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Message from the USENIX Security ’11 Program Chair

It is my pleasure to welcome you to the 20th USENIX Security Symposium, where we have an outstanding pro-
gram of papers, talks, and other events.

The conference received 206 submissions. Two of the submissions were withdrawn, and the remaining 204 were
reviewed by the program committee. The authors of each paper were not revealed to reviewers. The committee
used a multi-round reviewing process. Every paper was reviewed by at least two reviewers; papers that received

a positive recommendation in the first round were reviewed by a third and, usually, a fourth reviewer, and many
papers received five or more reviews. The committee, assisted by many external reviewers, produced a total of 682
reviews. Reviewers then discussed these papers electronically, producing 826 comments in all. Finally, the program
committee met during a two-day in-person meeting in Berkeley, California, to discuss the 67 top papers. Niels
Provos generously served as alternate program chair for ten submissions where I had a conflict of interest, and
Tadayoshi Kohno handled two more such submissions.

After careful deliberation, the program committee selected 35 papers for presentation—a record high for USENIX
Security. The quality of the papers is impressive, a tribute to the high quality of research being produced in our
field.

I would like to thank everyone who contributed to the success of USENIX Security ’11. I am particularly grateful
to the program committee for their hard work, enthusiasm, and conscientious efforts to ensure that each paper re-
ceived a thorough and fair review. Thanks also to the external reviewers, listed on p. ii, for contributing their time
and expertise. It has been an honor to work with such a dedicated and thoughtful group. The program committee
members devoted countless hours to their work; I encourage you to thank them for their service to the community.

Beyond the refereed papers track, we also have a strong lineup of invited talks, posters, and other events. Sandy
Clark, Dan Geer, Dan Wallach, and Ellie Young served on the invited talks committee, and they have done an
excellent job of assembling a slate of interesting invited talks. Patrick Traynor is the chair of this year’s Poster
Session, and Matt Blaze is chairing the Rump Session. Dan Klein is organizing the training program. Thanks to
Sandy, Dan, Dan, Ellie, Patrick, Matt, and Dan for their important contributions to what promises to be an interest-
ing and fun USENIX Security program.

I would also like to take this opportunity to thank the USENIX organization for their phenomenal support. [ am
especially grateful to Ellie Young, Anne Dickison, Casey Henderson, Jessica Horst, Jane-Ellen Long, Jennifer
Peterson, Tony Del Porto, board liaison Matt Blaze, and the rest of the USENIX crew. Working with USENIX is
a true joy. Their dedication to the task of running the conference is inspiring. Please join me in thanking them for
making the conference such a success.

Finally, I would like to thank all the authors who submitted papers to USENIX Security 11 for submitting their
best research.

Welcome to San Francisco, California, and the 20th USENIX Security Symposium. I hope you enjoy the confer-
ence.

David Wagner, University of California, Berkeley
USENIX Security ’11 Program Chair






Fast and Precise Sanitizer Analysis with BEK

Pieter Hooimeijer
University of Virginia

Prateek Saxena
UC Berkeley

Abstract

Web applications often use special string-manipulating
sanitizers on untrusted user data, but it is difficult to rea-
son manually about the behavior of these functions, lead-
ing to errors. For example, the Internet Explorer cross-
site scripting filter turned out to transform some web
pages without JavaScript into web pages with valid Java-
Script, enabling attacks. In other cases, sanitizers may
fail to commute, rendering one order of application safe
and the other dangerous.

BEK is a language and system for writing sanitiz-
ers that enables precise analysis of sanitizer behavior,
including checking idempotence, commutativity, and
equivalence. For example, BEK can determine if a tar-
get string, such as an entry on the XSS Cheat Sheet, is
a valid output of a sanitizer. If so, our analysis synthe-
sizes an input string that yields that target. Our language
is expressive enough to capture real web sanitizers used
in ASP.NET, the Internet Explorer XSS Filter, and the
Google AutoEscape framework, which we demonstrate
by porting these sanitizers to BEK.

Our analyses use a novel symbolic finite automata
representation to leverage fast satisfiability modulo the-
ories (SMT) solvers and are quick in practice, tak-
ing fewer than two seconds to check the commutativ-
ity of the entire set of Internet Exporer XSS filters,
between 36 and 39 seconds to check implementations
of HTMLEncode against target strings from the XSS
Cheat Sheet, and less than ten seconds to check equiv-
alence between all pairs of a set of implementations of
HTMLEncode. Programs written in BEK can be compiled
to traditional languages such as JavaScript and C#, mak-
ing it possible for web developers to write sanitizers sup-
ported by deep analysis, yet deploy the analyzed code
directly to real applications.

1 Introduction

Cross site scripting (“XSS”) attacks are a plague in to-
day’s web applications. These attacks happen because
the applications take data from untrusted users, and then
echo this data to other users of the application. Because

*Authors are listed alphabetically. Work done while P. Hooimeijer
and P. Saxena were visiting Microsoft Research.

Benjamin Livshits
Microsoft Research

David Molnar
Microsoft Research

Margus Veanes *
Microsoft Research

web pages mix markup and JavaScript, this data may
be interpreted as code by a browser, leading to arbitrary
code execution with the privileges of the victim. The first
line of defense against XSS is the practice of sanitiza-
tion, where untrusted data is passed through a sanitizer,
a function that escapes or removes potentially danger-
ous strings. Multiple widely used Web frameworks offer
sanitizer functions in libraries, and developers often add
additional custom sanitizers due to performance

or functionality constraints.

Unfortunately, implementing sanitizers correctly is
surprisingly difficult. Anecdotally, in dozens of code re-
views performed across various industries, just about any
custom-written sanitizer was flawed with respect to secu-
rity [38]. The recent SANER work, for example, showed
flaws in custom-written sanitizers used by ten web ap-
plications [9]. For another example, several groups of
researchers have found specially crafted pages that do
not initially have cross site scripting attacks, but when
passed through anti-cross-site scripting filters yield web
pages that cause JavaScript execution [10, 22].

The problem becomes even more complicated when
considering that a web application may compose multi-
ple sanitizers in the course of creating a web page. In
a recent empirical analysis, we found that a large web
application often applied the same sanitizers twice, de-
spite these sanitizers not being idempotent. This analysis
also found that the order of applying different sanitizers
could vary, which is safe only if the sanitizers are com-
mutative [32], providing further evidence suggesting that
developers have a difficult time writing correct sanitiza-
tion functions without assistance.

Despite this, much work in the space of detecting and
preventing XSS attacks [19, 23,25,27,39] has optimisti-
cally assumed that sanitizers are in fact both known and
correct. Some recent work has started exploring the is-
sue of specification completeness [24] as well as san-
itizer correctness by explicitly statically modeling sets
of values that strings can take at runtime [13,26, 36, 37].
These approaches use analysis-specific models of strings
that are based on finite automata or context-free gram-
mars. More recently, there has been significant interest
in constraint solving tools that model strings [11, 17, 18,
20,31, 34,35]. String constraint solvers allow any client
analysis to express constraints (e.g., path predicates for a

USENIX Association
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single code path) that include common
string manipulation functions.

Sanitizers are typically a small amount of code, per-
haps tens of lines. Furthermore, application developers
know when they are writing a new, custom sanitizer or set
of sanitizers. Our key proposition is that if we are will-
ing to spend a little more time on this sanitizer code, we
can obtain fast and precise analyses of sanitizer behavior,
along with actual sanitizer code ready to be integrated
into both server- and client-side applications. Our ap-
proach is BEK, a language for modeling string transfor-
mations. The language is designed to be (a) sufficiently
expressive to model real-world code, and (b) sufficiently
restricted to allow fast, precise analysis, without needing
to approximate the behavior of the code.

Key to our analysis is a compilation from BEK pro-
grams to symbolic finite state transducers, an extension
of standard finite transducers. Recall that a finite trans-
ducer is a generalization of deterministic finite automata
that allows transitions from one state to another to be an-
notated with outputs: if the input character matches the
transition, the automaton outputs a specified sequence of
characters. In a symbolic finite transducer, transitions
are annotated with logical formulas instead of specific
characters, and the transducer takes the transition on any
input character that satisfies the formula. We apply algo-
rithms that determine if two BEK programs are equiva-
lent. We also can check if a BEK program can output a
specific string, and if so, synthesize an input
yielding that string.

Our symbolic finite state transducer representation
enables leveraging satisfiability modulo theories (SMT)
solvers, tools that take a formula and attempt to find in-
puts satisfying the formula. These solvers have become
robust in the last several years and are used to solve com-
plicated formulas in a variety of contexts. At the same
time, our representation allows leveraging automata the-
oretic methods to reason about strings of unbounded
length, which is not possible via direct encoding to SMT
formulas. SMT solvers allow working with formulas
from any theory supported by the solver, while other
previous approaches using binary decision diagrams are
specialized to specific types of inputs.

After analysis, programs written in BEK can be com-
piled back to traditional languages such as JavaScript or
C# . This ensures that the code analyzed and tested is
functionally equivalent to the code which is actually de-
ployed for sanitization, up to bugs in our compilation.

This paper contains a number of experimental case
studies. We conclusively demonstrate that BEK is ex-
pressive enough for a wide variety of real-life code by
converting multiple real world Web sanitization func-
tions from widely used frameworks, including those used
in Internet Explorer 8’s cross-site scripting filter, to BEK

programs. We report on which features of the BEK lan-
guage are needed and which features could be added
given our experience. We also examine other code,
such as sanitizers from Google AutoEscape and func-
tions from WebKit, to determine whether or not they can
be expressed as BEK programs. We maintain samples of
BEK programs online!.

We then use BEK to perform security specific analy-
ses of these sanitizers. For example, we use BEK to de-
termine whether there exists an input to a sanitizer that
yields any member of a publicly available database of
strings known to result in cross site scripting attacks. Our
analysis is fast in practice; for example, we take two sec-
onds to check the commutativity of the entire set of In-
ternet Explorer 8 XSS filters, and less than 39 seconds to
check an implementations the HTMLEncode sanitization
function against target strings from the
XSS Cheat Sheet [5].

To experimentally demonstrate the difficulty of writ-
ing correct sanitizers, we hired several freelance devel-
opers to implement HTMLEncode functionality. Using
BEK, we checked the equivalence of the seven differ-
ent implementations of HTMLEncode and used BEK to
find counterexamples: inputs on which these sanitizers
behave differently. Finally, we performed scalability ex-
periments to show that in practice the time to perform
BEK analyses scales near-linearly.

1.1 Contributions
The primary contributions of this paper are:

e Language. We propose a domain-specific lan-
guage, BEK, for string manipulation. We describe a
syntax-driven translation from BEK expressions to
symbolic finite state transducers.

e Algorithms. We provide algorithms for performing
composition computation and equivalence check-
ing, which enables checking commutativity, idem-
potence, and determining if target strings can be
output by a sanitizer. We show how JavaScript and
C# code can be generated out of BEK programs,
streamlining the client- and server-side deployment
of BEK sanitizers.

o Evaluation. We show that BEK can encode real-
world string manipulating code used to sanitize un-
trusted inputs in web applications. We demonstrate
the expressiveness of BEK by encoding OWASP
sanitizers, many IE 8 XSS filters, as well as func-
tions written by freelance developers hired through
odesk. comand vworker . com for our experiments
presented in this paper. We show how the analy-
ses supported by our tool can find security-critical

"http://code.google.com/p/bek/
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bugs or check that such bugs do not exist. To
improve the end-user experience when a bug is
found, BEK produces a counter-example. We dis-
cover that only 28.6% of our sanitizers commute,
~79.1% are idempotent, and that only 8% are re-
versible. We also demonstrate that most hand-
written HTMLEncode implementations disagree on
at least some inputs.

e A Scalable Implementation. BEK deals with Uni-
code strings without creating a state explosion. Fur-
thermore, we show that our algorithms for equiv-
alence checking and composition computation are
very fast in practice, scaling near-linearly with the
size of the symbolic finite transducer representation.
The main reason for this is the symbolic representa-
tion of the transition relation.

While the focus of this paper is on XSS attacks?, our
language and analyses are more general and apply to
any string manipulating function. For example Chen et
al. check interactions between firewall rules, finding re-
dundant and order-dependent rules in routers [40]. Cho
and Babi¢ [12] check the equivalence between a specifi-
cation and an implementation for

state machines in SMTP servers.

2 Overview

Figure 1 shows an architectural diagram for the BEK sys-
tem. At the center of the picture is the transducer-based
representation of a BEK program. At the moment, we
support a BEK language front end, although other front
ends that convert Java or C# programs into BEK are also
possible. We provide motivating examples of the BEK
language in Section 2.1 and discuss the applications of
BEK to analyzing sanitizers in Section 2.2.

2.1 Introductory Examples

Example 1. The following BEK program is a basic san-
itizer that backslash-escapes single and double quotes
(but only if they are not escaped already). The iter con-
struct is a block that uses a character variable ¢ and a
single boolean state variable b that is initially f (false).
Each iteration of the block binds the character variable to
a single character of the string ¢; iteration continues un-
til no more characters remain. The block is broken into
case statements. If a character satisfies the condition of
the case statement, the corresponding code is executed.

2The dual of the issue of code injection is data privacy; BEK is
equally suitable to analyzing the corresponding data cleansing func-
tions.

Bek front end W
e

Bek compiler

Bek program
representation ‘

Optimizations !
JavaScript
back end

C# G
back end back end

Figure 1: BEK architecture. We use a representation
based on symbolic finite state transducers (defined in-
text) to model string sanitization code without approxi-
mation.

private static string EncodeHtml(string t)

{
if (t == null) { return null; }
if (t.Length == 0) { return string.Empty; }
StringBuilder builder =

new StringBuilder("", t.Length * 2);
foreach (char c¢ in t)
{
if ((((e > 2°) && (c < °{?)) ||
((c > @) && (c < °["))) Il (((c == ") ||
((c > /%) && (c <’:7))) || (((c==".7) ||
(c ==",7)) |l ((c =="=) || (c=="_)))N1
builder.Append(c) ;
} else {
builder.Append ("&#" +
((int) c).ToString() + ";");
}
}

return builder.ToString();
}

Figure 2: Code for AntiXSS.EncodeHtml version 2.0.

Here yield(c) outputs the current character c.

iter(cint) {b:=f;} {

case(=(b) A (c= <" Ve= "))
b:=f; yield(<\’); yield(c); }

case(c = “\?) {
b:=~(b); yield(c); }

case(t) {
b:=f; yield(c); }

}

The boolean variable b is used to track whether the previ-
ous character seen was an unescaped slash. For example,
in the input \\" the double quote is not considered es-
caped, and the transformed outputis \\\". If we apply the
BEK program to \\\" again, the output is the same. An

USENIX Association
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interesting question is whether this holds for any output
string. In other words, we may be interested in whether
a given BEK program is idempotent.

If implemented incorrectly, double applications of
such sanitization functions can result in duplicate escap-
ing. This in turn has led to command injection of script-
injection attacks in the past. Therefore, checking idem-
potence of certain functions is practically useful. We
will see in the next section how BEK can perform such
checks. X

Example 2. The code in Figure 2 is from the public
Microsoft AntiXSS library. The sanitizer iterates over
the input character-by-character. Depending on the char-
acter encountered, a different action is taken, such as in-
cluding the character verbatim or encoding it in some
manner, such as numeric HTML escaping.

The BEK program corresponding to EncodeHtml is

iter (cin ¢){
case (—p(c)){
yield [*&”, *#" | +dec(c) + [ ]; }
case(true){
yield [c]; }}

where dec is a built-in library function that returns the
decimal representation of the character and ¢(c) is the
formula

<che< 1z’ )V(A <cAhe< M2V
<cAe<M9') Ve=""Ve=1"V

The BEK program iterates over each character of the
input. If the character satisfies the formula (c), then the
program outputs the character. Otherwise the program
escapes the character by outputting its decimal encod-
ing, together with the &+# prefix and semicolon. Note
that this sanitizer is not idempotent, because applying the
function twice to the string &+# will result in double es-
caping. Our tool can detect this in under a second. X

Multiple implementations may exist of the “same”
sanitizer. For example, Figure 3 shows the result of run-
ning the Red Gate Reflector .NET decompiler on the Sys-
tem.NET implementation of EncodeHTML. We have con-
verted this code to BEK as well, noticing that the goto
structure is the result of a loop after decompilation. Us-
ing our analyses, we can check these implementations for
equivalence. Our implementation can detect in less than
one second that the System.NET implementation does
not escape single quote characters, while the AntiXSS
implementation does, meaning that the two implementa-
tions are not equivalent. Failure to escape single quotes
can lead to XSS attacks, so this
difference is significant [33].

public static string EncodeHtml(string s)
{
if (s == null)
return null;
int num = IndexOfHtmlEncodingChars(s, 0);
if (num == -1)
return s;
StringBuilder builder=new StringBuilder(s.Length+5);
int length = s.Length;
int startIndex = O;
Label_002A:
if (num > startIndex) {
builder.Append(s, startIndex, num-startIndex);
}
char ch = s[num];
if (ch > ’>’) {
builder.Append ("&#") ;
builder.Append (((int) ch).
ToString(NumberFormatInfo.InvariantInfo));
builder.Append(’;’);
}
else {
char ch2 = ch;
if (ch2 !'= *") {
switch (ch2)
{
case ’<’:
builder.Append ("&1t;");
goto Label_00D5;

case ’=’:
goto Label_00D5;

case ’>7:
builder.Append ("&gt;") ;
goto Label_00D5;

case ’&’:
builder.Append("&amp;") ;
goto Label_0O0D5;
}
}
else {
builder.Append("&quot;");
}
}
Label_OOD5:
startIndex = num + 1;
if (startIndex < length) {
num = IndexOfHtmlEncodingChars(s, startIndex);
if (num != -1) {
goto Label_002A;
}
builder.Append(s, startIndex, length-startIndex);
}
return builder.ToString();

}

Figure 3: Code for EncodeHtml from version 2.0 of
System.Net. This code is not equivalent to the AntiXSS
library version.

2.2 Security Applications

Web sanitizers are the first line of defense against cross-
site scripting attacks for web applications: they are func-
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tions applied to untrusted data provided by a user that
attempt to make the data “safe” for rendering in a web
browser. Reasoning about the security properties of web
sanitizers is crucial to the security of web applications
and browsers. Formal verification of sanitizers is there-
fore crucial in proving the absence of injection attacks
such as cross-site and cross-channel scripting as well as
information leaks.

2.2.1 Security of Sanitizer Composition

Recent work has demonstrated that developers may
accidentally compose sanitizers in ways that are not
safe [32]. BEK can check two key properties of sanitizer
composition: commutativity and idempotence.

Commutativity: Consider two default sanitizers in
the Google CTemplate framework: JavaScriptEscape
and HTMLEscape [4]. The former performs Uni-
code encoding (\uooxx) for safely embedding untrusted
data in JavaScript strings while the latter sanitizer per-
forms HTML entity-encoding (&1t;) for embedded un-
trusted data in HTML content. It turns out that if
JavaScriptEscape is applied to untrusted data before
the application of HTMLEscape, certain XSS attacks are
not prevented [32]. The opposite ordering does prevent
these attacks. BEK can check if a pair of sanitizers are
commutative, which would mean the programmer does
not need to worry about this class of bugs.

Idempotence: BEK can check if applying the sanitizer
twice yields different behavior from a single application.
For example, an extra JavaScript string encoding may
break the intended rendering behavior in the browser.

2.2.2 Sanitizer Implementation Correctness

Hand-coded sanitizers are notoriously difficult to write
correctly. Analyses provided by BEK help achieve cor-
rectness in three ways.

Comparing multiple sanitizer implementations: Mul-
tiple implementations of the same sanitization function-
ality can differ in subtle ways [9]. BEK can check
whether two different programs written in the BEK lan-
guage are equivalent. If they are not, BEK exhibits inputs
that yield different behaviors.

Comparing sanitizers to browser filters: Internet Ex-
plorer 8 and 9, Google Chrome, Safari, and Firefox em-
ploy built-in XSS filters (or have extensions [3]) that ob-
serve HTTP requests and responses [1,2] for attacks.
These filters are most commonly specified as regular
expressions, which we can model with BEK. We can
then check for inputs that are disallowed by browser fil-
ters, but which are allowed by sanitizers. For example,
BEK can determine that the AntiXSS implementation of
the EncodeHTML sanitizer in Figure 2 does not block

Bool Variables b,...
Char Variables c
String Variables ¢

Bool Constants B € {t, f}
Char Constants d € ¥

Strings sexpr = iter(cin sexpr) {init} {case™}
| fromLast(ccond, sexpr)
| uptoLast(ccond, sexpr) |t
init = (b := B)*
case ::= case(bexpr) {cstmt}| endcase
endcase ::= end(ebexpr){yield(d)*}
cstmt := (b := ebexpr; | yield(cexpr);)™
Booleans bexpr ::= Boolcomb(bexpr) |B | b | ccond
ebexpr ::= Boolcomb(ebexpr) |B | b
ccond ::= Boolcomb(ccond) |cexpr = cexpr
| cexpr < cexpr | cexpr > cexpr
Char strings cexpr ::= c | d | built-in-fnc(c) | cexpr + cexpr

Figure 4: Concrete syntax for BEK. Well-formed BEK
expressions are functions of type string — string;
the language provides basic constructs to filter and trans-
form the single input string ¢. Boolcomb(e) stands for
Boolean combination of e using conjunction, disjunc-
tion, and negation.

strings such as javascript&#58; which are prevented by
IE 8 XSS filters. These differences indicate potential
bugs in the sanitizer or the filter.

Checking against public attack sets: Several pub-
lic XSS attack sets are available, such as XSS cheat
sheet [5]. With BEK, for all sanitizers, for all attack vec-
tors in an attack set, we can check if there exists an input
to the sanitizer that yields the attack vector.

3 The BEK Language and Transducers

In this section, we give a high-level description of a
small imperative language, BEK, of low-level string op-
erations. Our goal is two-fold. First, it should be possible
to model BEK expressions in a way that allows for their
analysis using existing constraint solvers. Second, we
want BEK to be sufficiently expressive to closely model
real-world code (such as Example 2). In this section
we first present the BEK language. We then define the
semantics of BEK programs in terms of symbolic finite
transducers (SFTs), an extension of classical finite state
transducers. Finally, we describe several core decision
procedures for SFTs that provide an algorithmic founda-
tion for efficient static analysis

and verification of BEK programs.

3.1 The BEK Language

Figure 4 describes the language syntax. We define a sin-
gle string variable, ¢, to represent an input string, and
a number of expressions that can take either ¢ or an-
other expression as their input. The uptoLast(p, t) and
fromLast(yp,t) are built-in search operations that ex-
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tract the prefix (suffix) of ¢ upto (from) and excluding
the last occurrence of a character satisfying ¢. These
constructs are listed separately because they cannot be
implemented using other language features. Finally, the
iter construct allows for character-by-character iteration
over a string expression.

Example 3. uptoLast(c = ‘.”,"w.abc.org")
= "www.abc", fromLast(c = ‘.’ "w.abc.org")
="org". X

The iter construct is designed to model loops that tra-
verse strings while making imperative updates to boolean
variables. Given a string expression (sexpr), a char-
acter variable ¢, and an initial boolean state (init), the
statement iterates over characters in sexpr and evaluates
the conditions of the case statements in order. When a
condition evaluates to true, the statements in cstmt may
yield zero or more characters to the output and update the
boolean variables for future iterations. The endcase ap-
plies when the end of the input string has been reached.
When no case applies, this correspond to yielding zero
characters and the iteration continues or the loop termi-
nates if the end of the input has been reached.

3.2 Finite Transducers

We start with the classical definition of finite state trans-
ducers. The particular sublass of finite transducers that
we are considering here are also called generalized se-
quential machines or GSMs [29], however, this defini-
tion is not standardized in the literature, and we there-
fore continue to say finite transducers for this restricted
case. The restriction is that, GSMs read one symbol at
each transition, while a more general definition allows
transitions that skip inputs.

Definition 1. A Finite Transducer A is defined as a six-
tuple (@, ¢°, F, 3, T, A), where @ is a finite set of states,
q° € Qis the initial state, F C @ is the set of final states,
3 is the input alphabet, T is the output alphabet, and A
is the transition function from Q x ¥ to 29*1""

We indicate a component of a finite transducer A by
using A as a subscript. For (¢,v) € A4(p,a) we define

the notation p ﬂm q, where p,q € Qa, a € X4 and

v € I'y. We write p a—/v> q when A is clear from the
context. Given words v and w we let v - w denote the
concatenation of v and w. Note thatv - € = € - v = v.
. ai/v; ) . w/v

Given ¢; —> 4 g;41 for ¢ < n we write g9 —>4 qp,
where u = ag-ay-...-ap—1andv = vg-v1-. .. Vy—1. We
write also ¢ 6—/€> A q. A induces the finite transduction,
Ty %% — 20

def

Ta(u) £ {v]3q € Fa (g} 53 )}

We lift the definition to sets, Ta(U) = U,y T(w).
Given two finite transductions 77 and 75, T o 15 de-
notes the finite transduction that maps an input word u to
the set T5(77 (u)). In the following let A and B be finite
transducers. A fundamental composition of A and B is
the join composition of A and B.

Definition 2. The join of A and B is the finite transducer

AoB = (QaxQp,(¢%,q%). FaxFp,Y4.T5, Asop)
where, for all (p,q) € Qa x Qpanda € ¥ 4:

def

ale
{0 q),€)|p—ap'}
U{((p,d),v) | GueTd)
P o 7, q 2 q'}

AAoB ((p7 q)v Cl)

The following property is well-known and allows us
to drop the distinction between A and T'4
without causing ambiguity.

Proposition 1. T'yop = T4 0o T5.

The following classification of finite transducers plays a
central role in the sections discussing translation from
BEK and decision procedures for

symbolic finite transducers.

Definition 3. A is single-valued if for all v € X%,
[A(u)] < 1.

3.3 Symbolic Finite Transducers

Symbolic finite transducers, as defined below, provide a
symbolic representation of finite transducers using terms
modulo a given background theory 7. The background
universe V of values is assumed to be multi-sorted, where
each sort o corresponds to a sub-universe V. The
boolean sort is BOOL and contains the truth values t
(true) and f (false). Definition of terms and formulas
(boolean terms) is standard inductive definition, using
the function symbols and predicate symbols of 7T, log-
ical connectives, as well as uninterpreted constants with
given sorts. All terms are assumed to be well-sorted. A
term ¢ of sort o is indicated by ¢ : 0. Givenaterm ¢ and a
substitution 6 from variables (or uninterpreted constants)
to terms or values, Subst(t, ) denotes the term resulting
from applying the substitution 6 to ¢.

A model is a mapping of uninterpreted constants to
values.® A model for a term ¢ is a model that provides
an interpretation for all uninterpreted constants that oc-
cur in t. (All free variables are treated as uninterpreted
constants.) The interpretation or value of a term t in a

3The interpretations of background functions of 7 is fixed and is
assumed to be an implicit part of all models.
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model M for ¢ is given by standard Tarski semantics us-
ing induction over the structure of terms, and is denoted
by tM. A formula (predicate) ¢ is true in a model M
for ¢, denoted by M = ¢, if oM evaluates to true. A
formula ¢ is satisfiable, denoted by IsSat(p), if there
exists a model M such that M | . Any term ¢:0 that
includes no uninterpreted constants is called a value term
and denotes a concrete value [t] € V7.

Let Term1-(Z) denote the set of all terms in 7 of sort
v, where * = x,...,x,—1 may occur as the only un-
interpreted constants (variables). Let Preds(Z) denote
Term5°°"(z). In order to avoid ambiguities in notation,
given a set E of elements, we write [e, ..., e,—1] for
elements of E*, i.e., sequences of elements from E. We
use both [] and e to denote the empty sequence. As above,
if e1,es € E*, then e; - e € E* denotes the con-
catenation of e; with ea. We lift the interpretation of

terms to apply to sequences: for u = [ug, ..., un—1] €
Term)-(z)* letuM = [ud!, ... ul ] € (V)"

In the following let c:o be a fixed uninterpreted con-
stant of sort 0. We refer to c:o as the input variable (for
the given sort o).

Definition 4. A Symbolic Finite Transducer (SFT) for T
is a six-tuple (Q, ¢°, F, 0,7, §), where Q is a finite set of
states, ¢° € @ is the initial state, F C ( is the set of
final states, o is the input sort, y is the output sort, and

d is the symbolic transition function from Q) x Pred(c)
to 2@x Term7-(c)* .

We use the notation p W—/L;A q for (g,u) € da(p,¥)

and call p th) A q a symbolic transition, ¢/u is called

its label, ¢ is called its input (guard) and u its output.
An SFT A = (Q,q", F,0,7,8) denotes the finite

transducer [A] = (Q, ¢°, F, V7, V7, A) where p a—/v>[[A]]

q if and only if there exists p w—/u> 4 q and a model M
such that M = ¢, cM = a, uM = .

For an STF A let the underlying transduction T4 be
Tya). For astate ¢ € Qa let T (v) (TqA]] (v)) denote
the set of outputs when starting from ¢ with input v. In
particular, if ¢ = ¢% then To = T3 and Tja) = TgA%l'
The following proposition follows directly from the det-
inition of [A].

Proposition 2. For v € X, and q € Qa: T(v) =
T[EZA]](”)'

Example 4. The identity SFT Id (for sort o) is defined

follows. Id = ({q},q,{q},0,0,{q 4/l q}). Thus, for

alla € V7, ¢ ﬂ[[[dﬂ g, and [Id](v) = {v} for all
ve (VI)*. X

Example 5. Assume o is the sort for characters. The
predicate ¢ = ‘.’ says that the input character is a dot.

(e#".))/1e] (e"./1

%)/n

(t)/[e]

Figure 5: Symbolic finite state transducer for
uptoLast(c=".", input). This transducer is non-
deterministic; there are two transitions that match ‘.’
from state qq.

The SFT UptoLastDot such that for all strings v,
UptoLastDot(v) = uptoLast(c = *." ,v),

where uptoLast is the BEK function introduced above,
is shown in Figure 5. X

Composition works directly with SFTs, and keeps the
resulting SFT clean in the sense that all symbolic transi-
tions are feasible, and eliminates states that are unreach-
able from the initial state as well as non-initial states
that are not backwards reachable from any final state. In
order to preserve feasibility of transitions the algorithm
uses a solver for checking satisfiability of formulas in
Predr(c).

3.4 BEK to SFT translation

The basic sort needed in this section, besides BOOL, is
a sort CHAR for characters. We also assume the back-
ground relation < : CHAR X CHAR — BOOL as a strict
total order corresponding to the standard lexicographic
order over ASCII (or Unicode) characters and assume >,
< and > to be defined accordingly. We also assume that
each individual character has a built-in constant such as
‘a’ :CHAR. For example,

(A <eAhe<Z)V(ta’ <che< Mz )V
(\Or SC/\CS ‘9')\/62 A

descibes the regex character class \w of all word char-
acters in ASCII. (Direct use of regex character classes
in BEK, such as case(\w) {...}, is supported in the en-
hanced syntax supported in the BEK analyzer tool.)
Each sexpr e is translated into an SFT SFT(e).
For the string variable ¢, SFT(e) = Id, with Id
as in Example 4. The translation of uptoLast(y,e)
is the symbolic composition STF(e) o B where B
is an SFT similar to the one in Example 5, except
that the condition ¢ = ‘.’ is replaced by ¢. The
translation of fromLast(p,e) is analogous. Finally,
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SFT(iter(c in e) {init} {case*}) = SFT(e) o B
where B = (Q, ¢, Q, CHAR, CHAR, d) is
constructed as follows:

Step 1: Normalize. Transform case* so that case con-
ditions are mutually exclusive by adding the nega-
tions of previous case conditions as conjuncts to all
the subsequent case conditions, and ensure that each
boolean variable has exactly one assignment in each
cstmt (add the trivial assignment b := b
if b is not assigned).

Step 2: Compute states. Compute the set of states Q.
Let ¢" be an initial state as the truth assignment to
boolean variables declared in init.* Compute the
set () of all reachable states, by using DFS, such
that, given a reached state ¢, if there exists a case
case(p) {cstmt} such that Subst(yp,q) is satisfi-
able then add the state

{b+ [Subst(v,q)] | b:= ¢ € estmt} (1)

to Q. (Note that Subst(1), q) is a value term.)

Step 3: Compute transitions. Compute the symbolic
transition function 4. For each state ¢ € () and
for each case case(p) {cstmt} such that ¢ =
Subst(p, q) is satisfiable. Let p be the state com-
puted in (1). Let yield(ug),...,yield(u,—1) be
the sequence of yields in cstmt and let u =
[wo, ..., Up—1]. Add the symbolic

transition ¢ ¢—/u> ptod.

The translation of end-cases is similar, resulting in sym-
bolic transitions with guard ¢ = L, where L is a spe-
cial character used to indicate end-of-string. We assume
1 to be least with respect to <. For example, assum-
ing that the BEK programs use concrete ASCII charac-
ters, L :CHAR is either an additional character, or the null
character \o’ if only null-terminated strings are consid-
ered as valid input strings. Although practically impor-
tant, end-cases do not cause algorithmic complications,
and for the sake of clarity we avoid them

in further discussion.

The algorithm uses a solver to check satisfiability of
guard formulas. If checking satisfiability of a formula for
example times out, then it is safe to assume satisfiabil-
ity and to include the corresponding symbolic transition.
This will potentially add infeasible guards but retains the
correctness of the resulting SFT, meaning that the under-
lying finite transduction is unchanged. While in most
cases checking satisfiability of guards seems straight-
forward, but when considering Unicode, this perception
is deceptive. As an example, the regex character class

4Note that ¢° is the empty assignment if init is empty, which trivi-
alizes this step.

/// /7 ’ /\ })/[C
(c— \' )/[c

t)/[c
(e (""" D/

Figure 6: SFT for BEK program in Example 1. This
SFT escapes single and double quotes with a backslash,
except if the current symbol is already escaped. The ap-
plication of this SFT is idempotent.

[\w-[\D1] denotes an empty set since \d is a subset of
\w and \w (\D) is the complement of \w (\d), and thus,
[\w-[\D1] is the intersection of \w and \d. Just the charac-
ter class \w alone contains 323 non-overlapping ranges in
Unicode, totaling 47,057 characters. A naive algorithm
for checking satisfiability (non-emptiness) of [\w-[\D1]
may easily time out.

Consider the BEK program in Example 1. The cor-
responding SFT constructed by the above translation is
shown in Figure 6. There are two symbolic transitions
from state qq to itself. The first corresponds to the cases
where the input character ¢ needs to be escaped, and the
second to cases where the input does not
need to be escaped.

3.5 Join Composition and Equivalence

We now give an informal description of our core algo-
rithms for reasoning about SFTs: join composition and
equivalence. We then show how these algorithms can be
used to check properties such as idempotence, existence
of an input yielding a target string, and commutativity.

The join composition A o B corresponds to a program
transformation that constructs a single loop over the in-
put string out of two consecutive loops in SFTs A and B.
The join composition algorithm constructs an SFT Ao B
such that 1] 40 p) = T]aj©Tp]- The intuition behind the
construction is that the outputs produced by A are sub-
stituted symbolically in as the inputs consumed by the
B. The composition algorithm proceeds by depth-first
search, first computing Q 4. as constructed as a reach-
able subset of Q4 x Qp, starting from (¢%,¢%). Here
we use the SMT solver to determine reachability, calling
the solver as a black box to determine if a path from one
state to another is feasible or not. This makes our con-
struction independent of the particular background the-
ory. In general, this is not true for other recent exten-
sions of finite transducers such as streaming transduc-
ers [6], where compositionality depends on properties of
the background theory that is being used.
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Two SFTs A and B are equivalent if Ty = Tg. Let
Dom(A) = {v | Ta(v) # 0}.

Checking equivalence of A and B reduces to two sepa-
rate tasks:

1. Deciding domain-equivalence: ~ Dom(A) =
Dom(B).

2. Deciding partial-equivalence:  for all v €
Dom(A) N Dom(B), Ta(v) = Tp(v).

Note that 1 and 2 are independent and do not imply
each other, but together they imply equivalence. Do-
main equivalence holds for all SFTs constructed by BEK,
because all programs share the same domain, namely
that of strings. Checking partial equivalence is more in-
volved. We leverage the fact that all SFTs we construct
are single-valued. Our equivalence algorithm first com-
putes the join composition of A and B, then uses the
SMT solver to search for inputs that cause A to differ
from B. We have a nonconstructive proof of termina-
tion for this algorithm: it establishes that if A and B
are equivalent, then the search must terminate in time
quadratic in the number of states of the composed au-
tomata. In practice, the SMT solver carries out this
search, and our results in Section 4 show scaling is closer
to linear in practice.

Equivalence and join composition allow us to carry out
a variety of other analyses. Idempotence of an SFT A
can be first checked by computing B = A o A, then
checking the equivalence of A and B. If the two SFTs are
not equivalent, then A fails to be idempotent. Similarly,
commutativity of two SFTs A and B can be determined
by computing C' = Ao B and D = Bo A, then checking
equivalence. The idea is illustrated in Figure 7. We can
also compute the inverse image of a SFT with respect to a
string s, which lets us find out the set of inputs to the SFT
that yield s as an output. We use all of these analyses to
check sanitizers for security
properties in the next section.

AeA
A A
3 “input string” E_, , A"°: .
idempoten
A
BeA

B A
P g AeB commutative
A B

Figure 7: Using composition and equivalence of SFTs
to decide idempotence and commutativity.

Our approach has an advantage over traditional finite
transducers (FTs), due to succinctness of SFTs. Suppose
for example that the background character theory 7 is k-
bit bit vector arithmetic where k depends on the desired
character range (e.g., for Unicode, £ = 16). An explicit
expansion of a BEK SFT A to [A] may increase the size
(nr of transitions) by a factor of 2. Partial-equivalence
of single-valued FTs is solvable O(n?) [15] time. Thus,
for an SFT A of size n, using the partial-equivalence al-
gorithm for [A] takes O((2¥n)?) time. In contrast, the
partial-equivalence algorithm for BEK SFTs is O(n?).
When the background theory is linear arithmetic, then
the alphabet is infinite and a correspoding FT algorithm
is therefore not even possible.

4 Evaluation

In the following subsections, we evaluate the real-world
applicability of BEK in terms of expressivess,
utility, and performance:

e Section 4.1 evaluates whether BEK can model ex-
isting real-world code. We conduct an emperical
study of a large body of code to see how widely-
used BEK-modelable sanitizer functions are (Sec-
tion 4.1.1), and we evaluate which BEK features
are needed to model sanitizers from AutoEscape,
OWASP, and Internet Explorer 8 (Section 4.1.2).

e We put BEK to work to check existing sanitizers for
idempotence, commutativity, and reversibility (Sec-
tion 4.2).

e We perform pair-wise equivalence checks on a num-
ber of ported HTMLEncode implementations, as well
as two outsourced implementations (Section 4.3).

o We evaluate effectiveness of existing HTMLEncode
implementations against known attack strings taken
from the Cross-site Scripting Cheat Sheet (Sec-
tion 4.4).

e We use a synthetic benchmark to evaluate the scal-
ability of performing equivalence checks on BEK
programs (Section 4.5).

e We provide a short example to highlight the fact
that BEK programs can be readily translated to other
programming languages (Section 4.6).

These experiments are based on an implementation that
consists of roughly 5,000 lines of C# code that imple-
ments the basic transducer algorithms and Z3 [14] inte-
gration, with another 1,000 lines of F# code for transla-
tion from BEK to transducers. Our experiments were car-
ried out on a Lenovo ThinkPad W500 laptop with 8 GB
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of RAM and an Intel Core 2 Duo P9600 processor run-
ning at 2.67 GHz, running 64-bit Windows 7.

4.1 Expressive Utility

Thus far, we discussed the expressiveness of BEK pri-
marily in theoretical terms. In this subsection, we turn
our attention to real-world applicability instead, through
a case study that aims to demonstrate that a wide variety
of commonly used sanitizers can be ported to

BEK with relative ease.

4.1.1 Frequency of Sanitizer use in PHP code.

PHP is a widely-used open source server-side scripting
language. Minamide’s seminal work on the static anal-
ysis of dynamic web applications [26] includes finite-
transducer based models for a subset of PHP’s sanitizer
functions. These transducers are hand-crafted in several
thousand lines of OCaml. We conducted an informal re-
view of the PHP source to confirm that each transducer
could be modeled as a BEK program.

Our goal is to perform a high-level quantitative com-
parison of the applicability of BEK, on the one hand,
and existing string constraint solvers (e.g., DPRLE [17],
Hampi [20], Kaluza [30], and Rex [35]) on the other. For
this comparison, we assume that each Minamide trans-
ducer could instead be modeled as a BEK program. We
then use statistics from a study by Hooimeijer [16] that
measured the relative frequency, by static count, of 111
distinct PHP string library functions. The Hooimeijer
study was conducted in December 2009, and covers the
top 100 projects on SourceForge.net, or about 9.6 mil-
lion lines of PHP code. The study considered most, but
not all, sanitizers provided by Minamide.

Out of the 111 distinct functions considered in the
Hooimeijer study, 27 were modeled as transducers by
Minamide and thus encodable in BEK. In the sam-
pled PHP code, these 27 functions account for 68, 238
out of 251,317 uses, or about 27% of all string-related
call sites. By comparison, traditional regular expression
functions modeled by tools like Hampi [20] and Rex [35]
account for just 29,141 call sites, or about 12%. We note
that BEK could be readily integrated into an automaton-
based tool like Rex, however, and our features are largely
complimentary to those of traditional string constraint
solvers. These results suggest that BEK provides a signif-
icant improvement in the “coverage” of real-world code
by string analysis tools.

4.1.2 Language Features

For the remainder of the experiments, we use a small
dataset of ported-to-BEK sanitizers. We now discuss
that dataset and the manual conversion effort required.

The results are summarized in Figure 8, and described in
more detail below.

Google AutoEscape and OWASP. We converted san-
itizers from the OWASP sanitizer library to BEK pro-
grams. We also evaluated sanitizers from the Google
AutoEscape framework to determine what language fea-
tures they would need to be expressed in BEK. These
sanitizers are marked with prefixes GA and OWASP, re-
spectively, in Figure 8. We verified that each of these
sanitizers can be implemented in BEK. In several cases,
we find additional non—native features that could be
added to BEK to support these sanitizers.

Internet Explorer. In addition, we extracted sanitizers
from the binary of Internet Explorer 8 that are used
in the IE Cross-Site Scripting Filter feature, denoted
IEFilterl to IEFilter17 in Figure 8. For this study,
we analyze the behavior of the IE 8 sanitizers under
the assumption the server performs no sanitization of
its own on user data. Of these 21 sanitizers, we could
convert 17 directly into BEK programs. The remaining 4
sanitizers track a potentially unbounded list of characters
that are either emitted unaltered or escaped, depending
on the result of a regular expression match. BEK does
not enable storing strings of input characters.

The manual translation took several hours per sani-
tizer. Figure 8 breaks down our BEK programs based on
“Native” features of the BEK language, and “Not Native”
features which are not currently in the BEK language.
Many of these features can be integrated modeled using
transducers, however, by enhancing the language of con-
straints used for symbolic labels. In addition, with the
exception of 4 Internet Explorer sanitizers, we found that
a maximum lookahead window of eight characters would
suffice for handling all our sanitizers. Finally, we discov-
ered that the arithmetic on characters was limited to right
shifts and linear arithmetic, which can be expressed in
the Z3 solver we use.

We note that all “Not Native” features could be added
to the BEK language with few or no changes to the under-
lying SFT algorithms for join composition and equiva-
lence checking: only the front end would need to change.

4.1.3 Browser Code

Ideally, we could use BEK to model the parser of an ac-
tual web browser. Then, we could use our analyses to
check whether there exists a string that passes through a
given sanitizer yet causes javascript execution. We per-
formed a preliminary exploration of the WebKit browser
to determine how difficult it would be to write such
a model with BEK. Unfortunately, we found multiple
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Figure 8: Expressiveness: different language features
used by the original corpus of different programs. A
cross means that the feature was not used by the pro-
gram in its initial implementation. A checkmark means
the feature was used by the program. boolean variables,
multiple iterations over a string, and regular expressions
are native constructs in BEK. Multiple lookahead, arith-
metic, and functions are not native to BEK and must be
emulated during the translation. We also show the dis-
tinct boolean variables used by the BEK implementation.

functions that require features, such as bounded looka-
head and transducer composition, which are not yet sup-
ported by the BEK language.

For example, we considered a function in the Safari
implementation of WebKit that performs Javascript de-
coding [7]. This function requires at a minimum the use
of functions to connect hexadecimal to ASCII, a looka-
head of 5 characters, function composition, and scan-
ning for occurrences of a target character. While as
noted above we believe these features could be added
to BEK without fundamentally changing the underlying
algorithms for symbolic transducers, the BEK language
does not yet support them.

4.2 Checking Algebraic Properties

We argued in Section 2 that idempotence and commuta-
tivity are key properties for sanitizers. In addition, the
property of reversibility, that from the output of a sani-
tizer we can unambiguously recover the input, is impor-
tant as an aid to debugging.

4.2.1 Order Independence

We now evaluate whether 17 sanitizers used in IE 8 are
order independent. Order independence means that the
sanitizers have the same effect no matter in what order
they are applied. If the order does matter, then the choice
of order can yield surprising results. As an example, in
rule-based firewalls, a set of rules that are not order in-
dependent may result in a rule never being applied, even
though the administrator of the firewall believes the rule
is in use.

Each IE 8 sanitizer defines a specific input set on
which it will transform strings, which we can compute
from the BEK model. We began by checking all 136 pairs
of IE 8 sanitizers to determine whether their input sets
were disjoint. Only one pair of sanitizers showed a non-
trivial intersection in their input sets. A non-trivial in-
tersection signals a potential order dependence, because
the two sanitizers will transform the same strings. For
this pair, we used BEK to check that the two sanitizers
output the same language, when restricted to inputs from
their intersection. BEK determined that the transforma-
tion of the two sanitizers on thesel inputs was exactly the
same — i.e., the two sanitizers were equivalent on the
intersection set. We conclude that the IE 8 sanitizers are
in fact order independent, up to errors in our extraction
of the sanitizers and our assumption that no server-side
modification is present.

4.2.2 Idempotence and Reversibility

We now examine the idempotence of several BEK pro-
grams, including the IE 8 sanitizers. Figure 9 reports
the results. The number of states in the symbolic finite
transducer created from each BEK program. For each
transducer, we then report whether it is idempotent and
whether it is reversible. This shows the number of states
acts as a rough guide to the complexity of the sanitizer.
For example, we see that IE filter 9 out of 17 is quite
complicated, with 25 states.

4.2.3 Commutativity

We investigated commutativity of seven different imple-
mentations of HTMLEncode, a sanitizer commonly used
by web applications. Four implementations were gath-
ered from internal sources. Three were created for our
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Name States Idempotent? Reversible?
a2bb2a 1 X v
escapeBrackets 1 v X
escapeMetaAndLink 1 v v
escapeString0 1 X X
escapeString 1 X X
escapeStringSimple 1 X X
getFileExtension 2 X X
IEFilterl 6 v X
IEFilter2 9 v X
IEFilter3 19 v X
IEFilter4 13 v X
IEFilterb 13 v X
IEFilter6 16 v X
IEFilter7 13 v X
IEFilters8 12 v X
IEFilter9 25 v X
IEFilter10 18 v X
IEFilteril 11 v X
IEFilter12 11 v X
IEFilteri13 14 v X
IEFilteri14 14 v X
IEFilteri1b 1 v X
IEFilter16 1 v X
IEFilter17 1 v X

Figure 9: For each BEK benchmark programs, we report
the number of states in the corresponding symbolic trans-
ducer. We then report whether the transducer is idempo-
tent, and whether the transducer is reversible.

HTMLEncode1 v v v X X v X
HTMLEncode2 v v v X X v X
HTMLEncode3 v v v X X v X
HTMLEncode4 X X X v X X X
Outsourcedl X X X X v X X
Outsourced2 v v v X X v X
Outsourced3 X X X X X X v

Figure 10: Commutativity matrix for seven different im-
plementations of HTMLEncode. The Outsourced imple-
mentations were written by freelancers from a high level
English specification.

project specifically by hiring freelance programmers to
create implementations from popular outsourcing web
sites. We provided these programmers with a high
level specification in English that emphasized protection
against cross-site scripting attacks. Figure 10 shows a
commutativity matrix for the HTMLEncode implementa-
tions. A v indicates the pair of sanitizers commute,
while a X indicates they do not. The matrix contains 12
check marks out of 42 total comparisons of distinct sani-
tizers, or 28.6%. Our implementation took less than one
minute to complete all 42 comparisons.

4.3 Differences Between Multiple Implementations

Multiple implementations of the “same” functionality are
commonly available from which to choose when writing
a web application. For example, newer versions of a li-
brary may update the behavior of a piece of code. Differ-
ent organizations may also write independent implemen-
tations of the same functionality, guided by performance

HTMLEncodel v v v 0 — v 0
HTMLEncode?2 v v v 0 — v 0
HTMLEncode3 v v v 0 - v !

HTMLEncode4 0 0 0 v 0 0 0
Outsourcedl — - - 0 v - 0
Outsourced2 v v v 0 — v 0
Outsourced3 0 0 0 0 0 v

Figure 11: Equivalence matrix for our implementations
of HTMLEncode. A v indicates the implementations are
equivalent. For implementations that are not equivalent,
we show an example character that exhibits different be-
havior in the two implementations. The symbol O refers
to the null character.

improvements or by different requirements. Given these
different implementations, the first key question is “do
all these implementations compute the same function?”
Then, if there are differences, the second key question is
“how do these implementations differ?”

As described above, because BEK programs corre-
spond to single valued symbolic finite state transduc-
ers, computing the image of regular languages under the
function defined by a BEK program is decidable. By tak-
ing the image of ¥* under two different BEK programs,
we can determine whether they output the
same set of strings.

We checked equivalence of seven different implemen-
tations in C# (as explained above) of the HTMLEncode
sanitization function. We translated all seven implemen-
tations to BEK programs by hand. First, we discovered
that all seven implementations had only one state when
transformed to a symbolic finite transducer. We then
found that all seven are neither reversible nor idempotent.
For example, the ampersand character & is expanded to
&amp; by all seven implementations. This in turn con-
tains an ampersand that will be re-expanded on future
applications of the sanitizer, violating idempotence.

For each BEK program, we checked whether it was
equivalent to the other HTMLEncode implementations.
Figure 11 shows the results. For cases where the
two implementations are not equivalent, BEK derived
a counterexample string that is treated differently by
the two implementations. For example, we discov-
ered that Outsourcedl escapes the — character, while
Outsourced2 does not. We also found that one of the
HTMLEncode implementations does not encode the sin-
gle quote character. Because the single quote charac-
ter can close HTML contexts, failure to encode it could
cause unexpected behavior for a web developer who uses
this implementation. For example, a recent attack on the
Google Analytics dashboard was enabled by failure to
sanitize a single quote [33].

This case study shows the benefit of automatic analy-
sis of string manipulating functions to check equivalence.
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HTML Attribute
Implementation context context
HTMLEncode1l 100% 93.5%
HTMLEncode?2 100% 93.5%
HTMLEncode3 100% 93.5%
HTMLEncode4 100% 100%
Qutsourcedl 100% 93.5%
Outsourced?2 100% 93.5%
Outsourced3 100% 93.5%

Figure 12: Percentage of XSS Cheat Sheet strings, in
both HTML tag context and tag attribute contexts, that
are ruled out by each implementation of HTMLEncode.

Without BEK, obtaining this information using manual
inspection would be difficult, error prone, and time con-
suming. With BEK, we spent roughly 3 days total trans-
lating from C# to BEK programs. Then BEK was able
to compute the contents of Figure 11 in less than one
minute, including all equivalence

and containment checks.

4.4 Checking Filters Against The Cheat Sheet

The Cross-Site Scripting Cheat Sheet (“XSS Cheat
Sheet”) is a regularly updated set of strings that trigger
JavaScript execution on commonly used web browsers.
These strings are specially crafted to cause popular web
browsers to execute JavaScript, while evading common
sanitization functions. Once we have translated a sani-
tizer to a program in BEK, because BEK uses symbolic
finite state transducers, we can take a “target” string and
determine whether there exists a string that when fed to
the sanitizer results in the target. In other words, we
can check whether a string on the Cheat Sheet has a pre-
image under the function defined by a BEK program.
We sampled 28 strings from the Cheat Sheet. The
Cheat Sheet shows snippets of HTML, but in practice a
sanitizer might be run only on a substring of the snip-
pet. We focused on the case where a sanitizer is run
on the HTML Attribute field, extracting sub-strings from
the Cheat Sheet examples that correspond to the attribute
parsing context. While HTMLEncode should not be used
for sanitizing data that will become part of a URL at-
tribute, in practice programmers may accidentally use
HTMLEncode in this “incorrect” context. We also added
some strings specifically to check the handling of HTML
attribute parsing by our sanitizers. As a result, we ob-
tained two sets of attack strings: HTML and Attribute.
For each of our implementations, for all strings in
each set, we then asked BEK whether pre-images of that
string exist. Figure 12 shows what percentage of strings
have no pre-image under each implementation. All seven
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Figure 13: Self-equivalence experiment.

implementations correctly escape angle brackets, so no
string in the HTML set has a pre-image under any of the
sanitizers. In the case of the Attribute strings, however,
we found that some of the implementations do not escape
the string“&#”, potentially yielding an attack. Only one
of our implementations of HTMLEncode made it impos-
sible for all of the strings in the Attribute set from ap-
pearing in its output. Each set of strings took between 36
and 39 seconds for BEK to check the entire set of strings
against a sanitizer.

4.5 Scalability of Equivalence Checking

Our theoretical analysis suggests that the speed of
queries to BEK should scale quadratically in the number
of states of the symbolic finite transducer. All sanitiz-
ers we have found in “the wild,” however, have a small
number of states. While this makes answering queries
about the sanitizers fast, it does not shed light on the em-
pirical performance of BEK as the number of states in-
creases. To address this, we performed two experiments
with synthetically generated symbolic finite transducers.
These transducers were specially created to exhibit some
of the structure observed in real sanitizers, yet have many
more states than observed in

practical sanitizer implementations.

Self-equivalence experiment. We generated symbolic
finite transducers A from randomly generated BEK pro-
grams having structure similar to typical sanitizers. The
time to check equivalence of A with itself is shown in
Figure 13 where the size is the number of states plus
the number of transitions in A. Although the worst case
complexity is quadratic, the actual observed complexity,
for a sample size of 1,000, is linear.

Commutativity experiment. We generated symbolic
finite transducers from randomly generated BEK pro-
grams having structure similar to typical santizers. For
each symbolic finite transducer A, we checked commu-
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Figure 14: Commutativity experiment.

tativity with a small BEK program UpToLastDot that re-
turns a string up to the last dot character. The time to
determine that A o UpToLastDot and UpToLastDot o A
are equivalent is shown in Figure 14 where the size is the
total number of states plus the number of transitions in
A. The time to check non-equivalence was in most cases
only a few milliseconds, thus all experiments exclude the
data where the result is not equivalent, and only include
cases where the result is equivalent. Although the worst
case complexity is quadratic, the actual observed com-
plexity, over a sample size of 1,000

individual cases, was near-linear.

4.6 From BEK to Other Languages

We have built compilers from BEK programs to com-
monly used languages. When the time comes for deploy-
ment, the developer can compile to the language of her
choice for inclusion into an application.

Figure 15 shows a small example of a BEK program
and the result of its JavaScript compilation. As part of
the compilation, we have taken advantage of our knowl-
edge of properties of JavaScript to improve the speed of
the compiled code. For example, we push characters into
arrays instead of creating new string objects. The result
is standard JavaScript code that can be easily included in
any web application. By adding additional compilers for
common languages, such as C#, we can give a developer
multiple implementations of a sanitizer that are guaran-
teed to be equivalent for use in different contexts.

5 Related Work

SANER combines dynamic and static analysis to validate
sanitization functions in web applications [9]. SANER
creates finite state transducers for an over-approximation
of the strings accepted by the sanitizer using static anal-
ysis of existing PHP code. In contrast, our work focuses
on a simple language that is expressive enough to capture
existing sanitizers or write new ones by hand, but then

compile to symbolic finite state transducers that precisely
capture the sanitization function. SANER also treats the
issue of inputs that may be tainted by an adversary, which
is not in scope for our work. Our work also focuses on ef-
ficient ways to compose sanitizers and combine the the-
ory of finite state transducers with SMT solvers, which
is not treated by SANER.

Minamide constructs a string analyzer for PHP code,
then uses this string analyzer to obtain context free gram-
mars that are over-approximations of the HTML output
by a server [26]. He shows how these grammars can
be used to find pages with invalid HTML. The method
proposed in [21] can also be applied to string analysis
by modeling regular string analysis problems as higher-
order multi-parameter tree transducers (HMTTs) where
strings are represented as linear trees. While HMTTs al-

// orginal Bek program
program testO(t);

string s;

s := iter(c in t)

{b := false;} {

case ((c == ’a’)): i

b := 1 (b) && b;
b :=b || b;
b := 1(b);
yield (c);

case (true)
yield (°$°);

};

//

// JavaScript translation

//

function testO(t) {
function ($){
var result = new Array();
for(i=0;i<$.length; i++){
var ¢ = $[i];
if ((c == String.fromCharCode(97))) {

var s =

b= (1(b) && b);
b= ( |l b);
b= 1(b);
result.push(c);
}
if (2 {
result.push(String.fromCharCode(36)) ;
}
};
return result.join(’’);
}
return s(t);

}

Figure 15: A small example BEK program (top) and its
compiled version in JavaScript (bottom). Note the use of
result.push instead of explicit array assignment.

14

20th USENIX Security Symposium

USENIX Association



low encodings of finite transducers, arbitrary background
character theories are not directly expressibly in order to
encode SFTs. Our work treats issues of composition and
state explosion for finite state transducers by leveraging
recent progress in SMT solvers, which aids us in reason-
ing precisely about the transducers created by transfor-
mation of BEK programs and by avoiding state space ex-
plosion and bitblasting for large character domains such
as Unicode. Moreover, SMT solvers provide a method
of extracting concrete counterexamples.

Wasserman and Su also perform static analysis of
PHP code to construct a grammar capturing an over-
approximation of string values. Their application is to
SQL injection attacks, while our framework allows us to
ask questions about any sanitizer [36]. Follow-on work
combines this work with dynamic test input generation to
find attacks on full PHP web applications [37]. Dynamic
analysis of PHP code, using a combination of symbolic
and concrete execution techniques, is implemented in the
Apollo tool [8]. The work in [39] describes a layered
static analysis algorithm for detecting security vulnera-
bilities in PHP code that is also enable to handle some
dynamic features. In contrast, our focus is specifically
on sanitizers instead of on full applications; we empha-
size analysis precision over scaling to large code bases.

Christensen et al.’s Java String Analyzer is a static
analysis package for deriving finite automata that charac-
terize an over-approximation of possible values for string
variables in Java [13]. The focus of their work is on an-
alyzing legacy Java code and on speed of analysis. In
contrast, we focus on precision of the analysis and on
constructing a specific language to capture sanitizers, as
well as on the integration with SMT solvers.

Our work is complementary to previous efforts in ex-
tending SMT solvers to understand the theory of strings.
HAMPI [20] and Kaluza [31] extend the STP solver to
handle equations over strings and equations with mul-
tiple variables. Rex extends the Z3 solver to handle
regular expression constraints [35], while Hooimeijer et
al.show how to solve subset constraints on regular lan-
guages [17]. We in contrast show how to combine any
of these solvers with finite transducers whose edges can
take symbolic values in any of the theories
supported by the solver.

The work in [28] introduces the first symbolic ex-
tension of finite state transducers called a predicate-
augmented finite state transducer (pfst). A pfst has two

kinds of transitions: 1) p M) q where ¢ and 1) are char-

acter predicates or €, or 2) p i> q. In the first case

the symbolic transition corresponds to all concrete tran-

sitions p o/ q such that ¢(a) and v (b) are true, the

. . . a/a
second case corresponds to identity transitions p — ¢

for all characters a. A pfst is not expressive enough for

describing an SFT. Besides identities, it is not possible
to establish functional dependencies from input to out-
put that are needed for example to encode sanitizers such
as EncodeHtml.

A recent symbolic extension of finite transducers is
streaming transducers [6]. While the theoretical expres-
siveness of the language introduced in [6] exceeds that
of BEK, streaming transducers are restricted to charac-
ter theories that are total orders with no other operations.
Also, composition of streaming transducers requires an
explicit treatment of characters. It is an interesting future
research topic to investigate if there is an extension of
SFTs or arestriction of streaming transducers that allows
efficient symbolic analysis techniques to be applied.

6 Conclusions

Much prior work in XSS prevention assumes the correct-
ness of sanitization functions. However, practical expe-
rience shows writing correct sanitizers is far from triv-
ial. This paper presents BEK, a language and a compiler
for writing, analyzing string manipulation routines, and
converting them to general-purpose languages. Our lan-
guage is expressive enough to capture real web sanitizers
used in ASP.NET, the Internet Explorer XSS Filter, and
the Google AutoEscape framework, which we demon-
strate by porting these sanitizers to BEK.

We have shown how the analyses supported by our
tool can find security-critical bugs or check that such
bugs do not exist. To improve the end-user experience
when a bug is found, BEK produces a counter-example.
We discover that only 28.6% of our sanitizers commute,
~79.1% are idempotent, and only 8% are reversibe. We
also demonstrate that most hand-written HTMLEncode
implementations disagree on at least some inputs. Un-
like previously published techniques, BEK deals equally
well with Unicode strings without creating a state ex-
plosion. Furthermore, we show that our algorithms for
equivalence checking and composition computation are
extremely fast in practice, scaling near-linearly with the
size of the symbolic finite transducer representation.
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Abstract

We address the challenge of building secure embedded
web interfaces by proposing WebDroid: the first frame-
work specifically dedicated to this purpose. Our design
extends the Android Framework, and enables developers
to create easily secure web interfaces for their applica-
tions. To motivate our work, we perform an in-depth study
of the security of web interfaces embedded in consumer
electronics devices, uncover significant vulnerabilities in
all the devices examined, and categorize the vulnerabili-
ties. We demonstrate how our framework’s security mech-
anisms prevent embedded applications from suffering the
vulnerabilities exposed by our audit. Finally we evaluate
the efficiency of our framework in terms of performance
and security.

1 Introduction

Virtually all network-capable devices, including sim-
ple consumer electronics such as printers and photo
frames, ship with an embedded web interface for easy
configuration. The ubiquity of web interfaces can be
explained by two key factors. For end users, they are easy
to use because the interaction takes place in a familiar
environment: the web browser. For device manufacturers,
providing a web-based interface is cheaper than develop-
ing and maintaining custom software and installers.

Though web interfaces are clearly an effective solution
from a usability perspective, considerable expertise is
required to make them secure [50]. Our first security
audit of embedded web interfaces ([7]) provided the
initial impetus for our work. To underscore the impact of
these earlier results, we point out that compromising a
networked device can be used as a stepping stone towards
compromising the local network [45]. For example,
compromising a photo frame in an office building
can lead to an infection of a Web browser connecting

to the photo frame. The infection can subsequently
spread to the entire local network, and also result in
privacy breaches [8]. For instance a router web interface
can be exploited to steal remotely the WiFi WPA key
and gain access to the entire network. Mitigating the
threats posed by embedded devices, including routers,
is becoming a critical task, as pointed out repeatedly in
recent work [7, 45, 19, 27]. In the absence of a reference
framework for building embedded web interfaces
each vendor is forced to develop its own stack, which
usually leads to security problems. This work takes the
initial studies a step further and proposes a solution
that uniformly addresses all of the known sources of
vulnerabilities in embedded web applications.

We have chosen to build our reference implementation
as an Android application for several reasons. First,
Android has quickly become the premier open embedded
operating system on the market, shipping not only on
tens of millions of smart-phones every year, but also on
specialized devices such as the Nook e-book reader by
Barnes&Noble. Second, Android’s de facto bias towards
the ARM architecture makes the operating system
suitable for embedding in other consumer devices such
as cameras, photo frames, and media hubs. Third, the
security architecture adopted by Android is particularly
well-suited for embedded single-user devices as it casts
the system security question into one of effectively
isolating concurrent, possibly vulnerable applications.

Our main contribution in this paper, WebDroid [16], is
the first open-source web framework specifically designed
for building secure embedded web interfaces:

o WebDroid is designed, implemented and evaluated
based on the knowledge we gained by auditing more
than 30 web embedded devices’ web interfaces over
the two last years, and the more that 50 vulnerabili-
ties we discovered on these devices.
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e WebDroid is a novel composition of security design
principles and techniques with a simple and intuitive
configuration interface where most of the security
mechanisms are enabled by default—including lo-
cation and network address restrictions, as well as
server-side CSP and frame-busting.

e WebDroid also features application-wide authen-
tication that ensures that every embedded web
application will have a secure login and logout
mechanism which is resistant to attacks, including
brute-forcing and session hijacking.

Similar to previous work done on building secure web
servers (e.g., the OKWS server [29]), our framework
separates the core web server components from the
applications to protect against low level attacks. Unlike
previous systems however, our framework also mitigates
all of the known application-level attacks including XSS
(Cross-Site Scripting) [13], CSRF (Cross Site Request
Forgery) [50], SQL injection [50] and Clickjacking [44].

The remainder of the paper is organized as follows: in
Section 2 we briefly go through the background necessary
to understand this work. In Section 3 we present and
categorize the vulnerabilities we found during our audit
work. Section 4 develops the threat model that we address
with our system design depicted in Section 5. In Sec-
tion 6 we highlight the main defense mechanisms that are
employed in our implementation. Section 7 presents the
user interface for managing web applications. Section 9
discusses two application case studies and describes how
WebDroid security mechanisms help to mitigate vulnera-
bilities. In Section 10 we provide a summary of relevant
related work, and Section 11 concludes the paper.

2 Background

The embedded device market is growing rapidly. For
example, in the 4th quarter of 2008, 7 million digital
photo frames were sold, almost 50% more than in the 4th
quarter of 2007. Similarly, analysts forecast that by 2012,
12 million Network Attached Storage (NAS) devices
will be sold each year. At the current pace, devices with
embedded web servers will outnumber traditional web
servers in less than 2 years; Netcraft reported that there
are roughly 40 millions active web servers on the Internet
in June 2009 [35].

In order to differentiate their products from those of
their competitors, vendors are constantly adding novel
features to their products, such as BitTorrent support in
NAS devices.

As the number of features increases, a need for a
powerful management interface on the device rapidly
arises. To offer this in an intuitive, convenient, and
cost effective way, vendors have started to embed web
interfaces in their products. While the most well known
use of these web interface is to configure network
equipments such as WiFi access points and routers,
many other embedded devices include web interfaces.
For instance digital photo frames are an excellent
example of this expansion of features and need for a rich
configuration interface. Thus, it is safe to say that web
interfaces have become the norm in managing embedded
devices.

Our audit uncovered abundant examples of features
that were hastily implemented and vulnerable to web at-
tacks. For example the Flickr integration in digital photo
frames led to XSS attacks. What is especially trouble-
some is the fact that we found CSRF exploits in managed
network switches aimed for datacenter use. Attacks on
such devices could allow remote users to reboot them and
effectively DoS an entire company intranet in one step.

Samsung Photo Frame Web Configuration

Photo Frame

Frame Sertal Number: 830ec122-6347-400bedc-48a51218cbdd
Firmware Version: M-CB0BS6US-1001.1

Figure 1: The web interface embedded into a Samsung
photo frame.

Figure 1 is a screenshot of the interface embedded in
a high-end Samsung photo frame. This interface allows
the user to control the frame’s display remotely, add an
Internet photo feed to be displayed on the frame, and
to find out various statistics. Although at first sight this
interface looks perfectly designed, we found out that in
reality it is completely flawed: for example, it is possible
to bypass the authentication process to view photos and
it is possible to inject an exploit via a CSRF and XSS
vulnerability that allows to extract photos and send them
to a remote server.
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3 Embedded Web Application Security:
State of the Art

Over the last two years we audited the web interfaces
for more than 30 embedded devices. In this section we
report our audit results and discuss the insights we gained
from them. These results and insights are later used to
justify and guide the design of our framework security
features. Note that although we discussed some of the
vulnerabilities we found in a previous publication [8], this
is the first time that the complete audit results are reported
and discussed.

3.1 Audit coverage

The eight categories of devices we tested are: lights-out
management (LOM) interfaces (these typically allow the
administrator to power cycle a PC or control network ac-
cess, bypassing the OS), NAS (used for shared storage
accessible via Ethernet), photo frames (we focused on
“smart” frames with network connectivity), routers/access
points (probably the most familiar browser-managed class
of consumer device), IP cameras (with video feeds that
can be accessed over the network), IP phones (especially
those with a web-based management interface), switches
(“managed switches” that expose some configuration op-
tions), and printers (the larger ones usually have a HTTP-
based interface used to configure a variety of functions,
including access via e-mail). The eight device categories
spanned seventeen brands: Table 1 shows which types
of devices were tested for each brand. As one can see
we did test devices from vendors specialized in one type
of product such as Buffalo, and from vendors that have a
wide range of products such as D-link.

3.2 Vulnerability classes

XSS. As a warm-up we started by testing for Type 2
(stored) cross-site scripting (XSS) vulnerabilities [13],
which are common in web applications. Most devices
are vulnerable, including those that perform some input
checking. For example, the TrendNet switch ensures that
its system location field does not contain spaces, but does
not prevent attacks of the form:

loc") ;document ..write ("<script/src=
"http://evil.com/a.Jjs’></sc"+"ript>.

XSS attacks are particularly dangerous on embedded
devices because they are the first step toward a persistent
reverse XCS, as discussed below.

CSREF. Cross-site request forgery [50] enables an attacker
to compromise a device by using an external web site as
a stepping stone for intranet infiltration. On embedded
devices it can also be used as a direct vector of attack as it
allows the attacker to reboot critical network equipments
such as switches, IP phones and routers. Finally we used
CSREF as a way to inject Type 2 (stored) XSS and reverse
XCS [9] payloads.

File security. For each device, we checked whether it was
possible to read or inject arbitrary files. Some devices,
such as the Samsung photo frame, allow the attacker
to read protected files without being authenticated. On
this device, even when the Web interface was protected
by a password, it was still possible to access the photos
stored in memory by using a specially crafted URL. On
other devices, the Web interface could be compromised
by abusing the log file.

User authentication. Most devices have a default pass-
word or no password at all. Additionally, most devices
authenticate users in cleartext (i.e. without HTTPS). This
was even true for several security cameras, which is sur-
prising given that they are intended to securely monitor
private spaces. We even found that some NAS and photo
frames do not properly enforce the authentication mecha-
nism and it is possible to access the user content (i.e. pho-
tos) without being traced in the logs. Similarly, nothing is
done at the network level to prevent session hijacking as
the traffic is in clear and the cookies are sent over HTTPS.
Finally as far as we can tell not a single device implements
a password policy or an anti-brute force defense.

Clickjacking attacks. Clickjacking attacks [18] are the
most recent, and most overlooked attack vectors as all
devices were vulnerable to them. While at first sight this
does not appear to be a big issue, it turns out that being
able clickjack an embedded interface gives a lot of lever-
age to the attacker. For example basic Clickjacking can
be used to reboot devices, erase their content and in the
case of routers, enable guest network access. Advanced
Clickjacking [49] as demonstrated by Paul Stone at Black-
Hat Europe 2010 allows the attacker to steal the router
WPA key or the NAS password.

Altermate
Channels
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Figure 2: Overview of an XCS attack.
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Brand

| Camera [ LOM | NAS | Phone

Photo Frame | Printer | Router | Switch |

Allied

v

Buffalo v

Belkin

D-Link v v

v
v
v

Dell v

eStarling

HP

IBM v

Intel v

Kodak

LaCie v

Linksys v v

Netgear

SMS networks

Panasonic v

QNAP v

Samsung v

SMC

TrendNet

ZyXEL

Table 1: List of devices by brand.

XCS. A Cross-Channel Scripting attack [9] comprises
two steps, as shown in Figure 2. In the first step the
attacker uses a non-web communication channel such as
FTP or SNMP to store malicious JavaScript code on the
server. In the second step, the malicious content is sent
to the victim via the Web interface. XCS vulnerabilities
are prevalent in embedded devices since they typically
expose multiple services beyond HTTP. XCS bugs often
affect the interaction between two specific protocols only
(such as the combination of HTTP and BitTorrent), which
can make them harder to detect.

Reverse XCS. In a Reverse XCS attack the web interface
is used to attack another service on the device. We
primarily use reverse XCS attacks to exfiltrate data that is
protected by an access control mechanism.

We did not look for SQL injections [21], as it was un-
likely that the audited devices would contain a SQL server.
However we still consider SQL injection attack to be a
potential threat and therefore our framework has security
mechanisms in place to mitigate them. Finally, while in
some cases we found weaknesses in the networking stack
(for example: predictable Initial Sequenced Numbers),
we do not discuss that topic here.

3.3 Tools used

The audit of each device was done in three phases. First,
we performed a general assessment using NMap [31] and
Nessus [42]. Next, we tested the web management inter-
face using Firefox and several of its extensions: Firebug
[20], Tamper Data [26], and Edit Cookies [51]. We used
a custom tool for CSRF analysis. In the third phase we
tested for XCS using hand written scripts and command
line tools such as smbclient.

3.4 Audit results

Table 2 summarizes which classes of vulnerabilities
were found for each type of device. We use the
symbol [Jwhen one device is vulnerable to this class of
attacks and BMwhen multiples devices in the class are
vulnerable. The second column from the left indicates
the number of devices tested in that category. We sur-
vey the most interesting vulnerabilities in the next section.

Table 2 shows that the NAS category exhibits the
most vulnerabilities, which can be expected given the
complexity of these devices. We were surprised by the
large number of vulnerabilities in photo frames, which
are relatively simple devices.
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Type # Devices | XSS

CSRF

XCS | RXCS | File | Auth

LOM 3

NAS

Photo frame

Router

OmmEn
O

IP camera

om0 m

IP phone

Switch

|

—| =] W 0o W n

O
[ |
Printer O

Om0dEaEEN
OE0OEEENENR

O

Table 2: Vulnerability classes by device type.

A possible explanation is that vendors rushed to market
in order to grab market share with new features. Indeed, in
the Kodak photo frame, half the Web interface is protected
against XSS while the other half is completely vulnerable.
IP cameras and routers are more mature, and therefore
tend to have a better security. Table 2 also shows that
even enterprise-grade devices such as switches, printers,
and LOM are vulnerable to a variety of attacks, which
is a concern as they are usually deployed into sensitive
environments such as server rooms.

4 Threat Model

Our audit showed that embedded web management inter-
faces pose a serious security threat and are currently one
of the weakest links in home and office networks. In this
section we formalize our attacker model and the security
objectives that our framework aims at achieving.

4.1 Attacker model

In this paper, we are concerned with securing embedded
web interfaces from malicious attackers. Inspired by the
threat model of [6] we are using the “web attacker” con-
cept with slightly more powerfully attacker as we allow
the attacker to interact directly with the web framework
like in the active attacker model. Accordingly our attacker
model is defined as follows: we assume an honest user
employs a standard web browser to view and interact with
the embedded web interface content. Our malicious web
attacker attempts to disrupt this interaction or steal sen-
sitive information such as a WPA key. Typically, a web
attacker can attempt to do this in two ways: by trying
to exploit directly a vulnerability in the web interface,
or by placing malicious content (e.g. JavaScript) in the
user’s browser and modifying the state of the browser,
interfering with the honest session. We allow the attacker
to attempt to directly attack the web framework in any
way he likes; in particular, we assume that the attacker
will attempt to DDOS the web server, find buffer overflow

exploits or brute force the authentication. Finally, we also
assume that the attacker will be able to manipulate any
non-encrypted session to his advantage.

4.2 Security objectives

Based on our audit evaluation and the attacker model
described above we now formalize what security objec-
tives our framework aims at achieving. These goals fall
into four distinct umbrella objectives that cover all of the
known attacks against a web interface.

Enforcing access control. The first goal of our frame-
work is to ensure that only the right principals have access
to the right data. Access control enforcement needs to be
enforced at multiple levels. First, at the network level, our
framework needs to ensure that the web interface is only
available in the right physical or network location and to
the right clients. At the application level, it means that
the framework needs to ensure that every web resource
is properly protected and that the attacker can not brute-
force user passwords. Finally, at the user level it also
means that the framework offers to the user the ability to
declare whether a specific client is allowed to access a
given web application.

Protecting session state. Protecting session state ensures
that once a session is established with the framework,
only the authenticated user is accessing the session. At
the network level, protecting the session state implies
preventing man in the middle attacks by enforcing the
use of SSL. At the HTTP level, protecting the session
means protecting the session cookies from being leaked
over HTTP (as in the Sidejacking attack) or being read
via JavaScript (XSS).

Deflecting direct web attacks. Deflecting direct web
attacks requires that our framework is not vulnerable to
buffer overflow or at least that the privileges gained in case
of successful exploitation are limited. At the application
level, the framework must be able to mitigate XSS [13],
and SQL injection attacks [21].
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Preventing web browser attacks. In order to prevent
web browser attacks, the framework has to work with the
browser to ensure that the attacker cannot include in a web
site a piece of code (such as an iframe or JavaScript) that
can abuse the trust relation between the browser and the
web interface. These attacks are instances of the confused
deputy problem [6]. They include CSRF and Clickjacking
attacks.

5 System Overview

In this section we discuss the design principles behind our
framework, provide an overview of how the framework
works and describe how a web request is checked and
processed.

5.1 Design principles

To address the threat model presented in the previous sec-
tion, our framework is architected around the following
four principles:

Secure by default. The team in charge of building an
embedded web interface is usually not security savvy
and is likely to make mistakes. To cope with this lack
of knowledge our framework is designed to be secure
by default, which means that every security feature and
check is in place and it is up to the developers to make
them less restrictive or turn them off. For instance, our
default CSP [14] (content security policy) only allows
content from self, which means that no external content
will be allowed to load from a page in the web interface.
Similarly the framework uses whitelists for input filtering:
by default only a restricted set of characters is allowed
in URL parameters and POST variables, and it is up to
the developer to relax this whitelist if needed. As a final
example, the framework injects JavaScript frame-busting
code and the X-Frame-Option header in all the pages
in order to prevent Clickjacking attacks. In the unlikely
situation where the interface needs to be embedded in
another webpage, the developer must turn the defense
mechanism off.

Defense in depth. Since there is no universal fix for many
types of attacks, including XSS, CSREF, and Clickjacking,
our framework follows the defense in depth principle and
implements all the known techniques to try and mitigate
each threat as much as possible. We perform filtering and
security checks at input, during processing, and during
output.

Least privilege. Following the OKWS design [29], we
implement the least privilege principle by leveraging the
Android architecture. Each application and the frame-
work have separate user IDs and sets of permissions; this

guarantees that if the framework or one of the applica-
tions is compromised, the attacker will not take complete
ownership of the data. For instance by taking over the
framework one does not gain access to the phone contacts
list used by one of the applications: our framework only
has the network privilege. Note that the application de-
veloper must modularize his or her application to fully
benefit from the least privilege design. Product features
that can significantly modify device functionality, such
as by executing a firmware upgrade, need to receive spe-
cial consideration as well perhaps resulting in additional
backend checks performed in advance.

User consent. Our last design principle is “user consent
as permission’: we let the user make the final decisions
about key security policies. For example, when a new
web client wants to access one of the phone web applica-
tions, it is up to the user to allow this or not because only
she knows if this request is legitimate. Similarly, when
the user installs a new web application, she is asked if
she wants to be prompted for approval each time a client
connects to that application. Finally, at install time we
also provide the user with a summary of the security fea-
tures that have been disabled. The user can then decide if
the presented security profile is acceptable or not. While
users can generally not be relied on for ensuring system
security, we implement the user consent principle in or-
der to catch potential security issues that clearly defeat
common sense.

5.2 Server architecture

As shown in Figure 3, the framework is composed of four
blocks and architected like the iptables firewall with a
series of security checks performed at input time, and
another series during output.

The Dispatcher is responsible for forwarding an HTTP
request to the desired application. The forwarding
decision is based on the unique port number assigned to
every application. Separating applications by port number
allows greater granularity for doing data encryption
which is specific to every application. In addition to
forwarding, the Dispatcher is also responsible for policy
based enforcement of security mechanisms.

The Configuration Manager handles per-application
tuning of the security policies. When an application
is first registered with the web server, all the security
mechanisms are turned on by default. The administrator
can then enable or disable individual mechanisms using
the configuration interface. The resulting configuration
is captured in a database and made available to the
Dispatcher for policy enforcement.
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Figure 3: Overview of the framework design showing
the interaction of the different web server components
(dispatcher, applications, and alert system) involved in
the processing a client request.

The Alert System is used to control how the adminis-
trator is to be notified for different events. For instance,
the administrator may want to be explicitly alerted for
every new client connection. The Alert System also
handles notifications caused by malicious web requests
as detected by the Dispatcher. Notifications can either
be passive or active depending on whether they need
approval from the administrator.

Finally, the framework also provides an API for effi-
ciently implementing web applications. The core func-
tionality includes methods to handle HTTP requests and
generate the response. It also provides handlers with
build in security mechanisms for content generation such
as HTML components, CSS, JavaScript, JSON etc. For
instance, the HTML, XML and JSON handlers provide pa-
rameterized functions required to escape dynamic content
before being added to the rendered page. In addition, the
framework provides methods for allowing applications to
construct HTTPOnly or secure cookies.

5.3 Request processing

As depicted in Figure 3 a new web request goes through
a series of input security checks and processing, and is
subsequently forwarded to the actual application. The
response generated is subjected to another iteration of
checks and processing before being sent to the client.
If any check fails then the processing is aborted and a
notification is sent via the Alert System.

The pre-processing step performs two rounds of
security checks. First, the origin of the request is
compared to the client restriction policy in order to block
queries coming from unwanted sources. Second, the
HTTP query is validated through regular expression
whitelists. The corresponding web application is then
identified (based on the port number) and the session and
CSREF tokens validation checks can be done.

After validation, the request is sent to the web appli-
cation which generates a page using our framework and
sends it back to the web server. Before reaching the
network, the response is passed through post-processing
security mechanisms like S-CSP and CSRF token gener-
ation. This usually results in the inclusion of additional
headers and modification of certain HTML elements. The
result is then returned to the client.

6 Security Mechanisms

A broad range of mechanisms and best practices have
been developed over the last few years to counter the
most severe web security problems. It is clear that no sin-
gle technique or framework will make a web application
secure. In addition, expecting developers to understand
and deploy all of these mechanisms on their own is unreal-
istic. Table 3 maps the mechanisms that we embed in our
secure web server implementation against the threats they
are designed to mitigate. We now describe each security
mechanism and provide further references. Note that in
many scenarios we depend on a correct browser imple-
mentation for security capabilities. Wherever possible,
we use additional mechanisms that can add security even
if the browser is not up-to-date or compliant.

HTTPOnly cookies. Many XSS vulnerabilities can be
mitigated by reducing the amount of damage an injected
script can inflict. HTTPOnly cookies [33] achieve this
by restricting cookie values to be accessible by the server
only, and not by any scripts running within a page. In
practice, most cookies used in web application logic are
inherently friendly to this concept, and this is why we
have chosen to build it in. (HTTPOnly cookies are not
implemented by Android HttpCookie.)
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Access control
Bypass | Pass guess

Category

Defense/Threat MITM

Session

Browser attack
CSRF | Clickjack

Direct attack

Hijack SQLi | XCS | RXCS

HTTP only cookie

v

Server side input filtering

v v

CSp

S-CSP

NESENENT~
w2
\

CSRF random token

Origin header verification

X-FRAME-OPTION

JS frame-busting code

SSL v

HSTS v

Secure cookie

NENEN

Parametrized queries

URL scanning

Application-wide auth v

Password policy

Anti brute-force

SNENEN

Restrict network/location v

DOS protection

Table 3: Threats and corresponding security mechanisms

Server-side input filtering. Even though filtering or
whitelisting of user input can fail if implemented incor-
rectly [3, 2, 1], it is still very important to sanitize user
data before web pages are rendered with it. Input filtering
can prevent scripting exploits as well as SQL injections.
When applied to data coming from other embedded ser-
vices, input filtering can also prevent many XCS attacks.

CSP (Content Security Policy). Pages rendered by the
typical embedded web application have little need to con-
tact external web sites. Correspondingly our server is con-
figured to offer restrictive CSP [14] directives to browsers,
limiting the impact of any injected code in the page.

S-CSP (Server-side Content Security Policy). For
browsers that do not support CSP, we introduce Server-
side CSP. While rendering a particular site, the server
looks at the CSP directives present in the header (or the
policy-uri) and modifies the HTML code accordingly. In-
stead of standard input filtering, the changes are based on
the custom policies defined by the administrator: such as
valid hosts for the different HTML elements, use of inline-
scripts, eval functionality usage and so on. Its novelty lies
in the fact that the resulting HTML page as received by
the browser automatically becomes CSP compliant. In
addition to filtering, S-CSP can also support reporting of
CSP violations via ‘report-uri’ directive which ordinarily
is not possible for incompatible browsers.

X-Frame-Options. Clickjacking is a serious emerging
threat which is best handled by preventing web site fram-
ing. Since embedded web applications are usually not

designed with mash-up scenarios in mind, setting the
option to DENY is a good default configuration.

JavaScript frame-busting. Not all browsers support the
X-Frame-Options header, and therefore our framework
automatically includes frame-busting code in JavaScript.
The particular piece of code we use is as simple as possi-
ble and has been vetted for vulnerabilities typically found
in such implementations [44].

Random anti-CSRF token. Cross-site request forgery
is another web application attack which is easy to prevent,
but often not addressed in embedded settings. Our frame-
work automatically injects random challenge tokens in
links and forms pointing back at the web application, and
checks the tokens on page access [39].

Origin header verification. Along with checking CSRF
tokens, we make sure that for requests that supply any
parameters (either POST or GET) and include the Ori-
gin [5] or Referer header, the origin/referer values are
as expected. We do this as a basic measure to prevent
cross-site attacks. When the Referer header is available,
we also check for cross-application attacks, making sure
that each application is only accessed through its entry

pages.

SSL. Securing network communications often ends up
being a low-priority item for application developers, and
this is why our web server uses HTTPS exclusively by
default, with a persistent self-signed certificate created
during device initialization.
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HSTS (HTTP Strict Transport Security) and Secure
cookies. In addition to supporting SSL out of the box,
our server implements the HSTS standard [22] and re-
quests that all incoming connections be over SSL, which
prevents several passive and active network attacks [23].
Moreover, browser cookies are created with the Secure
attribute, preventing the browser from leaking them to the
network in plaintext.

Parametrized rendering and queries. Android already
supports parametrized SQLIlite queries [52] and we en-
courage developers to make use of this facility. We have
also added the ability to parametrize dynamic HTML ren-
dering, in which case escaping of the output is performed
automatically.

URL scanning. Incoming HTTP requests are sani-
tized by applying filtering similar to that offered by the
URLScan tool in Microsoft IIS [34]. Our filter is config-
ured to restrict both the URL and query parts of a request,
while changes by the web application developer are al-
lowed if necessary. URLScan is most useful in preventing
web application vulnerabilities due to incorrect or incom-
plete parsing of request data.

Application-wide authentication, password policy,
and password anti-bruteforcing. Recognizing that user
authentication is often a weak spot for web applications,
we have implemented user authentication as part of the
web server, freeing the developers from the need to im-
plement secure user session tracking. In addition, the
password strength policy can be changed according to
requirements, and a mechanism to prevent (or severely
slow down) brute-force attacks is always enabled.

Network restrictions. Most embedded web servers have
a relatively constrained network access profile: either the
device should serve requests only when connected to a
specific network or WiFi SSID, or the hosts requesting
service might match a profile, such as a specific IP or
MAC address. This feature, while easily accessible, can
not be configured by default due to the differences in
individual application environments.

Location restrictions. Similar to network restrictions,
the server can be configured to operate only when the
device is at specific physical locations, minimizing the
opportunities for an attacker to access and potentially
compromise the system.

DDoS. While distributed denial-of-service (DDoS) pro-
tection is difficult, we believe that much can be done to
mitigate such threats. For most applications, maintaining
local service is of top priority, and so we throttle HTTP
requests such that those coming from the local network
always have a guaranteed level of service. Of course, this
can not prevent lower-level network DDoS attacks: these

have to be taken care of separately, outside of the web
server.

7 User interface

This section briefly describes the user interface required
for basic administration of the web server and security
policy management. In the following description, we refer
to the owner of the smart phone or embedded device as
the Admin user.

7.1 Configuration management

'Web Server
STATS

" Running

Options
{Web Applications

Demo App 1

Figure 4: Main web server configuration interface.

This interface is used to control the server settings
across all the applications. As shown in Figure 4, it pro-
vides the ability to disable each web application. It also
displays the web server overall statistics such as the num-
ber of active application and the number of active connec-
tions session.

Web server logs. Accessible from the menu options,
the logged events such as failures, new connections and
configuration changes can be visualized.

Settings. From this interface, the Admin overrides some
security features in order to enforce certain mechanisms
for all applications, irrespective of their individual config-
uration.
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MyWebApp
Port : 3001
Status : Running
Security Level : High

CLIENTS:

SECURITY CONFIG :

RESTRICTIONS :

Figure 5: Web application configuration interface, al-
lowing per-application customizations (secure settings
highlighted in green).

7.2 Configuration per web application

This interface enables the Admin user to control some
web application parameters such as the port number, the
application name, and its password or tune the security
policy for every application. As shown in Figure 5, it dis-
plays the name, path, security level and status information
along with the currently enabled security mechanisms.
Since all the mechanisms are turned on by default, policy
administration is not strictly necessary. However, this
allows flexibility in the framework that can be useful in
special circumstances. For instance, the Admin user may
wish to disable the heavy S-CSP mechanism in the case
of a restricted set of trusted users. The different function-
alities provided by the interface are described below.

Alarm system configuration. Each new client connec-
tion request can be monitored by setting the alarm noti-
fication level to one of the three possibilities: Disabled,
Passive, or Approval. Both Passive and Approval notifi-
cations alert the administrator about the new connection.
Approval mode has the additional feature of requiring the
Admin user to grant access before proceeding.

Network and location restriction. The web server can
restrict clients connecting based on the network properties
(serving WiFi or 3G only for example) or based on the
current location such as home or office.

Domain whitelist. The Admin can define a list of do-
mains that are allowed in the CSP policy by writing a
comma separated list of domains/IP addresses. If this

<WebServerConf>

<WebApp>
<path>com.android.websms</path>
<Enabled>1</Enabled>
<CSRF>1</CSRF>
<HttpOnlyCookie>1</HttpOnlyCookie>
<XFrame>1</XFrame>

</WebApp>

</WebServerConf>

Figure 6: Web server configuration sample

field is empty, the web server will enforce the restrictive
“allow self” policy and block all other sources.

IP whitelist. The Admin user can explicitly allow access
for a specific set of trusted hosts by adding a comma-
separated list of IP addresses. For a new connection re-
quest, if the source IP is in this list then access is permitted
regardless of the restrictions described above.

7.3 Configuration without the Ul

For embedded devices without a display to access the
configuration interface, the web server can be configured
through an XML file present in the application package
as a raw resource. With this file, the web server adminis-
trator can enforce security mechanisms for specific web
applications or disable all web application that do not
respect some requirements. The web server configura-
tion can also be done after installation by modifying the
SQLite database on the device.

8 Implementation

In this section we describe how our system is imple-
mented and how Android applications interact with
it. Our system consists of two main components: the
Dispatcher (a web server that processes and routes
requests to applications) and our framework API that
Android applications can access.

The Dispatcher works as an Android background
service. As a starting block we used the Tornado
open-source web server that we hardened and mod-
ified to work with our framework. The web server
follows the least privilege principle, and runs with
the minimal permissions set needed to handle HTTP
communications: android.permission.INTERNET.
To be allowed to expose a web interface, an appli-
cation requests a new permission that we created
called  com.android.webserver WEB_APPLICATION.
This novel permission is more restrictive than an-
droid.permission.INTERNET and only allows the
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mountWebContent ("websms",
Home.class) ;
mountWebContent ("websms/send",
SendSMS.class);
mountWebContent ("websms/view",
SMSHistory.class) ;
mountWebContent ("websms/theme.css",
RawRessource.class,
RawRessource.CSS,
R.raw.hello);

Figure 7: WebSMS code used to declare the exposed web
interface.

application to serve web requests via the dispatcher.

At launch time the Dispatcher browses the list of in-
stalled applications for new ones requesting the web ap-
plication permission. By retrieving the ContentProvider
associated to the framework, it queries the security con-
figuration. Following the consent as permission principle
we prompt the user every time a new web application
wants to register. When an application set the same URL
path than another one, the registration is discarded and a
possible malicious application warning is displayed to the
user.

The framework API is a Java library that handles com-
munications between the web server and the web appli-
cation (which run as separate processes). It also provides
a set of classes that help generating web content. Simi-
larly to many modern web framework (i.e. Rails), every
web page need to registered it web path through a func-
tion call, in our case this function is mountWebContent.
This function bind a path to a java class entry point. For
example our WebSMS web application register 4 web
pages: 3 HTML pages and 1 CSS stylesheet (Figure
7). Note the use of the RawRessource.class which al-
lows developer to expose directly raw data to the web
such as CCS files. Our framework provides a set of
classes to help building HTML pages, or handling other
resources request such as pictures, CSS stylesheets or
JavaScript libraries. The java classes Home, SendSMS
and SMSHistory extends the framework class HTML-
Page which provides various methods to add dynamic
content to the pages. In particular the HTMLPage class
has the method appendHTMLContent (content,
String[] vars) that allows to programmatically ap-
pend content to the page. Text variables are represented
by $ which are substituted by the corresponding var string
after it is filtered to prevent XSS. While the authors can
bypass the filtering process if they want by default it is
in place. Similarly, the HTMLPage class ensures that
the data passed to the application is properly sanitized
and that parametrized SQL queries are used in order to
prevent SQL injection.

When an HTTP request is received, it goes through all
pre-processing security mechanisms and is dispatched to
the corresponding web application. The framework API
embeds an Android ContentProvider used by the web
server to query pages. HTTP headers, body and security
tokens are added to the query and then transmitted to the
web application. Using the framework API, the web page
is build and send back as answer to the query. This one is
finally checked by all post-process security mechanisms
and send back to the web client.

9 Case Studies

In this section we present two case studies that demon-
strate how our framework effectively mitigates web
vulnerabilities. We describe the applications we built,
their attack surface, how the framework protects them,
and finally show that when using off-the-shelf security
scanners the framework is indeed able to mitigate the
vulnerabilities found in the apps.

To study the effectiveness of our the system we built
two sample applications that take advantages of the
phone’s capabilities to provide useful services: the first
one, WebSMS, is used for reading and sending SMS from
the browser; the second one, WebMedia, provides a con-
venient web interface to browse and display the photos
and videos stored on the smartphone. We argue that these
two applications—while limited—are good case studies
of what developers might want to built in order to leverage
a device’s capabilities in the form of web applications.

9.1 Applications

‘WebSMS. When loaded in a client browser, the user can
choose to view the current SMS inbox or send a new one.
For the second choice, the application displays a list of
contacts fetched from the phone’s directory along with a
search box. Clicking on a particular contact allows to send
a SMS directly from the browser. The SMS content is
sent by the browser to the application via a POST request
that contains the contact ID.

WebMedia. This application displays a gallery of photos
and videos stored on the Android device (Figure 8). When
a thumbnail is clicked, a full size view of the media file
is displayed. The application provides a convenient way
to display photos and videos to friends and family on a
big screen. In addition, this application enables seamless
sharing of content with trusted users (friends or family).
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WebMedia

Phone sdcard pictures

Figure 8: The WebMedia embedded web application.

9.2 Attack surfaces

Without framework support, the web applications suffer
from multiple vulnerabilities. In the WebSMS application,
the contact search can be a vector for reflected XSS or
SQL injection. Also, the capacity to send message and
view their contents afterward can lead to a stored XSS in
the sending and in the receiving phone. The WebMedia
application is vulnerable to CSRF attacks as well. The
XSS attack allows the attacker to steal private information

as the contact list of the sent and received SMS contents.

A CSRF can be conducted to send SMS on behalf of
the user, which can lead to embarrassing situations or
financial loss. In extreme cases, if the phone is used as
a trusted device to authorize sensitive operations such as
bank transfers, then the combination of XSS and CSRF
attacks will allow a malicious user to bypass this security
mechanism and conduct fraudulent operations.

9.3 Security evaluation

In order to evaluate whether our framework is able to
mitigate the attacks against our vulnerable applications
we have run the web scanners Skipfish and Nexpose
against our applications with the framework defense
mechanisms off and then on. When the framework
defenses are turned off, both Skipfish and Nexpose
detected reflected XSS and stored XSS vulnerabilities in
the WebSMS application. When the framework defenses
are turned on, no vulnerabilities are reported. Note that
neither scanner reported the CSRF vulnerabilities.
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Figure 9: Average number of request per second with and
without security features enabled.

This limited experiment shows that our framework can
help effectively and transparently mitigate vulnerabilities
that may exist in embedded web interfaces even though
it can not completely replace good coding practices and
careful code review.

9.4 Performance evaluation

While as stated earlier performance should not be the
focus of a mobile web framework, we still ran a basic
performance evaluation using the Apache benchmark
tool to evaluate the impact of enabling security features
on WebDroid performance. To reflect as accurately as
possible real world usage, we ran these benchmarks over
WiFi with WebDroid on a standard HTC Desire phone
with Android 2.3. We were not able to test over 3G as IP
are not routable.

WebDroid performance in term of requests per second
for the WebSMS application when the number of simul-
taneous connections increase is reported in figure 9. The
figure 10 depicts how fast WebDroid is able to process
each request as the number of simultaneous connections
increase. As visible in the diagrams, WebDroid take be-
tween a 10% to 30% performance hits when the security
features are turned one depending on the number of simul-
taneous connections. On average WebDroid performance
take a 20% hit when the security features are enabled.
While this performance hit might not be acceptable for a
regular website, for an embedded interface we argue that
it is acceptable as even when there are 128 simultaneous
connections, WebDroid is able to serve every request in
less than 80 ms which is below what is the optimal user
tolerance time: 100ms [37].
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Figure 10: Average time to process a request with and
without security features enabled.

10 Related Work

Browser defenses. Mozilla Foundation’s Content Secu-
rity Policy (CSP) [14] proposal allows a site to specify
restrictions on content served from the site, including
which external resources the content can load. The CSP
policy is specified as an HTTP header in each HTTP
response. For example, the CSP header

X-Content-Security-Policy: allow self

prevents the content from loading any external resources
or executing inline scripts. Replacing “allow self”
with “allow whitelist” allows external resources from
the given whitelist. Another system, SiteFirewall [9],
takes a similar approach but also allows persistent
browser-side policy storage (via cookies or other, more
secure objects). SiteFirewall is capable of blocking
some types of XCS attacks from being completed.
The system uses a browser extension that acts as a
firewall between vulnerable, internal web sites, and
those accessed by the user on the open Internet. A third
proposal called SOMA [38] implements a mutual consent
policy on cross-origin links. That is, both the embedding
and the embedded content must agree to the action
being initiated. As with CSP, SOMA is implemented
as a content-specific policy rather than a global site
policy. Finally Content Restrictions [32] is another
approach to defining content control policies on web sites.

Frameworks. Generic web frameworks, such as Ruby
on rails [41] and Django, implement numerous features
such as built-in CSRF defenses that help developers to
build secure web interfaces more easily. However this
kind of generic framework is very heavy and therefore
not suitable for being used in embedded devices. We are
not currently aware of any framework specially designed
for embedded devices. Additionally, while designed with
security in mind, these frameworks do not make secure
web application design intuitive for the developer.

120 130

In contrast, we strive for a secure by default system
where a developer has to do little if anything in order to
build a secure web application.

Web servers. At the process level, flow control en-
forcement such as the one presented in Histar [54], As-
bestos [11] and Flume [30] can be used to achieve some
of our goals such as document sanitization. The Android
OS [15] capability model can also be extended to enforce
network restrictions. As far as we know, none of the
lightweight web servers like Tornado [12] were built with
the objective of enforcing security principles. Previous
work on security centric web servers such as [29] were
only designed to mitigate low level attacks by enforcing
privilege separation. None of them offered a framework
to mitigate web vulnerabilities.

Other related work. The log injection attack, a simple
form of XCS, has been known for several years [47],
most notably in the context of web servers resolving
client hostnames. Recently, CSRF and XSS attacks have
attracted much attention, including work on various
defense techniques [6]. NAS security has been a topic for
discussion since the early days of networked storage [10].

IP telephony security has also been scrutinized. How-
ever this has only been done for specific protocols, not
for complete systems [48]. Most other work in web
security[ 13, 24, 4, 17, 25, 28, 43, 32, 36, 40, 53, 46] has
focused on web servers on the open Internet, as opposed
to devices on private intranets, which are the topic of this
work.

11 Conclusion

We present WebDroid the first web application framework
that is explicitly designed for embedded applications, with
a particular emphasis on secure web application design.
We motivate our work with extensive results from audits
carried out over the last two years on a broad range of em-
bedded web servers. We evaluate WebDroid performance
and show that despite the fact that that performance take
a 20% hit when we all the security features are activated,
WebDroid remains sufficiently fast for its purpose. Finally
as a case study we build two sample web applications.
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7.0771LE: Fast and Precise In-Browser JavaScript Malware Detection
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Abstract

JavaScript malware-based attacks account for a large
fraction of successful mass-scale exploitation happening
today. Attackers like JavaScript-based attacks because
they can be mounted against an unsuspecting user visit-
ing a seemingly innocent web page. While several tech-
niques for addressing these types of exploits have been
proposed, in-browser adoption has been slow, in part be-
cause of the performance overhead these methods incur.

In this paper, we propose Z0zZZLE, a low-overhead so-
lution for detecting and preventing JavaScript malware
that is fast enough to be deployed in the browser.

Our approach uses Bayesian classification of hier-
archical features of the JavaScript abstract syntax tree
to identify syntax elements that are highly predictive
of malware. Our experimental evaluation shows that
Z0zzZLE is able to detect JavaScript malware through
mostly static code analysis effectively. ZozzLE has an
extremely low false positive rate of 0.0003%, which is
less than one in a quarter million. Despite this high ac-
curacy, the ZozzLE classifier is fast, with a throughput of
over one megabyte of JavaScript code per second.

1 Introduction

In the last several years, we have seen mass-scale ex-
ploitation of memory-based vulnerabilities migrate to-
wards heap spraying attacks. This is because more tra-
ditional vulnerabilities such as stack- and heap-based
buffer overruns, while still present, are now often mit-
igated by compiler techniques such as StackGuard [7]
or operating system mechanisms such as NX/DEP and
ALSR [12]. While several heap spraying solutions have
been proposed [8,9,21], arguably, none are lightweight
enough to be integrated into a commercial browser.
However, a browser-based detection technique is still
attractive for several reasons. Offline scanning is often
used in modern browsers to check whether a particular

Benjamin Livshits and Benjamin Zorn
Microsoft Research

Christian Seifert
Microsoft

site the user visits is benign and to warn the user other-
wise. However, because it takes a while to scan a very
large number of URLs that are in the observable web,
some URLs will simply be missed by the scan. Offline
scanning is also not as effective against transient mal-
ware that appears and disappears frequently.

ZOZZLE is a mostly static JavaScript malware detec-
tor that is fast enough to be used in a browser. While
its analysis is entirely static, Z0zZLE has a runtime com-
ponent: to address the issue of JavaScript obfuscation,
Z0ozzZLE is integrated with the browser’s JavaScript en-
gine to collect and process JavaScript code that is cre-
ated at runtime. Note that fully static analysis is difficult
because JavaScript code obfuscation and runtime code
generation are so common in both benign and malicious
code.

Challenges: Any technical solution to the problem out-
lined above requires overcoming the following chal-
lenges:

e performance: detection is often too slow to be de-
ployed in a mainstream browser;

e obfuscated malware: because both benign and ma-
licious JavaScript code is frequently obfuscated,
purely static detection is generally ineffective;

o low false positive rates: given the number of URLs
on the web, while false positive rates of 5% are
considered acceptable for, say, static analysis tools,
rates even 100 times lower are not acceptable for
in-browser detection;

e malware transience: transient malware compro-
mises the effectiveness of offline-only scanning.

Because it works in a browser, ZozZLE uses the Java-
Script runtime engine to expose attempts to obscure mal-
ware via uses of eval, document.write, etc. by hooking
the runtime and analyzing the JavaScript just before it
is executed. We pass this unfolded JavaScript to a static
classifier that is trained using features of the JavaScript
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AST (abstract syntax tree). We train the classifier with a
collection of labeled malware samples collected with the
NozzLE dynamic heap-spraying detector [21]. Related
work [4, 6, 14,22] also classifies JavaScript malware us-
ing a combination of static and dynamic features, but re-
lies on emulation to deobfuscate the code and to observe
dynamic features. Because we avoid emulation, our anal-
ysis is faster and, as we show, often superior in accuracy.

Contributions: this paper makes these contributions:

e Mostly static malware detection. We propose
Z0ZZLE, a highly precise, lightweight, mostly static
JavaScript malware detector. ZozzLE is based on
extensive experience analyzing thousands of real
malware sites found while performing dynamic
crawling of millions of URLs using the NozzLE
runtime detector.

o AST-based detection. We describe an AST-based
technique that involves the use of hierarchical
(context-sensitive) features for detecting malicious
JavaScript code. This context-sensitive approach
provides increased precision in comparison to naive
text-based classification.

o Fast classification. Because fast scanning is key to
in-browser adoption, we present fast multi-feature
matching algorithms that scale to hundreds or even
thousands of features.

o Evaluation. We evaluate Z0zZzLE in terms of per-
formance and malware detection rates, both false
positives and false negatives. ZozzLE has an ex-
tremely low false positive rate of 0.0003%, which is
less than one in a quarter million, comparable to five
commericial anti-virus products we tested against.
To obtain these numbers, we tested Z0zzZLE against
a collection of over 1.2 million benign JavaScript
samples. Despite this high accuracy, the classifier is
very fast, with a throughput at over one megabyte
of JavaScript code per second.

Classifier-based tools are susceptible to being circum-
vented by an attacker who knows the inner workings of
the tool and is familiar with the list of features being
used, however, our preliminary experience with Z0zzLE
suggests that it is capable of detecting many thousands of
malicious sites daily in the wild. We consider the issue
of evasion in Section 6.

Paper Organization: The rest of the paper is organized
as follows. Section 2 gives some background informa-
tion on JavaScript exploits and their detection and sum-
marizes our experience of performing offline scanning
with NozzLE on a large scale. Section 3 describes the
implementation of our analysis. Section 4 describes our
experimental methodology. Section 5 describes our ex-
perimental evaluation. Section 6 provides a discussion

<html>
<body>

<button id="butid" onclick="trigger();"
style="display:none"/>

<script>

// Shellcode

var shellcode=unescape (‘' \%u9090\%u9090\%u9090\%u9090...");

bigblock=unescape (' \$u0DOD\%u0DOD’ ) ;

headersize=20;

shellcodesize=headersizet+shellcode.length;

while (bigblock.length<shellcodesize) {bigblock+=bigblock; }

heapshell=bigblock.substring (0, shellcodesize) ;

nopsled=bigblock.substring (0,

bigblock.length-shellcodesize);
while (nopsled.length+shellcodesize<0x25000) {
nops1 led led: 11

}
// spray
var spray=new Array();
for (i=0;i<500; i++) {spray[i]=nopsled+shellcode; }
// Trigger
function trigger () {
var varbdy = document.createElement (’body’);
varbdy .addBehavior (' #defaultf#userData’);
document . appendChild (varbdy) ;
try {
for (iter=0; iter<10; iter++) {
varbdy.setAttribute ('s’,window) ;
} catch(e){ }
window.status+='";
}
document . getElementById (’butid’) .onclick();
}
</script>
</body>
</html>

Figure 1: Heap spraying attack example.

of the limitations and deployment concerns for ZozzLE.
Section 7 discusses related work, and, finally, Section 8
concludes.

Appendices are organized as follows. Appendix A
discusses some of the hand-analyzed malware samples.
Appendix B explores tuning ZozzLE for better precision.
Appendix C shows examples of non-heap spray malware
and also anti-virus false positives.

2 Background

This section gives overall background on JavaScript-
based malware, focusing specifically on heap spraying
attacks.

2.1 JavaScript Malware Background

Figure 1 shows an example of real JavaScript malware
that performs a heap spray. Such malware consists of
three relatively independent parts. The shellcode is the
portion of executable machine code that will be placed
on the browser heap when the exploit is executed. It is
typical to precede the shellcode with a block of NOP in-
structions (so-called NOP sled). The sled is often quite
large compared to the size of the subsequence shellcode,
so that a random jump into the process address space is
likely to hit the NOP sled and slide down to the start of
the shellcode. The next part is the spray, which allocates
many copies of the NOP sled/shellcode in the browser
heap. In JavaScript, this is easily accomplished using an
array of strings. Spraying of this sort can be used to de-
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feat address space layout randomization (ASLR) protec-
tion in the operating system. The last part of the exploit
triggers a vulnerability in the browser; in this case, the
vulnerability is a well-known flaw in Internet Explorer 6
that exploits a memory corruption issue with function
addBehavior.

Note that the example in Figure 1 is entirely unob-
fuscated, with the attacker not even bothering to rename
variables such as shellcode, nopsled, and spray tO make
the attack easier to spot. In practice, many attacks are
obfuscated prior to deployment, either by hand, or using
one of many available obfuscation kits [11]. To avoid de-
tection, the primary technique used by obfuscation tools
is to use eval unfolding, i.e. self-generating code that
uses the eval construct in JavaScript to produce more
code to run.

2.2 Characterizing Malicious JavaScript

Z0zZLE training is based on results collected with the
NozzLE heap spraying detector. To gather the data we
use to train the ZozzLE classifier and evaluate it, we em-
ployed a web crawler to visit many randomly selected
URLSs and process them with NozzLE to detect if mal-
ware was present.

Once we determine that JavaScript is malicious, we
invested a considerable effort in examining the code by
hand and categorizing in various ways. One of the in-
sights we gleaned from this process is that once unfolded,
most malware does not have that much variety, following
the traditional long tail pattern. We discuss some of the
hand-analyzed samples in Appendix A.

Any offline malware detection scheme must deal with
the issues of transience and cloaking. Transient mali-
cious URLs go offline or become benign after some pe-
riod of time, and cloaking is when an attack hides itself
from a particular user agent, IP address range, or from
users who have visited the page before. While we tried
to minimize these effects in practice by scanning from a
wider range of IP addresses, in general, these issues are
difficult to fully address.

Figure 2 summarizes information about malware tran-
sience. To compute the transience of malicious sites, we
re-scan the set of URLs detected by Nozzle on the previ-
ous day. This procedure is repeated for three weeks (21
days). The set of all discovered malicious URLs were
re-scanned on each day of this three week period. This
means that only the URLs discovered on day one were
re-scanned 21 days later. The URLs discovered on day
one happened to have a lower transience rate than other
days, so there is a slight upward slope toward the end of
the graph.

Any offline scanning technique will have difficulty
keeping up with malware exhibiting such a high rate of
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Figure 2: Transience of detected malicious URLs after several days.

The number of days is shown of the x axis, the percentage of remaining
malware is shown on the y axis.
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20.2KB

eval eval eval
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Figure 3: Unfolding tree: an example. Rectangles are documents,
and circles are JavaScript contexts. Gray circles are benign, black are
malicious, and dashed are “‘co-conspirators” that participate in deob-
fuscation. Edges are labeled with the method by which the context or
document was reached. The actual page contains 10 different exploits
using the same obfuscation.

transience—Nearly 20% of malicious URLs were gone af-
ter a single day. We believe that in-browser detection
is desirable, in order to be able to detect new malware
before it has a chance to affect the user regardless of
whether the URL being visited has been scanned before.

2.3 Dynamic Malware Structure

One of the core issues that needs to be addressed when
talking about JavaScript malware is the issue of obfusca-
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Figure 4: Distribution of context counts for malware and benign code.

tion. In order to avoid detection, malware writers resort
to various forms of JavaScript code obfuscation, some of
which is done by hand, other with the help of many avail-
able obfuscation toolkits [11]. While many approaches
to code obfuscation exist, in our experience we see eval
unfolding as the most commonly used. The idea is to use
the eval language feature to generate code at runtime in
a way that makes the original code difficult to pattern-
match. Often, this form of code unfolding is used repeat-
edly, so that many levels of code are produced before the
final, malicious version emerges.

Example 1 Figure 3 illustrates the process of code un-
folding using a specific malware sample obtained from
a web site http://es.doowon.ac.kr. At the time of
detection, this malicious URL flagged by NozzLE con-
tained 10 distinct exploits, which is not uncommon for
malware writers, who tend to “over-provision” their ex-
ploits: to increase the changes to successful exploitation,
they may include multiple exploits within the same page.
Each exploit in our example is pulled in with an <iframe>
tag.

Each of these exploits is packaged in a similar fashion.
The leftmost context is the result of an eval in the body of
the page that defines a function. Another eval call from
the body of the page uses the newly-defined function to
define another new function. Finally, this function and
another eval call from the body exposes the actual ex-
ploit. Surprisingly, this page also pulls in a set of benign
contexts, consisting of page trackers, JavaScript frame-
works, and site-specific code. [J

Note, however, that the presence of eval unfolding
does not provide a reliable indication of malicious in-
tent. There are plenty of perfectly benign pages that also
perform some form of code obfuscation, for instance, as
a weak form of copy protection to avoid code piracy.
Many commonly used JavaScript library frameworks do
the same, often to save space through client-side code
generation.

benign
contexts
malicious
contexts
initial features C filtering >
\\\7 -

-

predictive features

JS Engine

file.js/eval context

extraction and labeling |
AST contexts

feature selection |

1

C training P

v

features + weights

classification

Figure 5: ZOZZLE training illustrated.

We instrumented the ZozzLE deobfuscator to collect
information about which code context leads to other
code contexts, allowing us to collect information about
the number of code contexts created and the unfolding
depth. Figure 4 shows a distributions of JavaScript con-
text counts for benign and malicious URLs. The ma-
jority of URLs have only several JavaScript code con-
texts, however, many can be have 50 or more, created
through either <iframe> or <script> inclusion or eval un-
folding. Some pages, however, may have as many as 200
code contexts. In other words, a great deal of dynamic
unfolding needs to take place before these contexts will
“emerge” and will be available for analysis.

It is clear from the graph in Figure 4 that, contrary to
what might have been thought, the number of contexts is
not a good indicator of a malicious site. Context counts
were calculated for all malicious URLs from a week of
scanning with NozzLE and a random sample of benign
URLSs over the same period.

3 Implementation

In this section, we discuss the details of the ZozzZLE im-
plementation.

3.1 Overview

Much of ZozzLE’s design and implementation has in ret-
rospect been informed by our experience with reverse
engineering and analyzing real malware found by Noz-
zLE. Figure 5 illustrates the major parts of the ZozzLE
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architecture. At a high level, the process evolves in three
stages: JavaScript context collection and labeling as be-
nign or malicious, feature extraction and training of a
naive Baysian classifier, and finally, applying the clas-
sifier to a new JavaScript context to determine if it is be-
nign or malicious. In the following section, we discuss
the details of each of these stages in turn.

3.2 Training Data Extraction and Labeling

ZozzLE makes use of a statistical classifier to efficiently
identify malicious JavaScript. The classifier needs train-
ing data to accurately classify JavaScript source, and
we describe the process we use to get that training data
here. We start by augmenting the JavaScript engine in
a browser with a “deobfuscator” that extracts and col-
lects individual fragments of JavaScript. As discussed
above, exploits are frequently buried under multiple lev-
els of JavaScript eval. Unlike Nozzle, which observes
the behavior of running JavaScript code, Z0zzZLE must
be run on an unobfuscated exploit to reliably detect ma-
licious code.

While detection on obfuscated code may be possible,
examining a fully unpacked exploit is most likely to re-
sult in accurate detection. Rather than attempt to deci-
pher obfuscation techniques, we leverage the simple fact
that an exploit must unpack itself to run.

Our experiments presented in this paper involved
instrumenting the Internet Explorer browser, but we
could have used a different browser such as Firefox or
Chrome instead. Using the Detours binary instrumenta-
tion library [13], we were able to intercept calls to the
Compile function in the JavaScript engine located in the
jscript.dil library. This function is invoked when eval
is called and whenever new code is included with an
<iframe> Of <script> tag. This allows us to observe Java-
Script code at each level of its unpacking just before it is
executed by the engine. We refer to each piece of Java-
Script code passed to the Compile function as a code con-
text. For purposes of evaluation, we write out each con-
text to disk for post-processing. In a browser-based im-
plementation, context assessment would happen on the
fly.

3.3 Feature Extraction

Once we have labeled JavaScript contexts, we need to
extract features from them that are predictive of mali-
cious or benign intent. For ZozzLE, we create features
based on the hierarchical structure of the JavaScript ab-
stract syntax tree (AST). Specifically, a feature consists
of two parts: a context in which it appears (such as a
loop, conditional, try/catch block, etc.) and the text (or
some substring) of the AST node. For a given JavaScript
context, we only track whether a feature appears or not,

and not the number of occurrences. To efficiently ex-
tract features from the AST, we traverse the tree from the
root, pushing AST contexts onto a stack as we descend
and popping them as we ascend.

To limit the possible number of features, we only ex-
tract features from specific nodes of the AST: expres-
sions and variable declarations. At each of the expression
and variable declarations nodes, a new feature record is
added to that script’s feature set.

If we use the text of every AST expression or variable
declaration observed in the training set as a feature for
the classifier, it will perform poorly. This is because most
of these features are not informative (that is, they are not
correlated with either benign or malicious training set).
To improve classifier performance, we instead pre-select
features from the training set using the x? statistic to
identify those features that are useful for classification.
A pre-selected feature is added to the script’s feature set
if its text is a substring of the current AST node and the
contexts are equal. The method we used to select these
features is described in the following section.

3.4 Feature Selection

As illustrated in Figure 5, after creating an initial fea-
ture set, ZozzLE performs a filtering pass to select those
features that are likely to be most predictive. For this
purpose, we used the x2 algorithm to test for correla-
tion. We include only those features whose presence is
correlated with the categorization of the script (benign or
malicious). The x? test (for one degree of freedom) is
described below:

A = malicious contexts with feature
B = benign contexts with feature
C' = malicious contexts without feature

D = benign contexts without feature

2 (Ax D —C * B)?
X T A+ 0 «(B+D)*(A+B)*(C+D)

We selected features with Y2 > 10.83, which corre-
sponds with a 99.9% confidence that the two values (fea-
ture presence and script classification) are not indepen-
dent.

3.5 Classifier Training

Z0zZLE uses a naive Bayesian classifier, one of the sim-
plest statistical classifiers available. When using naive
Bayes, all features are assumed to be statistically inde-
pendent. While this assumption is likely incorrect, the
independence assumption has yielded good results in the
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past. Because of its simplicity, this classifier is efficient
to train and run.

The probability assigned to label L; for code fragment
containing features F1, ..., Fj, may be computed using
Bayes rule as follows:

P(L;)P(Fy, ..
P(Fy,. ..

~7IQJ15)

P(L;|Fy, . .. o

aP%)::

Because the denominator is constant regardless of L; we
ignore it for the remainder of the derivation. Leaving
out the denominator and repeatedly applying the rule of
conditional probability, we rewrite this as:

P(Li|Fy, ..., F,) = P(L;) [[ P(FulFy, ... Feo1, L)
k=1

Given that features are assumed to be conditionally inde-
pendent, we can simplify this to:

P(Li|Fy,...,F,) = P(L:) [ P(Fx|L:)
k=1

Classifying a fragment of JavaScript requires travers-
ing its AST to extract the fragment’s features, multiply-
ing the constituent probabilities of each discovered fea-
ture (actually implemented by adding log-probabilities),
and finally multiplying by the prior probability of the la-
bel. It is clear from the definition that classification may
be performed in linear time, parameterized by the size
of the code fragment’s AST, the number of features be-
ing examined, and the number of possible labels. The
processes of collecting and hand-categorizing JavaScript
samples and training the ZozzLE classifier are detailed in
Section 4.

3.6 Fast Pattern Matching

An AST node contains a feature if the feature’s text is a
substring of the AST node. With a naive approach, each
feature must be matched independently against the node
text. To improve performance, we construct a state ma-
chine for each context that reduces the number of charac-
ter comparisons required. There is a state for each unique
character occurring at each position in the features for a
given context.

A pseudocode for the fast matching algorithm is
shown in Figure 7. State transitions are selected based
on the next character in the node text. Every state has a
bit mask with bits corresponding to features. The bits are
set only for those features that have the state’s incom-
ing character at that position. At the beginning of the
matching, a bitmap is set to all ones. This mask is AND-
ed with the mask at each state visited during matching.

At the end of matching, the bit mask contains the set of
features present in the node. This process is repeated
for each position in the node’s text, as features need not
match at the start of the node.

Example 2 An example of a state machine used for fast
pattern matching is shown in Figure 6. This string match-
ing state machine can identify three patterns:
append, and insert. Assume the matcher is running on
input text appert. During execution, a bit array of size
three, called the matched list, is kept to indicate the pat-
terns that have been matched up to this point in the in-
put. This bit array starts with all bits set. From the left-
most state we follow the edge labeled with the input’s
first character, in this case an a.

alert,

The match list is bitwise-anded with this new state’s
bit mask of 110. This process is repeated for the input
characters p, p, e. At this point, the match list contains 010
and the remaining input characters are r, t, and nul1 (also
notated as \0). Even though a path to an end state exists
with edges for the remaining input characters, no patterns
will be matched. The next character consumed, an r,
takes the matcher to a state with mask 001 and match
list of 010. Once the match list is masked for this state,
no patterns can possibly be matched. For efficiency, the
matcher terminates at this point and returns the empty
match list.

The maximum number of comparisons required to
match an arbitrary input with this matcher is 17, ver-
sus 20 for naive matching (including null characters at
the ends of strings). The worst-case number of compar-
isons performed by the matcher is the total number of
distinct edge inputs at each input position. The sample
matcher has 19 edges, but at input position 3 two edges
consume the same character (’e’), and at input position 6
two edges consume the null character. In practice, we
find that the number of comparisons is reduced signifi-
cantly more than for this sample, due to the large number
of features because of the pigeonhole principle. [

For a classifier using 100 features, a single position in
the input text would require 100 character comparisons
with naive matching. Using the state machine approach,
there can be no more than 52 comparisons at each string
position (36 alphanumeric characters and 16 punctuation
symbols), giving a reduction of nearly 50%. In practice
there are even more features, and input positions do not
require matching against every possible input character.

Figure 8 clearly shows the benefit of fast pattern
matching over a naive matching algorithm. The graph
shows the average number of character comparisons per-
formed per-feature using both our scheme and a naive
approach that searches an AST node’s text for each pat-
tern individually. As can be seen from the figure, the
fast matching approach has far fewer comparisons, de-
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Figure 6: Fast feature matching illustrated.

matchList < (1,1,...,1)
state < 0
for all cin input do
state < matcher.getNextState(state, c)
matchList < matchList A matcher.getMask(state)
if matchList(0,0,...,0) then
return match List
end if
end for
return matchList

Figure 7: Fast matching algorithm.
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Figure 8: Comparisons required per-feature with naive vs. fast pattern
matching. The number of features is shown on the x axis.

creasing asymptotically as the number of features ap-
proaches 1,500.

3.7 Future Improvements

In this section, we describe additional algorithmic im-
provements not present in our initial implementation.

3.7.1 Automatic Malware Clustering

Using the same features extracted for classification, it
is possible to automatically cluster attacks into groups.
There are two possible approaches that exist in this
space: supervised and unsupervised clustering.
Supervised clustering would consist of hand-
categorizing attacks, which has actually already been
done for about 1,000 malicious contexts, and assigning
new scripts to one of these groups. Unsupervised
clustering would not require the initial sorting effort,
and is more likely to successfully identify new, common
attacks. It is likely that feature selection would be an

ongoing process; selected features should discriminate
between different clusters, and these clusters will likely
change over time.

3.7.2 Substring Feature Selection

For the current version of ZozzLE, automatic feature se-
lection only considers the entire text of an AST node as
a potential feature. While simply taking all possible sub-
strings of this and treating those as possible features as
well may seem reasonable, the end result is a classifier
with many more features and little (if any) improvement
in classification accuracy.

An alternative approach would be to treat certain types
of AST nodes as “divisible” when collecting candidate
features. If the entire node text is not a good discrimi-
native feature, its component substrings can be selected
as candidate features. This avoids introducing substring
features when the full text is sufficiently informative, but
allows for simple patterns to be extracted from longer
text (such as %u or %uococ) when they are more informa-
tive than the full string. Not all AST nodes are suitable
for subdivision, however. Fragments of identifiers don’t
necessarily make sense, but string constants and numbers
could still be meaningful when split apart.

3.7.3 Feature Flow

At the moment, features are extracted only from the text
of the AST nodes in a given context. This works well for
whole-script classification, but has yielded more limited
results for fine-grained classification (that is, to identify
that a specific part of the script is malicious). To prevent
a particular feature from appearing in a particularly infor-
mative context (such as COMMENT appearing inside a loop, a
component the Aurora exploit [19]) an attacker can sim-
ply assign this string to a variable outside the loop and
reference the variable within the loop. The idea behind
feature flow is to keep a simple lookup table for iden-
tifiers, where both the identifier name and its value are
used to extract features from an AST node.

By ignoring scoping rules and loops, we can get a rea-
sonable approximation of the features present in both the
identifiers and values within a given context with low
overhead. This could be taken one step further by em-
ulating simple operations on values. For example, if two
identifiers set to strings are added, the values of these
strings could be concatenated and then searched for fea-
tures. This would prevent attackers from hiding common
shellcode patterns using concatenation.
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4 Experimental Methodology

In order to train and evaluate ZozZLE, we created a col-
lection of malicious and benign JavaScript samples to use
as training data and for evaluation.

Gathering Malicious Samples: To gather the results
for Section 5, we first dynamically scanned URLs with
a browser running both NozzLE and the ZozzLE Java-
Script deobfuscator. In this configuration, when NoOzZzLE
detects a heap spraying exploit, we record the URL and
save to disk all JavaScript contexts seen by the deobfus-
cator. All recorded JavaScript contexts are then hand-
examined to identify those that contain any malware ele-
ments (shellcode, vulnerability, or heap-spray).

Malicious contexts can be sorted efficiently by first
grouping by their md5 hash value. This dramatically re-
duces the required effort because of the lack of exploit
diversity explained first in Section 2 and relatively few
identifier-renaming schemes being employed by attack-
ers. For exploits that do appear with identifier names
changed, there are still usually some identifiers left un-
changed (often part of the standard JavaScript API)
which can be identified using the grep utility. Finally,
hand-examination is used to handle the few remaining
unsorted exploits. Using a combination of these tech-
niques, 919 deobfuscated malicious contexts were iden-
tified and sorted in several hours.

Gathering Benign Samples: To create a set of benign
JavaScript contexts, we extracted JavaScript from the
Alexa.com top 50 URLs using the ZozzLE deobfuscator.
The 7,976 contexts gathered from these sites were used
as our benign dataset.

Feature Selection: To evaluate ZozzLE, we partition our
malicious and benign datasets into training and evalua-
tion data and train a classifier. We then apply this classi-
fier to the withheld samples and compute the false posi-
tive and negative rates. To train a classifier with ZozzLE,
we first need a define a set of features from the code.
These features can be hand-picked, or automatically se-
lected (as described in Section 3) using the training ex-
amples. In our evaluation, we compare the performance
of classifiers built using hand-picked and automatically
selected features.
The 89 hand-
picked features
were selected based
on experience and
intuition with many
pieces of malware
detected by Noz-
zLE and involved
collecting particu-
larly “memorable”

Feature

try : unescape

loop : spray

loop : payload
function : addbehavior
string : Oc

Figure 9: Examples of hand-picked fea-
tures used in our experiments.

Feature Present M :B
function : anonymous v 1:4609
try : newactivexobject(”pdf.pdfctrl”) v 1309: 1
loop : scode v o1211:1
function : §(this) v 1:1111
if : ”shel” 4+ ”1.ap” 4+ "pl” + "icati” +”on” V 997: 1
string : %u0c0c%u0cOc voo993:1
loop : shellcode v 895:1
function : collectgarbage() v 175:1
string : #default#userdata v 10:1
string : %u X 1:6

Figure 10: Sample of automatically selected features and their dis-
criminating power as a ratio of likelihood to appear in a malicious or
benign context.

features frequently
repeated in malware samples.

Automatically selecting features typically yields many
more features as well as some features that are biased
toward benign JavaScript code, unlike hand-picked fea-
tures that are all characteristic of malicious JavaScript
code. Examples of some of the hand-picked features
used are presented in Figure 9.

For comparison purposes, samples of the automati-
cally extracted features, including a measure of their dis-
criminating power, are shown in Figure 10. The mid-
dle column shows whether it is the presence of the fea-
ture (v) or the absence of it (X) that we are matching on.
The last column shows the number of malicious (M) and
benign (B) contexts in which they appear in our training.

In addition to the feature selection methods, we also
varied the types of featur