. In order to
minimize file lookup times, Squid attempts to keep
directories small by distributing files evenly across
the directory hierarchy.

When a file is written to the cache a top-level direc-
tory, or SwapDir, is selected. Squid attempts to load
balance across the SwapDirs. Once the SwapDir has
been selected, the file is assigned a file number which
uniquely identifies the file within the SwapDir. The
value of this file number is used to compute the
names of the level-2 and level-3 directories. Thus,
Squid does not use the URL or URL reference lo-
cality for file placement into directories, limiting the
ability of the file system to collocate files which will
be accessed together. Once the directory path has
been determined, the file is created and written.

Squid has configurable high and low water marks.
When the total cache size passes the high water
mark, eviction begins. Files are deleted from the
cache in modified LRU order with a small bias to-
wards expired files. Eviction continues until the low
water mark is reached. The wg-Squid simulates this
behavior except that it uses LRU instead of modified
LRU; our log does not contain the expires informa-
tion.

Hummingbird workload generator: wg—
Hummingbird. FEach iteration of the wg-Humming-
bird loop parses the next sequential event from
the log and attempts to read the URL from Hum-
mingbird. If successful, it explicitly releases the file
buffer. If the read attempt fails, it attempts to write
the URL into the file system; this would have oc-
curred after the proxy fetched the URL from the
server.

The wg-Hummingbird maintains a hash table keyed
by client IP address to store information for gen-
erating the collocate hints. The values in the
hash table are the URLs of the most recent

2We call this timing mode THROTTLE. We have imple-
mented two other different timing modes: REAL and FAST.
REAL issues the event with the frequency that they were
recorded. FAST processes the events with a speed-up heuris-
tic parameterized by n; if the time between events is longer
than time n, then we only wait time n between them.

HTML file request seen from a particular client.
The hash table only stores the URLs of static
HTML files. As requests for non-HTML docu-
ments are processed, wg-Hummingbird generates
collocate_files() calls for the non-HTML paired
with its client’s current HTML file, as stored in the
hash table.

Note that Squid (and wg-Squid) do not pro-
vide explicit locality hints to the underlying op-
erating system; they only place files in the di-
rectory hierarchy. This is in contrast with wg-
Hummingbird, which provides explicit locality hints
via the colocate files() call. There are other
ways which a proxy could use UFS to obtain file
locality; we did not test against these other ap-
proaches. Thus, our comparisons are restricted to
the Squid approach for file locality.

4.2 Experiments

We performed our experiments on PCs with a
700 MHz Pentium III running FreeBSD 4.1 with an
18 GB IBM 10,000 RPM Ultra2 LVD SCSI (Ultra-
star 18LZX). We also performed experiments on an
SGI Origin 2000 with 18 GB 10,000 RPM Seagate
Cheetah disks (ST118202FC) under IRIX 6.5. The
results with different parameter settings were simi-
lar to each other so we only present a representative
subset of the results.

Our experiments used the 4-day web proxy log as
input into the workload generators. Among other
measurements, we measured the prory hit rate,
which represents how frequently the web page will
not have to be fetched from the server, and the file
system read time, which represents how long the
proxy must wait to get the file from the file sys-
tem. The file system write time is the time it takes
the file system to return after a write; this may
not include the time to write the file or file meta-
data to disk. (We call the file system read (write)
times FS read (write) time in our figures and ta-
bles.) wg-Squid and Hummingbird measured the
file system read/write times directly, and the out-
put of the iostat -o and sar commands were used
to determine the disk I/O times. We also report the
throughput, which we compute as the ratio of the ex-
periment run time and the total number of requests
processed. The measurements are averaged over the
entire log; warm-up effects were insignificant.

Comparing Hummingbird with UFS: single
thread. We compared Hummingbird with three
versions of UFS on FreeBSD 4.1. The three ver-
sions of UFS were: UFS, which is UFS mounted

Table 2: Comparing Hummingbird with UFS, UFS-async, and UFS-soft when files greater than 64 KB are

not cached.
file disk main proxy FS read FS write # of disk mean disk
system size | memory (MB) || hit rate | time (ms) | time (ms) 1/0s 1/0 time (ms)
Hummingbird | 4 GB 256 0.62 1.81 0.32 1,161,163 5.14
UFS-async | 4 GB 128+128 0.64 6.13 2.54 4,807,440 4.66
UFS-soft 4 GB 1284128 0.64 5.54 21.07 10,737,300 4.97
UFS 4GB 1284128 0.64 5.93 20.77 10,238,460 5.02
Hummingbird | 4 GB 1024 0.63 1.05 0.03 552,882 5.75
UFS-async 4 GB 5124512 0.64 3.21 2.35 3,217,440 3.95
UFS-soft 4GB 5124512 0.64 3.27 20.85 9,714,420 4.76
UFS 4 GB 5124-512 0.64 3.92 18.43 9,022,200 4.63
Hummingbird | 8 GB 256 0.64 2.03 0.32 1,194,494 5.64
UFS-async | 8 GB 1284128 0.67 5.69 1.47 4,605,360 4.34
UFS-soft 8 GB 1284128 0.67 5.78 15.66 9,058,141 4.86
UFS 8 GB 1284128 0.67 6.17 12.83 8,313,360 4.63
Hummingbird | 8 GB 1024 0.64 1.20 0.03 578,562 6.37
UFS-async 8 GB 5124-512 0.67 4.05 1.34 3,561,180 4.13
UFS-soft 8 GB 5124512 0.67 3.74 15.65 8,148,721 4.62
UFS 8 GB 5124512 0.67 3.81 15.70 7,611,840 4.68
- 1000
synchronously (the default), UFS-soft, which is UFS [Hummingbird
with soft updates, and UFS-async, which is UFS KN UFS-async
mounted asynchronously, so that meta-data updates E B';z’soﬁ
are not synchronous and the file system is not guar- 800 M
anteed to be recoverable after a crash. We used . M
a version of Hummingbird with a single working g
thread, where the daemons were called explicitly ev- § 600 L
ery 1000 log events. Table 2 presents comparisons >
for two different disk sizes, 4 GB and 8 GB, with S
two memory sizes, 256 MB and 1024 MB, when files 2 200
greater than 64 KB are not cached. The memory 2
was split evenly between the Squid cache and the g
file system buffer cache®. The proxy-perceived la- =
tency in Table 2 is the 5th column, the F'S read time. 200
Hummingbird’s smaller file system read time is due
to the hits in main memory caused by grouping files M M M M
in locality sets into clusters. Hummingbird’s smaller

file system write time (6th column) when compared
to UFS-async is due to cluster writes, which write
multiple files to disk in a single operation. The FS
write times for UFS and UFS-soft are greater than
UFS-async due to the synchronous file create oper-
ation.

The effectiveness of the clustered reads and writes
and the collocation strategy is illustrated in the
number of disk I/Os. In all test configurations,
Hummingbird issued substantially fewer disk I/Os
than any of the UFS configurations. Also, note that

3We controlled the size of the file system buffer cache by
locking the Squid’s memory using the mlock system call and
locking additional memory, so that file system buffer cache
could use only the remaining unlocked memory. In this way
we also prevented paging of the Squid process.

0
4GB/256MB 8GB/256MB

4GB/1024MB 8GB/1024MB
Configuration

Figure 2: Request throughput from Table 2.

the number of disk I/Os in the UFS experiments
is larger than the total number of requests in the
log. This is because file operations resulted in mul-
tiple disk I/Os. This also explains why UFS read
and write operations (as seen in FS read and write
times) are slower than individual disk I/Os. The
mean disk I/O time is larger in Hummingbird since
the request size is a cluster, which is larger when

compared to the mean data transfer size accessed
by UFS.

The throughput for each experiment in Table 2 is

shown in Figure 2. Figure 2 shows that Humming-
bird throughput is much higher than both UFS,
UFS-soft, and UFS-async on the same disk size and
memory size. This is not quite a fair comparison
since the proxy hit rate is lower with Hummingbird.
(We do not expect the experiment run time to in-
crease more than 10% when the Hummingbird poli-
cies are set so that it would have equivalent hit rate
to wg-Squid). The throughput is larger for Hum-
mingbird since much less time is spent in disk I/0O.
Using throughput as a comparison metric, we see
that Hummingbird is 2.3-4.0 times faster than sim-
ulated Squid running on UFS-async, 5.6-8.4 times
larger than a simulated version of Squid running on
UFS-soft, and 5.4-9.4 times faster than simulated
Squid running on UFS. These numbers include also
the results from Table 3.

The experiments for Table 2 assumed that files
greater than 64 KB were not cached by the proxy.
We got similar results when assuming the proxy
would cache all files; see Table 3. Note that the
proxy hit rate in Table 3 is lower than in Table 2.
This is the result of the cache being “polluted”
with large files, which cause some smaller files to
be evicted. The end result is that there are less
hits, which translate into less file system activity,
and fewer file accesses.

Comparing Hummingbird with EFS and
XFS: single thread. We compared Humming-
bird with EFS and XFS on SGI IRIX. EFS is an
extent file system. XFS is a high-performance jour-
nalling file system that interacts with the kernel
through the traditional VFS and vnode interfaces.

We experimented with 3 different disk sizes, 4 GB,
9 GB, and 18 GB. Since EFS supports file systems
up to 8 GB in size, we could not test it with 9
or 18 GB disks. Table 4 presents results where
wg-Squid cache and the IRIX buffer cache together
use 256 MB of main memory, which are divided
in two ways: 50 MB + 206 MB and 128 MB +
128 MB (wg-Squid and buffer cache, respectively).
The 50 MB for the wg-Squid was selected according
to the Squid administration guidelines [23]. Hum-
mingbird has 256 MB of main memory, and it has
the best choice of policies as previously discussed.

Our experimental results are in Table 4. Humming-
bird throughput is much higher than both XFS and
EFS on the same disk size as seen in the UFS exper-
iments, and the user-perceived latency (5th column
in Table 4) is smallest in Hummingbird. The sec-

ond observation from Table 4 is that EFS is much
slower than XFS, which is a journalling file system.
In particular, file system write time for EFS is more
than 3 times larger than XFS write time. It is the
result of frequent synchronous write operations for
meta-data, which are performed by EFS. The third
observation is that increasing wg-Squid cache size
to 128 MB and reducing the file system buffer cache
size actually improved the file system performance,
which indicates that the wg-Squid cache is more ef-
fective than the file system buffer cache.

Comparing Hummingbird with UFS: multi-
threaded workload generators. Many proxies
are either multi-threaded or have multiple processes.
Hummingbird is both thread- and process-safe. We
implemented multi-threaded versions of both our
workload generators, with a thread for the daemons
in wg-Hummingbird, and ran similar experiments to
the above with one processor running FreeBSD 4.1
with the LinuxThreads library. Table 5 contains
a subset of the results of our experiments using
four threads and two disks. In multi-threaded squid
workload generator, two cache root directories are
used, each residing on a disk. The experiment run
time for the experiments in Table 5 are consistently
longer than the corresponding cases in Table 3 due
to an uneven distribution of the files on the 2 disks;
we observed a bursty access pattern to each disk
in the iostat log. Queuing in the device driver re-
sults in longer FS read /write time too. However, the
Hummingbird throughput is again 2—4 times greater
than for UFS, UFS-async, and UFS-soft.

Recovery performance. Recovering the hot
clusters and the deletion log are quick; it takes about
30 seconds to read 2500 hot clusters and a log of
3000 deletion entries into memory. Thus, on a sys-
tem crash with a 18 GB disk, Hummingbird can
start to service requests in 30 seconds, while UFS
will take more than 20 minutes to perform the nec-
essary fsck before requests can be serviced. While
rebuilding the in-memory meta-data (Step 6 in Sec-
tion 3.4), the FS read time increased a small amount
(e.g., from 2.03 ms to 2.50 ms for a 8 GB disk).

Journalling file systems will recover integrity quickly
compared with traditional UFSs due to log-based
recovery. However, journalling alone will not fetch
hot data from disk as part of the recovery process.

5 Polygraph results

A web cache benchmarking package called Web
Polygraph [18] is used for comparison of caching

Table 3: Comparing Hummingbird with UFS, UFS-async, and UFS-soft when all files are cached.

file disk main proxy FS read FS write # of disk mean disk experiment

system size | memory (MB) || hit rate | time (ms) | time (ms) I/0s I/O time (ms) | run time (s)
Hummingbird | 4 GB 256 0.60 1.68 0.39 1,349,175 4.17 6,362
UFS-async 4 GB 1284128 0.62 6.61 2.88 5,134,380 4.72 25,510
UFS-soft 4 GB 1284128 0.62 5.81 22.91 11,858,100 5.02 59,475
UFS 4 GB 1284128 0.62 6.13 22.67 11,283,060 5.05 59,807
Hummingbird | 4 GB 1024 0.61 0.88 0.52 630,362 5.62 6,030
UFS-async 4 GB 5124512 0.62 3.67 2.70 3,919,620 3.98 16,384
UFS-soft 4 GB 5124512 0.62 3.561 22.89 10,868,700 4.84 52,377
UFS 4 GB 5124512 0.62 4.24 20.23 10,115,400 4.69 49,749
Hummingbird | 8 GB 256 0.64 2.17 0.40 1,464,727 5.03 7,923
UFS-async 8 GB 1284128 0.66 6.42 2.30 5,017,920 4.67 24,657
UFS-soft 8 GB 1284128 0.66 6.14 19.31 10,461,841 4.98 51,797
UFS 8 GB 1284128 0.66 7.37 16.42 9,954,540 4.89 51,062
Hummingbird | 8 GB 1024 0.62 1.18 0.51 695,771 6.41 6,802
UFS-async | 8 GB 5124512 0.66 4.66 1.90 4,016,400 4.32 18,240
UFS-soft 8 GB 5124512 0.67 3.69 15.71 8,158,080 4.61 37,097
UFS 8 GB 5124512 0.66 4.24 18.90 8,894,760 4.82 45,044

Table 4: Comparing Hummingbird with XFS and EFS with 256 MB of main memory when all files are

cached.

file disk cache proxy FS read FS write # of disk mean disk experiment

system size size (MB) || hit rate | time (ms) | time (ms) 1/0s I/0 time (ms) | run time (s)
Hum 4 GB 256 0.62 2.82 0.20 922,871 9.85 9,926
EFS 4GB 504206 0.62 14.79 46.38 10,784,969 10.99 128,878
XFS 4 GB 504206 0.62 14.97 16.56 10,870,353 6.67 75,565
EFS 4GB 1284128 0.62 14.08 48.33 10,540,778 11.37 130,359
XFS 4 GB 1284128 0.62 14.90 13.95 10,115,369 6.72 70,746
Hum 9 GB 256 0.66 3.30 0.21 1,028,922 10.77 11,861
XFS 9 GB 504206 0.66 15.47 12.39 9,558,954 7.02 69,929
XFS 9 GB 1284128 0.66 15.65 8.80 8,737,878 7.12 64,726
Hum 15 GB 256 0.67 3.71 0.21 1,049,121 11.92 13,313
XFS 15 GB 504206 0.67 16.71 5.73 8,103,576 7.60 63,371
XFS 15 GB 1284128 0.67 15.91 5.79 7,841,184 7.55 60,943

Table 5: Comparing Hummingbird with UFS, UFS-async, and UFS-soft with 256 MB of main memory
when all files are cached with 2 disks and 4 threads in the workload generator.

file disk proxy FS read FS write # of disk mean disk experiment

system size hit rate | time (ms) | time (ms) I/0s I/O time (ms) | run time (s)
Hummingbird | 4 GB 0.64 1.86 1.34 1,478,005 11.68 11,743
UFS-async 4 GB 0.66 5.92 6.39 5,638,201 10.72 30,427
UFS-soft 4 GB 0.66 3.25 20.42 9,405,301 9.76 45,655
UFS 4 GB 0.66 6.71 15.86 10,771,201 9.05 48,577
Hummingbird | 8 GB 0.67 6.12 1.40 1,556,169 14.08 12,997
UFS-async 8 GB 0.67 6.19 5.18 5,466,061 10.67 29,354
UFS-soft 8 GB 0.67 6.04 14.67 8,678,761 10.52 44,622
UFS 8 GB 0.67 6.78 9.73 8,903,641 8.74 38,464

web proxies. The clients and servers are simulated;
the client workload parameters such as hit ratio,
cacheability, and response sizes can be specified and
server-side delays can be specified. We used the
PolyMix-2 traffic model to compare Apache [25] us-
ing UFS and a slightly modified version of Apache
using Hummingbird without collocate files()
calls. Due to space considerations of this paper,
we only briefly discuss our results.

We used one of our FreeBSD Pentium IIIs for the
proxy. We used a number of different client request
rates; the following results are for 8 requests/second.
We found that the mean response time for hits in the
proxy is 14 times smaller with Hummingbird than
with UFS, and the median response time for hits
is 20 times smaller. The improvement in mean and
median response times for proxy misses was much
smaller, as expected; Hummingbird is 20% faster
than UFS. Since Hummingbird serves proxy hits
faster, its request queue is shorter, which in turn,
shortens the queue time of proxy misses.

6 Related work

Related work falls into two categories: first, analyses
of traditional UFS-based systems and ways to beat
their performance limitations, and second, analyses
of the behavior of web proxies and how they can
better use the underlying I/O and file systems.

The first set of research extends back to the original
FFS work of McKusick et al. [13] which addressed
the limitations of the System V file system by intro-
ducing larger block sizes, fragments, and cylinder
groups. With increasing memory and buffer cache
sizes, UNIX file systems were able to satisfy more
reads out of memory. The FFS clustering work of
McVoy and Kleiman [14] sought to improve write
times by lazily writing the data to disk in contigu-
ous extents called clusters. LFS [20] sought to im-
prove write times by packing dirty file blocks to-
gether and writing to an on-disk log in large extents
called segments. The LFS approach necessitates a
cleaner daemon to coalesce live data and free on-
disk segments. As well, new on-disk structures are
required. Work in soft updates [6] and journalling
[7, 4] has sought to alleviate the performance limi-
tations due to synchronous meta-data operations,
such as file create or delete, which must modify
file system structures in a specified order. Soft up-
dates maintains dependency information in kernel
memory to order disk updates. Journalling systems
write meta-data updates to an auxiliary log using

the write-ahead logging protocol. This differs from
LFS, in which the log contains all data, including
meta-data. LFS also addresses the meta-data up-
date problem by ordering updates within segments.

The Bullet server [26, 24] is the file system for
Amoeba, a distributed operating system. The Bul-
let service supports entire file operations to read,
create, and delete files. All files are immutable.
Each file is stored contiguously, both on disk and in
memory. Even though the file system APT is similar
to Hummingbird, the Bullet service does not per-
form clustering of files together, so it would not have
the same type of performance improvement that
Hummingbird has for a caching web proxy work-
load.

Kaashoek et al. [9] approaches high performance
through developing server operating systems, where
a server operating system is a set of abstractions and
runtime support for specialized, high performance
server applications. Their implementation of the
Cheetah web server is similar to Hummingbird in
one way: collocating an HTML page and its images
on disk and reading them from disk as a unit. Web
servers’ data storage is represented naturally by the
UFS file hierarchy. This is not true for caching web
proxies as discussed in Section 2.2.

CacheFlow [2] builds a cache operating system
called CacheOS with an optimized object storage
system which minimizes the number of disk seek and
I/0 operations per object. Unfortunately, details of
the object storage are not, public. The Network Ap-
pliance filer [8] is a prime example of combination
of an operating system and a specialized file sys-
tem (WAFL) inside a storage appliance. Novell [15]
has developed the Cache Object Store (COS) which
they state is 10 times more efficient than typical file
systems; few details on the design are available. The
COS prefetches the components for a page when the
page is requested, leading us to believe that the com-
ponents are not stored contiguously as they are in
Hummingbird.

Rousskov and Soloviev [21] studied the performance
of Squid and its use of the file system. Markatos
et al. [12] presents methods for web proxies to
work around costly file system file opens, closes,
and deletes. One of their methods, LAZY-READS,
gathers read requests n-at-a-time, and issues them
all at the same time to the disk; results are presented
when n is 10. This is similar to our clustering of lo-
cality sets, since a read for a cluster will, on average,

access 8 files. We feel that Hummingbird in a more
general solution to the decreasing the effect of costly
file system operations on a web proxy.

Maltzahn et al. [10] compared the disk I/O of
Apache and Squid and concluded that they were
remarkably similar. In a later paper [11], they sim-
ulated the operation of several techniques for mod-
ifying Squid, one of which was to use a memory-
mapped interface to access small files. Other tech-
niques improved the locality of related files based
on domain names. This paper reported a reduc-
tion of up to 70% in the number of disk opera-
tions relative to unmodified Squid. An inherent
problem using one memory-mapped file to access
all small objects is that it cannot scale to handle a
very large number of objects. Like Hummingbird,
using memory-mapped files requires modification to
the proxy code.

Pai et al. [17] developed a kernel I/O system called
IO-lite to permit sharing of “buffer aggregates” be-
tween multiple applications and kernel subsystems.
This system solves the multiple buffering problem,
but, like Hummingbird, applications must use a
different interface that supersedes the traditional
UNIX read and writes.

7 Conclusions

This paper explores file system support for appli-
cations which can take advantage of the perfor-
mance/persistence tradeoff. Such a file system is
especially useful for local caching of data, where per-
manent storage of the data is available elsewhere. A
caching web proxy is the prime example of an ap-
plication that may benefit from this file system.

We implemented Hummingbird, a light-weight file
system that is designed to support caching web
proxies. Hummingbird has two distinguishing fea-
tures: it stores its meta-data in memory, and it
stores groups of related objects (e.g., HTML page
and its embedded images) together on the disk.
By setting the tunable parameters to achieve per-
sistence, Hummingbird can also be used to im-
prove the performance of web servers, which have
similar reference locality as proxies. Our results
are very promising; Hummingbird’s throughput is
2.3-4.0 times larger than a simulated version of
Squid running UFS mounted asynchronously on
FreeBSD, 5.4-9.4 times larger than a simulated ver-
sion of Squid running UFS mounted synchronously
on FreeBSD, 5.6-8.4 times larger than a simulated

version of Squid running UFS with soft updates on
FreeBSD, and 5.4-13 times larger than XFS and
EFS on IRIX. The Web Polygraph environment con-
firmed these improvements for the response times
for proxy hits.

Additional information about Hummingbird is
available at http://www.bell-labs.com/pro-
ject/hummingbird/.

Acknowledgements. Many thanks to Arthur
Goldberg for giving us copies of the ISP log files that
we studied. WeeTeck Ng helped us with prepar-
ing our experiment environment. Bruce Hillyer and
Philip Bohannon were very helpful in initial design
discussions. Hao Sun performed the Polygraph ex-
periments.

References

[1] BAKER, M. G., HARTMAN, J. H., KUPFER, M. D.,
SHIRRIFF, K. W., AND OUSTERHOUT, J. K. Mea-
surements of a distributed file system. In Proceed-
ings of the Thirteenth ACM Symposium on Operat-
ing Systems Principles (Asilomar (Pacific Grove),
CA, Oct. 1991), ACM Press, pp. 198-212.

[2] Network cache performance measurements.
CacheFlow White Papers Version 2.1, CacheFlow,
Sept. 1998.

[3] Cao, P., AND IRANI, S. Cost-aware WWW proxy
caching algorithms. 193-206.

[4] CHuUTANI, S., ANDERSON, O. T., KAazAR, M. L.,
LeEvErReTT, B. W., MaAsoNn, W. A., AND SIDE-
BOTHAM, R. N. The Episode file system. In Pro-
ceedings of the Winter 1992 USENIX Conference
(San Francisco, CA, Winter 1992), pp. 43-60.

[6] GABBER, E., AND SHRIVER, E. Let’s put NetApp
and CacheFlow out of business! In Proceedings of
the 9th ACM SIGOPS European Workshop (Kold-
ing, Denmark, Sept. 2000), pp. 85-90.

[6] GANGER, G. R., AND PATT, Y. N. Metadata up-
date performance in file systems. In Proceedings of
the First USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI) (Mon-
terey, CA, Nov. 1994), pp. 49-60.

[7] HAGMANN, R. Reimplementing the Cedar file sys-
tem using logging and group commit. In Proceed-
ings of the Eleventh ACM Symposium on Operat-
ing Systems Principles (Austin, TX, Nov. 1987),
pp- 155-162. In ACM Operating Systems Review
21:5.

[8] Hirz, D., LAu, J., AND MaLcoLM, M. File sys-
tem design for an NFS file server appliance. In

[10]

[11]

[13]

18]

[19]

Proceedings of the USENIX 1994 Winter Techni-
cal Conference (San Francisco, CA, Jan. 1994),
pp. 235-246.

KaasHoek, M. F., ENGLER, D. R., GANGER,
G. R., AND WALLACH, D. A. Server operating
systems. In Proceedings of the 1996 SIGOPS Euro-
pean Workshop (Connemara, Ireland, Sept. 1996),
pp. 141-148.

MartrzAHN, C., RICHARDSON, K., AND GRUN-
WALD, D. Performance issues of enterprise level
proxies. In Proceedings of the ACM Sigmetrics Con-
ference on Measurement and Modeling of Computer
Systems (Sigmetrics '97) (Seattle, WA, June 1997),
pp. 13-23.

MArLTZAHN, C., RICHARDSON, K. J., AND GRUN-
WALD, D. Reducing the disk I/O of web proxy
server caches. In Proceedings of the 1999 USENIX
Annual Technical Conference (Monterey, CA, June
1999), pp. 225-238.

MarkaTos, E. P., KATeEVENIS, M. G., PNEV-
MATIKATOS, D., AND FLOURIS, M. Secondary stor-
age management for web proxies. In Proceedings of
the 2nd USENIX Symposium on Internet Technolo-
gies and Systems (Boulder, CO, Oct. 1999), pp. 93—
114.

McKusick, M. K., Joy, W. N., LEFFLER, S. J.,
AND FABRY, R. S. A fast file system for UNIX.
ACM Transactions on Computer Systems 2, 3
(Aug. 1984), 181-197.

McVoy, L. W., AND KLEIMAN, S. R. Extent-like
performance from a UNIX file system. In Proceed-
ings of the Winter 1991 USENIX Conference (Dal-
las, TX, Jan. 1991), pp. 33-43.

The Novell ICS advantage: Competitive white pa-
per. Tech. rep. Available at http://www.novell.-
com/advantage/nics/nics-compwp.html.

OusTErRHOUT, J. K., DA CosTA, H., HARRISON,
D., KuNzE, J. A., KUPFER, M., AND THOMPSON,
J. G. A trace-driven analysis of the UNIX 4.2 BSD
file system. In Proceedings of 10th ACM Sympo-
sium on Operating Systems Principles (Orcas Is-
land, WA, Dec. 1985), vol. 19, ACM Press, pp. 15—
24.

PA1, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W.
IO-lite: a unified I/O buffering and caching system.
In Proceedings of the Third USENIX Symposium
on Operating System Design and Implementation
(0SDI’99) (New Orleans, LA, Feb. 1999), pp. 15—
28.

PoLyTEAM. Web polygraph site.
graph.ircache.net/.

http://poly-

RoseLL, D., LorcH, J. R., AND ANDERSON,
T. E. A comparison of file system workloads. In
Proceedings of the 2000 USENIX Annual Techni-
cal Conference (USENIX-00) (San Diego, CA, June
2000), pp. 41-54.

[20]

[21]

RosenBLUuM, M., AND OusTERHOUT, J. K. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
10, 1 (Feb. 1992), 26-52.

Rousskov, A., AND SOLOVIEV, V. A performance
study of the Squid proxy on HTTP/1.0. World-
Wide Web Journal, Special Edition on WWW
Characterization and Performance and Evaluation
2, 1-2 (1999).

SELTZER, M. I., GANGER, G. R., McKUSICK,
M. K., SmitH, K. A., SouLes, C. A. N., AND
STEIN, C. A. Journaling versus soft updates: asyn-
chronous meta-data protection in file systems. In
Proceedings of the 2000 USENIX Annual Techni-
cal Conference (USENIX-00) (San Diego, CA, June
2000), pp. 71-84.

1999. http://squid.nlanr.net/mail-archive/-
squid-users/.

TANENBAUM, A. S.; vAN RENESSE, R., VAN
STAVEREN, H., SHARP, G. J., MULLENDER, S. J.,
JANSEN, J., AND VAN RossuM, G. Experiences
with the Amoeba distributed operating system.
Communications of the ACM 33 (Dec. 1990), 46—
63.

THE APACHE SOFTWARE FOUNDATION. Apache
http server project. http://www.apache.org/-
httpd.html.

VAN RENESSE, R., TANENBAUM, A. S., AND
WiLscuur, A. N. The design of a high-
performance file server. In Proceedings of the Ninth
International Conference on Distributed Comput-
ing Systems (ICDCS 1989) (Newport Beach, CA,
June 1989), IEEE Computer Society Press, pp. 22—
27.

