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Abstract

A distinguishing characteristic of bots is their ability
to establish a command and control (C&C) channel. The
typical approach to build detection models for C&C traf-
fic and to identify C&C endpoints (IP addresses and do-
mains of C&C servers) is to execute a bot in a controlled
environment and monitor its outgoing network connec-
tions. Using the bot traffic, one can then craft signa-
tures that match C&C connections or blacklist the IP
addresses or domains that the packets are sent to. Un-
fortunately, this process is not as easy as it seems. For
example, bots often open a large number of additional
connections to legitimate sites (to perform click fraud
or query for the current time), and bots can deliberately
produce “noise” — bogus connections that make the anal-
ysis more difficult. Thus, before one can build a model
for C&C traffic or blacklist IP addresses and domains,
one first has to pick the C&C connections among all the
network traffic that a bot produces.

In this paper, we present JACKSTRAWS, a system that
accurately identifies C&C connections. To this end, we
leverage host-based information that provides insights
into which data is sent over each network connection as
well as the ways in which a bot processes the informa-
tion that it receives. More precisely, we associate with
each network connection a behavior graph that captures
the system calls that lead to this connection, as well as
the system calls that operate on data that is returned.
By using machine learning techniques and a training
set of graphs that are associated with known C&C con-
nections, we automatically extract and generalize graph
templates that capture the core of different types of C&C
activity. Later, we use these C&C templates to match
against behavior graphs produced by other bots. Our
results show that JACKSTRAWS can accurately detect
C&C connections, even for novel bot families that were
not used for template generation.

1 Introduction

Malware is a significant threat and root cause for many
security problems on the Internet, such as spam, dis-
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tributed denial of service attacks, data theft, or click
fraud. Arguably the most common type of malware
today are bots. Compared to other types of malware,
the distinguishing characteristic of bots is their abil-
ity to establish a command and control (C&C) channel
that allows an attacker to remotely control and update a
compromised machine. A number of bot-infected ma-
chines that are combined under the control of a single
entity (called the botmaster) are referred to as a bot-
net [7,8,14,37].

Researchers and security vendors have proposed
many different host-based or network-based techniques
to detect and mitigate botnets. Host-based detectors
treat bots like any other type of malware. These sys-
tems (e.g., anti-virus tools) use signatures to scan pro-
grams for the presence of well-known, malicious pat-
terns [43], or they monitor operating system processes
for suspicious activity [26]. Unfortunately, current tools
suffer from low detection rates [4], and they often in-
cur a non-negligible performance penalty on end users’
machines. To complement host-based techniques, re-
searchers have explored network-based detection ap-
proaches [15-18,34,41,45,49]. Leveraging the insight
that bots need to communicate with their command and
control infrastructure, most network-based botnet detec-
tors focus on identifying C&C communications.

Initially, models that match command and control
traffic were built manually [15, 17]. To improve and
accelerate this slow and tedious process, researchers
proposed automated model (signature) generation tech-
niques [34,45]. These techniques share a similar work
flow (a work flow that, interestingly, was already used
in previous systems to extract signatures for spreading
worms [25,27,29,31,39]): First, one has to collect traces
of malicious traffic, typically by running bot samples
in a controlled environment. Second, these traces are
checked for strings (or token sequences) that appear fre-
quently, and can thus be transformed into signatures.

While previous systems have demonstrated some suc-
cess with the automated generation of C&C detectors
based on malicious network traces, they suffer from



three significant shortcomings: The first problem is that
bots do not only connect to their C&C infrastructure, but
frequently open many additional connections. Some of
the additional connections are used to carry out mali-
cious activity (e.g., scanning potential victims, sending
spam, or click fraud). However, in other cases, the traffic
is not malicious per se. For example, consider a bot that
connects to a popular site to check the Internet connec-
tivity, or a bot that attempts to obtain the current time or
its external IP address (e.g., local system settings are un-
der the control of researchers who might try to trick mal-
ware and trigger certain behaviors; they are thus unreli-
able from the bot perspective [19,35]). In most of these
cases, the malware traffic is basically identical to traffic
produced by a legitimate client. Of course, one can use
simple rules to discard some of the traffic (scans, spam),
but other connections are much harder to filter; e.g., how
to distinguish a HTTP-based C&C request from a re-
quest for an item on a web site? Thus, there is a signif-
icant risk that automated systems produce models that
capture legitimate traffic. Unfortunately, a filtering step
can remove such models only to a certain extent.

To highlight the difficulty of finding C&C connections
in bot traffic, we report on the analysis of a database that
was given to us by a security company. This database
contains network traffic produced by malware samples
run in a dynamic analysis environment. Over a period
of two months (Sept./Oct. 2010), this company ana-
lyzed 153,991 malware samples that produced a total
of 593,012 connections, after removing all empty and
scan-related traffic. A significant majority (87.9%) of
this traffic was HTTP, followed by mail traffic (3.8%)
and small amounts of a wide variety of other protocols
(including IRC). The company used two sets of signa-
tures to analyze their traffic: One set matches known
C&C traffic, the other set matches traffic that is known
to be harmless. This second set is used to quickly discard
from further analysis connections that are known to be
unrelated to any C&C activity. Such connections include
accesses to ad networks, search engines, or games sites.
Using these two signature sets, we found 109,600 mali-
cious C&C connections (18.5%), but also 69,211 benign
connections (11.7%). The remaining 414,201 connec-
tions (69.8%) were unknown; they did not match any
signature, and thus, likely consist of a mix of malicious
and harmless traffic. This demonstrates that it is chal-
lenging to distinguish between harmless web requests
and HTTP-based C&C connections.

The second problem with existing techniques is that
attackers can confuse automated model (signature) gen-
eration systems: previous research has presented “noise
injection” attacks in which a malware crafts additional
connections with the sole purpose to thwart signature
extraction techniques [10, 11,33]. A real-world exam-

ple for such a behavior can be found in the Pushdo mal-
ware family, where bots, in certain versions, create junk
SSL connections to more than 300 different web sites to
blend in with benign traffic [1].

The third problem is that existing techniques do not
work when the C&C traffic is encrypted. Clearly, it is
not possible to extract a content signature to model en-
crypted traffic. However, even when the traffic is en-
crypted, it would be desirable to add the C&C server
destinations to a blacklist or to model alternative net-
work properties that are not content-based. For this, it is
necessary to identify those encrypted malware connec-
tions that go to the C&C infrastructure and distinguish
them from unrelated but possibly encrypted traffic, such
as legitimate, SSL-encrypted web traffic.

The root cause for the three shortcomings is that ex-
isting approaches extract models directly from network
traces. Moreover, they do so at a purely syntactic level.
That is, model generation systems simply select ele-
ments that occur frequently in the analyzed network traf-
fic. Unfortunately, they lack “understanding” of the
purpose of different network connections. As a result,
such systems often generate models that match irrele-
vant, non-C&C traffic, and they incorrectly consider de-
coy connections. Moreover, in the case of encrypted
traffic, no frequent element can be found at all.

To solve the aforementioned problems, we propose an
approach to detect the network connections that a mal-
ware program uses for command and control, and to dis-
tinguish these connections from other, unrelated traffic.
This allows us to immediately consider the destination
hosts/domains for inclusion in a blacklist, even when the
corresponding connections are encrypted. Moreover, we
can feed signature generation systems with only C&C
traffic, discarding irrelevant connections and making it
much more difficult for the attacker to inject noise.

We leverage the key observation that we can use host-
based information to learn more about the semantics of
network connections. More precisely, we monitor the
execution of a malware process while it communicates
over the network. This allows us to determine, for each
request, which data is sent over the network and where
this data comes from. Moreover, we can determine how
the program uses data that it receives over the network.
Using this information, we can build models that cap-
ture the host-based activity associated with individual
network connections. Our models are behavior graphs,
where the nodes are system calls and the edges represent
data flows between system calls.

We use machine-learning to build graph-based models
that characterize malicious C&C connections (e.g., con-
nections that download binary updates that the malware
later executes, or connections in which the malware up-
loads stolen data to a C&C server). More precisely, start-



ing from labeled sets of graphs that are related to both
known C&C connections and other, irrelevant malware
traffic, we identify those subgraphs that are most char-
acteristic of C&C communication. In the next step, we
abstract from these specific subgraphs and produce gen-
eralized graph templates. Each graph template captures
the core characteristics of a different type or implemen-
tation of C&C communication. These graph templates
can be used to recognize C&C connections of bots that
have not been analyzed previously. Moreover, our tem-
plates possess explanatory capabilities and can help ana-
lysts to understand how a particular bot utilizes its C&C
channel (e.g., for binary updates, configuration files, or
information leakage).

Our experiments demonstrate that our system can
generate C&C templates that recognize host-based ac-
tivity associated with known, malicious traffic with high
accuracy and very few false positives. Moreover, we
show that our templates also generalize; that is, they de-
tect C&C connections that were previously unknown.
The contributions of this paper are the following:

e We present a novel approach to identify C&C com-
munication in the large pool of network connec-
tions that modern bots open. Our approach lever-
ages host-based information and associates mod-
els, which are based on system call graphs, with the
data that is exchanged over network connections.

e We present a novel technique that generalizes sys-
tem call graphs to capture the “essence” of, or
the core activities related to, C&C communication.
This generalization step extends previous work on
system call graphs, and provides interesting in-
sights into the purpose of C&C traffic.

e We implemented these techniques in a tool called
JACKSTRAWS and evaluated it on 130,635 connec-
tions produced by more than 37 thousands malware
samples. Our results show that the generated tem-
plates detect known C&C traffic with high accu-
racy, and less than 0.2% false positives over harm-
less traffic. Moreover, we found 9,464 previously-
unknown C&C connections, improving the cover-
age of hand-crafted network signatures by 60%.

2 System Overview

Our system monitors the execution of a malware pro-
gram in a dynamic malware analysis environment (such
as Anubis [20], BitBlaze [40], CWSandbox [44], or
Ether [9]). The goal is to identify those network con-
nections that are used for C&C communication. To this
end, we record the activities (in our case, system calls)
on the host that are related to data that is sent over and
received through each network connection. These activ-
ities are modeled as behavior graphs, which are graphs
that capture system call invocations and data flows be-

systemcall: NtOpenKey

[ Keyname: \REGISTRY\MACHINE |

arg: ObjectAttributes=KeyHandle

4 systemcall: NtOpenKey
[ Keyname: HKLM\SOFTWAREWicrosoftWindows\CurrentVersion |
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GET /bot/doit.php?v=3&id=ec32632b-29981-349-398...

Figure 1: Example of behavior graph that shows infor-
mation leakage. Underneath, the network log shows that
the Windows ID was leaked via the GET parameter id.

tween system calls. In our setting, one graph is asso-
ciated with each connection. As the next step, all be-
havior graphs that are created during the execution of a
malware sample are matched against templates that rep-
resent different types of C&C communication. When a
graph matches a template sufficiently closely, the corre-
sponding connection is reported as C&C channel.

In the following paragraphs, we first discuss behavior
graphs. We then provide an overview of the necessary
steps to generate the C&C templates.

Behavior graphs. A behavior graph G is a graph where
nodes represent system calls. A directed edge e is in-
troduced from node x to node y when the system call
associated with y uses as argument some output that is
produced by system call z. That is, an edge represents a
data dependency between system calls x and y. Behav-
ior graphs have been introduced in previous work as a
suitable mechanism to model the host-based activity of
(malware) programs [5,13,26]. The reason is that system
calls capture the interactions of a program with its envi-
ronment (e.g., the operating system or the network), and
data flows represent a natural dependence and ordered
relationship between two system calls where the output
of one call is directly used as the input to the other one.
Figure 1 shows an example of a behavior graph. This
graph captures the host-based activity of a bot that reads
the Windows serial number (ID) from the registry and
sends it to its command and control server. Frequently,
bots collect a wealth of information about the infected,
local system, and they send this information to their
C&C servers. The graph shows the system calls that are
invoked to open and read the Windows ID key from the
registry. Then, the key is sent over a network connec-



tion (that was previously opened with connect). An
answer is finally received from the server (recv node).

While behavior graphs are not novel per se, we use
them in a different context to solve a novel problem. In
previous work, behavior graphs were used to distinguish
between malicious and benign program executions. In
this work, we link behavior graphs to network traffic and
combine these two views. That is, we use these graphs
to identify command and control communication amidst
all connections that are produced by a malware sample.

C&C templates. As mentioned previously, the behav-
ior graphs that are produced by our dynamic malware
analysis system are matched against a set of C&C tem-
plates. C&C templates share many similarities with be-
havior graphs. In particular, nodes n carry information
about system call names and arguments encoded as la-
bels [,,, and edges e represent data dependencies where
the type of flow is encoded as labels [.. The main differ-
ence to behavior graphs is that the nodes of templates are
divided into two classes; core and optional nodes. Core
nodes capture the necessary parts of a malicious activity,
while optional nodes are only sometimes present.

To match a C&C template against a behavior graph G,
we define a similarity function ¢. This function takes as
input the behavior graph G and a C&C template 7" and
produces a score that indicates how well G matches the
template. All core nodes of a template must at least be
present in G in order to declare a match.

Template generation. Each C&C template represents
a certain type of command and control activity. We use
the following four steps to generate C&C templates:

In the first step, we run malware executables in our
dynamic malware analysis environment, and extract the
behavior graphs for their network connections. These
connections can be benign or related to C&C traffic.

JACKSTRAWS requires that some of these connections
are labeled as either malicious or benign (for training).
In our current system, we apply a set of signatures to
all connections to find (i) known C&C communication
and (ii) traffic that is known to be unrelated to C&C.
Note that we have signatures that explicitly identify be-
nign connections as such. The signatures were manually
constructed, and they were given to us by a network se-
curity company. By matching the signatures against the
network traffic, we find a set of behavior graphs that are
associated with known C&C connections (called mali-
cious graph set) and a set of behavior graphs associated
with non-C&C traffic (called benign graph set). These
sets serve as the basis for the subsequent steps.

It is important to observe that our general approach
only requires labeled connections, without considering
the payload of network connections. Thus, we could use
other means to generate the two graph sets. For exam-
ple, we can add a graph to the malicious set if the net-

work connection corresponding to this graph contacted
a known blacklisted C&C domain. This allows us to
create suitable graph sets even for encrypted C&C con-
nections. One could also manually label connections.

Of course, there are also graphs for which we do not
have a classification (that is, neither a C&C signature nor
a benign signature has matched). These unknown graphs
could be related to either malicious or benign traffic, and
we do not consider them in the subsequent steps.

The second step uses the malicious and the benign
graph sets as inputs and performs graph mining. More
precisely, we use a graph mining technique, previously
presented by Yan and Han [47,48], to identify subgraphs
that frequently appear in the malicious graph set. These
frequent subgraphs are likely to constitute the core activ-
ity linked to C&C connections. Some post-processing is
then applied to compact the set of mined subgraphs. Fi-
nally, the set difference is computed between the mined,
malicious subgraphs and the benign graph set. Only
subgraphs that never appear by subgraph isomorphism
in the benign graph set are selected. The assumption
is that the selected subgraphs represent some host- and
network-level activity that is only characteristic of par-
ticular C&C connections, but not benign traffic.

In [13], the authors used a similar approach to distin-
guish between malware and harmless programs. To this
end, the authors used a leap mining technique presented
by Yan et al. [46] that selects subgraphs which maximize
the information gain between the malicious and benign
graph sets, that is to say subgraphs that maximally cover
(detect) the entire collection of malicious graphs while
introducing a very low number of false positives. How-
ever, during the mining process, this technique tends to
remove the graph parts that could be common to both
benign and malicious graphs. In our present case, these
parts are critical to obtain complete C&C templates. For
example, in the case of a download and execute com-
mand, if the download part of the graph is observed in
the benign set, leap mining would only mine the execute
part. For these reasons, we performed the set difference
with the benign graph set only as post-processing, once
complete malicious subgraphs have already been mined,
without risk of losing parts of them.

In addition, the algorithm proposed in [13] does not
attempt to synthesize any semantic information from the
mined behaviors; it does not produce a template that
combines related behaviors and generalizes their com-
mon core. In other words [13], “this synthesis step does
not add new behaviors to the set, it only combines the
ones previously mined.” In this paper, we go further and
introduce two additional, novel steps to generalize the
results obtained during the graph mining step. This is
important because we want to generalize from specific
instances of implementing a C&C connection and ab-



stract a core that characterizes the common and neces-
sary operations for a particular type of command.

As a third step, we cluster the graphs previously
mined. The goal of this step is to group together graphs
that correspond to a similar type of command and con-
trol activity. That is, when we have observed differ-
ent instances of one particular behavior, we combine
the corresponding graphs into one cluster. As an ex-
ample, consider different instances of a malware family
where each sample downloads data from the network via
HTTP, decodes it in some way, stores the data on disk,
and finally executes that file. All instances of this be-
havior are examples for typical bot update mechanisms
(download and execute), and we want to group all of
them into one cluster. As a result of this step, we ob-
tain different clusters, where each cluster contains a set
of graphs that correspond to a particular C&C activity.

In the fourth step, we produce a single C&C template
for each cluster. The goal of a template is to capture the
common core of the graphs in a cluster; with the assump-
tion that this common core represents the key activities
for a particular behavior. The C&C templates are gener-
ated by iteratively computing the weighted minimal com-
mon supergraph (WMCS) [3] between the graphs in a
cluster. The nodes and edges in the supergraph that are
present in all individual graphs become part of the core.
The remaining ones become optional.

At the end of this step, we have extracted templates
that match the core of the program activities for different
types of commands, taking into account optional opera-
tions that are frequently (but not always) present. This
allows us to match variants of C&C traffic that might be
different (to a certain degree) from the exact graphs that
we used to generate the C&C templates.

3 System Details

In this section, we provide an overview of the actual im-
plementation of JACKSTRAWS and explain the different
analysis steps in greater details.

3.1 Analysis Environment

We use the dynamic malware analysis environment Anu-
bis [20] as the basis for our implementation, and imple-
mented several extensions according to our needs. Note
that the general approach and the concepts outlined in
this paper are independent of the actual analysis envi-
ronment; we could have also used BitBlaze, Ether, or
any other dynamic malware analysis environment.

As discussed in Section 2, behavior graphs are used
to capture and represent the host-based activity that mal-
ware performs. To create such behavior graphs, we
execute a malware sample and record the system calls
that this sample invokes. In addition, we identify de-
pendencies between different events of the execution

by making use of dynamic taint analysis [38], a tech-
nique that allows us to asses whether a register or mem-
ory value depends on the output of a certain operation.
Anubis already comes with tainting propagation sup-
port. By default, all output arguments of system calls
from the native Windows API (e.g., NtCreateFile,
NtCreateProcess, etc.) are marked with a unique
taint label. Anubis then propagates the taint information
while the monitored system processes tainted data. Anu-
bis also monitors if previously tainted data is used as an
input argument for another system call.

While Anubis propagates taint information for data in
memory, it does not track taint information on the file
system. In other words, if tainted data is written to a
file and subsequently read back into memory, the origi-
nal taint labels are not restored. This shortcoming turned
out to be a significant drawback in our settings: For ex-
ample, bots frequently download data from the C&C,
decode it in memory, write this data to a file, and later
execute it. Without taint tracking through the file system,
we cannot identify the dependency between the data that
is downloaded and the file that is later executed. Another
example is the use of configuration data: Many malware
samples retrieve configuration settings from their C&C
servers, such as URLs that should be monitored for sen-
sitive data or address lists for spam purposes. Such con-
figuration data is often written to a dedicated file before
it is loaded and used later. Restoring the original taint la-
bels when files are read ensures that the subsequent bot
activity is linked to the initial network connection and
improves the completeness of the behavior graphs.

Finally, we improved the network logging abilities
of Anubis by hooking directly into the Winsock API
calls rather than considering only the abstract interface
(NtDeviceIOControlFile) at the native system
call level. This allows us to conveniently reconstruct
the network flows, since send and receive operations are
readily visible at the higher-level APIs.

3.2 Behavior Graph Generation

When the sample and all of its child processes have ter-
minated, or after a fixed timeout (currently set to 4 min-
utes), JACKSTRAWS saves all monitored system calls,
network-related data, and tainting information into a log
file. Unlike previous work that used behavior graphs
for distinguishing between malicious and legitimate pro-
grams, we use these graphs to determine the purpose of
network connections (and to detect C&C traffic). Thus,
we are not interested in the entire activity of the mal-
ware program. Instead, we only focus on actions related
to network traffic. To this end, we first identify all send
and receive operations that operate on a successfully-
established network connection. In this work, we fo-
cus only on TCP traffic, and a connection is considered



successful when the three-way handshake has completed
and at least one byte of user data was exchanged. All
system calls that are related to a single network con-
nection are added to the behavior graph for this connec-
tion. That is, for each network connection that a sample
makes, we obtain one behavior graph which captures the
host-based activities related to this connection.

For each send operation, we check whether the sent
data is tainted. If so, we add the corresponding system
call that produced this data to the behavior graph and
connect both nodes with an edge. Likewise, for each
receive operation, we taint the received data and check
if it is later used as input to a system call. If so, we also
add this system call to the graph and connect the nodes.

For each system call that is added to the graph in this
fashion, we also check backward dependencies (that is,
whether the system call has tainted input arguments). If
this is the case, we continue to add the system call(s)
that are responsible for this data. This process is re-
peated recursively as long as there are system calls left
that have tainted input arguments that are unaccounted
for. That is, for every node that is added to our behav-
ior graph, we will also add all parent nodes that produce
data that this node consumes. For example, if received
data is written to a local file, we will add the correspond-
ing NtWriteFile system call to the graph. This write
system call will use as one of its arguments a file han-
dle. This file handle is likely tainted, because it was
produced by a previous invocation of NtCreateFile.
Thus, we also add the node that corresponds to this cre-
ate system call and connect the two nodes with an edge.
On the other hand, forward dependencies are not recur-
sively followed to avoid an explosion in the graph size.

Graph labeling. Nodes and edges that are inserted into
the behavior graph are augmented with additional labels
that capture more information about the nature of the
system calls and the dependencies between nodes. For
edges, the label stores either the names of the input or
the output arguments of the system calls that are con-
nected by a data dependency. For nodes, the label stores
the system call name and some additional information
that depends on the specific type of call. The additional
information can store the type of the resource (files, reg-
istry keys, ...) that a system call operates on as well as
flags such as mode or permission bits. Note that some
information is only stored as comment; this information
is ignored for the template generation and matching, but
is saved for a human analyst who might want to examine
a template.

One important additional piece of information stored
for system calls that manipulate files and registry keys is
the name of these files and keys. However, for these re-
source names, it is not desirable to use the actual string.
The reason is that labels are taken into account during

the matching process, and two nodes are considered the
same only when their labels match. Thus, some type of
abstraction is necessary for labels that represent resource
names, otherwise, graphs become too specific. We gen-
eralize file names based on the location of the file (using
the path name) and its type (typically, based on the file’s
extension). Registry key names are generalized by nor-
malizing the key root (using abbreviations) and replac-
ing random names by a generic format (typically, nu-
merical values). More details about the labeling process
and these abstractions can be found in Appendix A.

Simplifying behavior graphs. One problem we faced
during the behavior graph generation was that certain
graphs grew very large (in terms of number of nodes),
but the extra nodes only carried duplicate information.
For example, consider a bot that downloads an exe-
cutable file. When this file is large, the data will not
be read from the network connection by a single recv
call. Instead, the receive system call might be invoked
many times; in fact, we have observed samples that read
network data one byte at a time. Since every system call
results in a node being added to the behavior graph, this
can increase the number of nodes significantly.

To reduce the number of (essentially duplicate) nodes
in the graph, we introduce a post-processing step that
collapses certain nodes. The purpose of this step is
to combine multiple nodes, sharing the same label and
dependencies. More precisely, for each pair of nodes
with an identical label in the behavior graph, we check
whether (1) the two nodes share the same set of parent
nodes, or (2) the sets of parents and children of one node
are respective subsets of the other, or (3) one node is the
only parent of the other. If this is the case, we collapse
these nodes into a single node and add a special tag Is-
Multiple to the label. Additional incoming and outgoing
edges of the aggregated nodes are merged into the new
node. The process is repeated until no more collapsing
is possible. As an example, consider the case where a
write file operation stores data that was previously read
from the network by multiple receive calls. In this case,
the write system call node will have many identical par-
ent nodes (the receive operations), which all contribute
to the buffer that is written. In the post-processing step,
these nodes are all merged into a single system call. A
beneficial side-effect of node collapsing is that this does
not only reduce the number of nodes, but also provides
some level of abstraction from the concrete implementa-
tion of the malware code and the number of times iden-
tical functions are called (as part of a loop, for example).

Summary. The output of the two previous steps is one
behavior graph for each network connection that a mal-
ware sample makes. Behavior graphs can be used in two
ways: First, we can match behavior graphs, produced
by running unknown malware samples, against a set



of C&C templates that characterize malicious activity.
When a template matches, the corresponding network
connection can be labeled as command and control. This
matching procedure is explained in Section 3.6.

The second use of behavior graphs is for C&C tem-
plate generation. For this process, we assume that we
know some connections that are malicious and some that
are benign. We can then extract the subgraphs from
the behavior graphs that are related to known malicious
C&C connections and subgraphs that represent benign
activity. These two sets of malicious and benign graphs
form the input for the template generation process that
is described in the following three sections.

3.3 Graph Mining

The first step when generating C&C templates is graph
mining. More precisely, the goal is to mine frequent sub-
graphs that are only present in the malicious set. An
overview of the process can be seen in Figure 2.
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Figure 2: Mining process.
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Frequent subgraphs are those that appear in more than
a fraction k of all malicious graphs. When £ is too high,
we might miss many interesting behaviors (subgraphs)
that are not frequent enough to exceed this threshold.
When £ is too low, more behaviors are covered, but un-
fortunately, the mining process will produce such a mas-
sive amount of graphs that it never terminates. We dis-
cuss the concrete choice of k in Section 4.

Frequent subgraph mining. There exist a number of
tools that can be readily used for mining frequent sub-
graphs. For this paper, we decided to use gSpan [47,48]
because it is stable, and supports labeled graphs, both at
the node and edge level. gSpan relies on a lexicographic
ordering of graphs and uses a depth-first search strategy
to efficiently mine frequent, connected subgraphs.

A limitation of gSpan is that it only supports undi-
rected edges, whereas behavior graphs are, by nature,
directed since the edges represent data flows. To work
around this limitation and produce directed subgraphs,
we encode the direction of edges into their labels, and
then restore the direction information at the end of the
mining process. Moreover, gSpan accepts only numeric
values as labels for nodes and edges. Thus, we cannot
directly use the string labels (names or flags) that are as-

sociated with nodes and edges in the behavior graphs.
To solve this, we simply concatenate all string labels of
a node or edge and hash the result. Then, this hash value
is mapped into a unique integer.

Subgraph maximization. The output produced by
gSpan contains many graphs that are subgraphs of oth-
ers. The reason is that gSpan works by growing sub-
graphs. That is, it first looks for individual nodes that
are frequent. Then, gSpan adds one additional node and
re-runs the frequency checks. This add-and-check pro-
cess is repeated until no more frequent graphs can be
found. However, during this process, gSpan outputs all
subgraphs that are frequent. Thus, the result of the min-
ing step contains all intermediate subgraphs whose fre-
quency is above the selected threshold.

Unfortunately, these redundant, intermediate sub-
graphs negatively affect the subsequent template gener-
ation steps because they distort the frequencies of nodes
and edges. To solve this problem, we introduce a max-
imization step. The purpose of this step is to remove
a subgraph Gy, if there exists a supergraph Gyper in
the same result set that contains G,,. Looking at Fig-
ure 2, the result of the maximization step is that all 2-
node graphs are removed because they are subgraphs of
the 3-node graphs. However, removing subgraphs is not
always desirable: even when both a subgraph G, and
a supergraph G g, per exceed the frequency threshold £,
the subgraph G, might be much more frequent than
G syper- In this case, both graphs should be kept. To
this end, we only remove a subgraph G,,;, when its fre-
quency is less than twice the frequency of G gy per-

Graph sets difference. So far, we have mined graphs
that frequently appear in the malicious set. However, we
also require that these graphs do nor appear in the benign
set. Otherwise, they would not be suitable to distinguish
C&C connections from other traffic.

To remove graphs that are present in the benign set,
we compute the set difference between the frequent ma-
licious subgraphs and benign graphs. More precisely, we
use a sub-isomorphism test to determine, for each mali-
cious graph, whether it appears in some benign graphs.
If this is the case, it is removed from the mining results.
Looking at the example in Figure 2, the set difference
removes one graph that also appears in the benign set.
As an interesting technical detail, our approach of using
set difference to obtain interesting, malicious subgraphs
is different from the technique presented in [13]. In [13],
the authors use leap mining, which operates simultane-
ously on the malicious and benign sets to find graphs
with a high frequency within the malicious set and a low
frequency within the benign set [46].

By construction, leap mining removes all parts from
the output that are shared between benign and malicious
graphs. For example, consider a behavior graph that cap-



tures a command that downloads data, stores it to a file,
and later executes this file. If the download part of this
graph is also present in the benign set, which is likely to
be the case (since downloading data is not malicious per
se), this part will be removed. Thus, the malicious graph
will only contain the part where the downloaded file is
executed. That is, in this example, leap mining would
produce an incomplete graph that covers only part of the
relevant, malicious activity. In our case, we first gener-
ate the entire graph that captures both the download and
the execute. Then, the set difference algorithm checks
whether this entire graph occurs also in the benign set.
Since no benign graph is presumably a supergraph of the
malicious behavior, the entire graph is retained.

3.4 Graph Clustering

Using as input the frequent, malicious subgraphs pro-
duced by the previous mining step, the purpose of this
step is to find clusters of similar graphs (see Figure 3).
The graph mining step produces different graphs that
represent different types of behaviors. We now need to
cluster these graphs to find groups, where each group
shares a common core of activities (system calls) typi-
cal of a particular behavior. Graph clustering is used for
this purpose; generated clusters are later used to create
generalized templates covering the graphs they contain.

Clustering and Generalization Processes Graphs Clusters  Command Templates

Weighted Minimal
Common Supergaphs

Malicious Significant Subgraphs

Adjacency Matrix

Bi
cl

lustering

Figure 3: Clustering and generalization processes.

A crucial component for every clustering algorithm
is the proper choice of a similarity measure that com-
putes the distances between graphs. In our system, the
similarity measure between two graphs is based on their
non-induced, maximum common subgraph (mcs). The
mcs of two graphs is the maximal subgraph that is iso-
morphic to both. The intuition behind the measure is the
following: We expect two graphs that represent the same
malware behavior to share a common core of nodes that
capture this behavior. The mcs captures this core. Thus,
the mcs will be large for similar graphs. From now on,
all references to the mcs will refer to the non-induced
construction. The similarity measure is defined as:

2 x |edges(mes(G, G2)]

4G, C2) = ledges(G1)| + |edges(G2))| v

To compute the mcs between two graphs, we use the
McGregor backtracking algorithm [6]. According to

benchmarking results [6], this algorithm performs well
on randomly-connected graphs with small density. In
our case, behavior graphs have no cycles and only a lim-
ited number of dependencies; this is close to randomly-
connected graphs rather than regular or irregular meshes.

As shown in Figure 3, we use the mcs similarity mea-
sure to compute the one-to-one distance matrix between
all mined graphs. We then use a tool, called Cluto [24],
to find clusters of similar graphs. Cluto implements a
variety of different clustering algorithms; we selected
clustering by repeated bisection. This algorithm works
as follows: All graphs are originally put into a single
cluster. This cluster is then iteratively split until the sim-
ilarity in each sub-cluster is larger than a given similarity
threshold [24,50]. At each step, the cluster to be split is
chosen so that the similarity function between the ele-
ments of that clusters is maximized. The advantage of
this technique is that we do not need to define a fixed
number of clusters a priori. Moreover, one also does not
need to select initial graphs as center to build the clusters
around (as with k-means clustering). The output of this
step is a set of clusters that contain similar graphs.

3.5 Graph Generalization and Templating

Based on the clusters of similar graphs, the final step in
our template generation process is graph generalization
(the rightmost step in Figure 3). The goal of the gen-
eralization process is to construct a template graph that
abstracts from the individual graphs within a cluster. In-
tuitively, we would expect that a template contains a core
of nodes, which are common to all graphs in a cluster.
In addition, to capture small differences between these
graphs, there will be optional nodes attached to the core.

The generalization algorithm computes the weighted
minimal common supergraph (WMCS) of all the graphs
within a given cluster [3]. The WMCS is the minimal
graph such that all the graphs of the cluster are con-
tained within it. To distinguish between core and op-
tional nodes, we use weights. These weights capture
how frequent a node or an edge in the WMCS is present
in one of the individual graphs. For core edges and core
nodes, we expect that they are present in all graphs of a
cluster (that is, their weight is n in the WM CS, assuming
that there are n graphs in the cluster). All other nodes
with a weight smaller than n become optional nodes.

The approach to compute a template is presented in
Algorithm 1. The WMCS is first initialized with the first
graph G5 of the cluster, and the weights of all its nodes
and edges are set to 1. The integration of an additional
graph G, is performed as follows: We first determine
the maximal common subgraph mcs between G; and the
current WMCS. The nodes and edges in the WMCS that
are part of the mcs have their weight increased by 1. The



Algorithm 1 Weighted minimum common supergraph

Algorithm 2 Template matching

Require: A graphset Gy, ...,Gn

I: WMCS + G1

2: Vn € nodes(T) and e € edges(T") do wy, := 1 and we := 1
3: fori = 2tondo

4:  s:= state_exploration(®)
mcs < mazimum_common_subgraph(G;, WMCS, s)
Vn € nodes(mes) dowp, +=1
Ve € edges(mes) do we +=1
Vn € nodes(G;) and n & nodes(mcs),
do WMCS.add-node(n) and wy, :=1

9: Ve € edges(G,;) and e € edges(mcs),

do WMCS.add_edge(e) and we := 1

10: end for
11: return WMCS

AN

nodes and edges in G; that are not part of the mcs are
added to the WMCS, and their weight is set to 1.

To increase the generality of a template, the labels of
optional nodes are further relaxed. More precisely, our
system preserves the label that stores the name of the
system call. However, all additional information is re-
placed by a wild card that matches every possible, con-
crete parameter later. Finally, we remove all templates
with a core of three or fewer nodes. The reason is that
these templates are likely too small to accurately capture
the entire malicious activity and might lead to false pos-
itives. In the example in Figure 3, core nodes and edges
are shown as dark elements, while the optional elements
are white. We generate one C&C template per cluster.

3.6 Template Matching

The previous steps leveraged machine learning tech-
niques and sets of known malicious and benign graphs to
produce a number of C&C templates. These templates
are graphs that represent host-based activity that is re-
lated to command and control traffic. To find the C&C
connections for a new malware sample, this sample is
first executed in the sandbox, and our system extracts its
behavior graphs (as discussed in Sections 3.1 and 3.2).
Then, we match all C&C templates against the behavior
graphs. Whenever a match is found, the corresponding
connection is detected as command and control traffic,
and we can extract its endpoints (IPs and domains).

The matching technique is described in Algorithm 2.
In a first step, we attempt to determine whether the core
of a template 7" is present in the behavior graph G. To
this end, we simply use a subgraph isomorphism test.
When the test fails, we know that the core nodes of 1T
are not part of the graph, and we can advance to trying
the next template. If the core is found, we obtain the
mapping from the core nodes to the corresponding nodes
in G. We then test the optional nodes. To this end, we
compute the mcs between T and G. For this, the fixed
mapping provided by the previous isomorphism test is
used to initialize the space exploration when building the

Requlre A behavior graph G, A template 1"
1 map < subgraph_isomorphism(core(T), G)
. if map = © then
return false
end if
s 1= state_exploration(map)
mces < maximum_common_subgraph(G,T, s)
. return true, mcs
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mcs, significantly speeding up the process. Based on the
result of the mcs computation, we can directly see how
many optional nodes have matched, that is to say, are
covered by the mcs. Taking into account the fraction (or
the absolute number) of optional nodes that are found in
G, we can declare a template match.

4 Evaluation

Experiments were performed to evaluate JACKSTRAWS
both from a quantitative and qualitative perspective.
This section describes the evaluation details and results.

4.1 Evaluation Datasets

For the evaluation, our system analyzed a total of 37,572
malware samples. The samples were provided to us by
a network security company, who obtained the binaries
from recent submission to a public malware analysis
sandbox. Moreover, we were only given samples that
showed some kind of network activity when run in the
sandbox. We were also provided with a set of 385 sig-
natures specifically for known C&C traffic, as well as
162 signatures that characterize known, benign traffic.
As mentioned previously, the company uses signatures
for benign traffic to be able to quickly discard harmless
connections that bots frequently make.

To make sure that our sample set covers a wide vari-
ety of different malware families, we labeled the entire
set with six different anti-virus engines: Kaspersky, F-
Secure, BitDefender, McAfee, NOD32, and F-Prot. Us-
ing several sources for labeling allows us reduce the pos-
sible limitations of a single engine. For every malware
sample, each engine returns a label (unless the samples
is considered benign) from which we extract the mal-
ware family substring. For instance, if one anti-virus
engine classifies a sample as Win32.Koobface.AZ, then
Koobface is extracted as the family name. The family
that is returned by a majority of the engines is used to
label a sample. In case the engines do not agree (and
there is no majority for a label), we go through the out-
put of the AV tools in the order that they were mentioned
previously and pick the first, non-benign result.

Overall, we identified 745 different malware families
for the entire set. The most prevalent families were
Generic (3756), EgroupDial (2009), Hotbar (1913),
Palevo (1556), and Virut (1539). 4,096 samples re-



mained without label. Note that Generic is not a precise
label; many different kinds of malware can be classified
as such by AV engines. In summary, the results indicate
that our sample set has no significant bias towards a cer-
tain malware family. As expected, it covers a rich and
diverse set of malware, currently active in the wild.

In a first step, we executed all samples in JACK-
STRAWS. Each sample was executed for four minutes,
which allows a sample to initialize and perform its nor-
mal operations. This timeout is typically enough to
establish several network connections and send/receive
data via them. The execution of the 37,572 samples
produced 150,030 network connections, each associated
with a behavior graph. From these graphs, we removed
19,395 connections in which the server responded with
an error (e.g., an HTTP request with a 404 “Not Found”
response). Thus, we used a total of 130,635 graphs pro-
duced by a total of 33,572 samples for the evaluation.

In the next step, we applied our signatures to the
network connections. This resulted in 16,535 connec-
tions that were labeled as malicious (known C&C traffic,
12.7%) and 16,082 connections that were identified as
benign (12.3%). The malicious connections were pro-
duced by 9,108 samples, while the benign connections
correspond to 7,031 samples. The remaining 98,018
connections (75.0%) are unknown. The large fraction of
unknown connections is an indicator that it is very dif-
ficult to develop a comprehensive set of signatures that
cover the majority of bot-related C&C traffic. In partic-
ular, there was at least one unclassified connection for
31,671 samples. Note that the numbers of samples that
produced malicious, benign, and unknown traffic add up
to more than the total number of samples. This is be-
cause some samples produced both malicious and be-
nign connections. This underlines that it is difficult to
pick the important C&C connections among bot traffic.

Of course, not all of the 385 malicious signatures pro-
duced matches. In fact, we observed only hits from 78
C&C signatures, and they were not evenly distributed.
A closer examination revealed that the signature that
matched the most number of network connections is re-
lated to Palevo (4,583 matches), followed by Ramnit
(3,896 matches) and Koobface (2,690 matches).

4.2 Template Generation

Initially, we put all 16,535 behavior graphs that corre-
spond to known C&C connections into the malicious
graphs set, while the 16,082 graphs corresponding to be-
nign connections were added to the benign graphs set.
To improve the quality of these sets, we removed graphs
that contained too few nodes, as well as graphs that
contained only nodes that correspond to network-related
system calls (and a few other house-keeping functions
that are not security-relevant). Moreover, to maintain

a balanced training set, we kept at most three graphs
(connections) for each distinct malware sample. This
pre-processing step reduced the number of graphs in the
malicious set to 10,801, and to 12,367 in the benign set.

Both sets were then further split into a training set and
a test set. To this end, we randomly picked a number
of graphs for the training set, while the remaining ones
were set aside as a test set. More precisely, for the mali-
cious graphs, we kept 6,539 graphs (60.5%) for training
and put 4,262 graphs (39.5%) into the test set. For the
benign graphs, we kept 8,267 graphs (66.8%) for train-
ing and put 4,100 graphs (33.2%) into the test set. We
used these malicious and benign training sets as input
for our template generation algorithm. This resulted in
417 C&C templates that JACKSTRAWS produced. The
average number of nodes in a template was 11, where 6
nodes were part of the core and 5 were optional.

For the mining process, we used a threshold k£ = 0.1.
That is, the mining tool will pick subgraphs from the
training sets only when they appear in more than 10%
of all behavior graphs. The reason why we could oper-
ate with a relatively large threshold of k¥ = 0.1 is that
we divided the behavior graphs into different bins, and
mined on each bin individually. To divide graphs into
bins, we observe that certain malware activity requires
the execution of a particular set of system calls. For ex-
ample, to start a new process, the malware needs to call
NtCreateProcess, or to write to a file, it needs to
call NtWriteFile. Thus, we selected five security-
relevant system activities (registry access; file system
access; process creation; queries to system information;
and accesses to web-related resources, such as HTML or
JS files) and assigned each to a different bin. Then, we
put into each bin all behavior graphs that contain a node
with the corresponding activity (system calls). Graphs
that did not fall into any of these bins were gathered in
a miscellaneous bin. It is important to observe that this
step merely allows us to mine with a higher threshold,
and thus to accelerate the graph mining process consid-
erably. We would have obtained the same set of tem-
plates (and possibly more) when mining on the entire
training set with a lower mining threshold.

For the clustering process, we iterated the bisection
operation until the average similarity within the clus-
ters was over 60% and the minimal similarity was over
40%. Higher thresholds were discarded because they in-
creased the number of clusters, making them too spe-
cific.

Producing templates for the 14,806 graphs in the
training set took about 21 hours on an Intel Xeon 4
CPUs 2.67GHz server, equipped with 16GB of RAM.
This time was divided into 16 hours for graph mining,
4.5 hours for clustering, and 30 minutes for graph gen-
eralization. This underlines that, despite the potentially



costly (NP-hard) graph algorithms, JACKSTRAWS is able
to efficiently produce results on a large, real-world in-
put dataset. The mining process was the most time-
consuming operation, but the number of mined sub-
graphs was, in the end, five times smaller than the num-
ber of graphs in input. Consequently, the clustering pro-
cess, which is polynomial in function of the number of
graphs in input, ran on a reduced set. For the template
generation process, the resulting clusters only contained
10 to 20 graphs on average, explaining the faster com-
putations.

4.3 Detection Accuracy

In the next step, we wanted to assess whether the gen-
erated templates can accurately detect activity related
to command and control traffic without matching be-
nign connections. To this end, we ran two experiments.
First, we evaluated the templates on the graphs in the
test set (which correspond to known C&C connections).
Then, we applied the templates to graphs associated
with unknown connections. This allows us to deter-
mine whether the extracted C&C templates are generic
enough to allow detection of previously-unknown C&C
traffic (for which no signature exists).

Experiment 1: Known C&C connections. For the first
experiment, we made use of the test set that was pre-
viously set aside. More precisely, we applied our 417
templates to the behavior graphs in the test set. This test
set contained 4,262 connections that matched C&C sig-
natures and 8,267 benign connections.

Our results show that JACKSTRAWS is able to success-
fully detect 3,476 of the 4,262 malicious connections
(81.6%) as command and control traffic. Interestingly,
the test set also contained malware families that were
absent from the malicious training set. 51.7% of the
malicious connections coming from these families were
successfully detected, accounting for 0.4% of all detec-
tions. While the detection accuracy is high, we explored
false negatives (i.e., missed detections) in more detail.
Overall, we found three reasons why certain connections
were not correctly identified:

First, in about half of the cases, detection failed be-
cause the bot did not complete its malicious action after
it received data from the C&C server. Incomplete be-
havior graphs can be due to a timeout of the dynamic
analysis environment, or an invalid configuration of the
host to execute the received command properly.

Second, the test set contained a significant number of
Adware samples. The behavior graphs extracted from
these samples are very similar to benign graphs; after
all, Adware is in a grey area different from malicious
bots. Thus, all graphs potentially covering these sam-
ples are removed at the end of the mining process, when
compared to the benign training sets.

The third reason for missed detections are malicious
connections that are only seen a few times (possibly only
in the test set). According to the AV labels, our data
set covers 745 families (and an additional 4,096 samples
that could not be labeled). Thus, certain families are rare
in the data set. When a specific graph is only present a
few times (or not at all) in the training set, it is possible
that all of its subgraphs are below the mining threshold.
In this case, we do not have a template that covers this
activity.

JACKSTRAWS also reported 7 benign graphs as ma-
licious out of 4,100 connections in the benign test set:
a false positive rate of 0.2%. Upon closer examination,
these false positives correspond to large graphs where
some Internet caching activity is observed. These graphs
accidentally triggered four weaker templates with few
core and many optional nodes.

Overall, our results demonstrate that the host-based
activity learned from a set of known C&C connections is
successful in detecting other C&C connections that were
produced by a same set of malware families, but also
in detecting five related families that were only present
in the test set. In a sense, this shows that C&C tem-
plates have a similar detection capability as manually-
generated, network-based signatures.

We also wanted to understand the impact of template
generalization compared to previous work that used di-
rectly the mined subgraphs [13]. For this, we used the
graphs mined from the malicious training set as signa-
tures, without any generalization (this is the approach
followed in previous work). Using a sub-isomorphism
test for detection over the 4,262 malicious graphs in the
test set, we found that the detection rate was 66%, 15.6%
lower. This underlines that the novel template generation
process provides significant benefits.

Experiment 2: Unknown connections. For the next
experiment, we decided to apply our templates to the
graphs that correspond to unknown network traffic. This
should demonstrate the ability of JACKSTRAWS to detect
novel C&C connections within protocols not covered by
any network-level signature.

When applying our templates to the 98,018 unknown
connections, we found 9,464 matches (9.7%). We manu-
ally examined these connections in more detail to deter-
mine whether the detection results are meaningful. The
analysis showed that our approach is promising; the vast
majority of connections that we analyzed had clear indi-
cations of C&C activity. With the help of the anti-virus
labels, we could identify 193 malware families which
were not covered by the network signatures. The most
prevalent new families were Hotbar (1984), Pakes (871),
Kazy (107), and LdPinch (67). Furthermore, we de-
tected several new variants of known bots that we did
not detect previously because their network fingerprint



had changed and, thus, none of our signatures matched.
Nevertheless, JACKSTRAWS was able to identify these
connections due to matched templates. In addition, the
manual analysis showed a low number of false positives.
In fact, we only found 27 false positives out of the 9,464
matches, all of them being HTTP connections.

When comparing the number of our matches with the
total number of unknown connections, the results may
appear low at first glance. However, not all connec-
tions in the unknown set are malicious. In fact, 10,524
connections (10.7%) do not result in any relevant host-
activity at all (the graphs only contain network-relayed
system calls such as send or connect). For an-
other 13,676 graphs (14.0%), the remote server did not
send any data. For more than 7,360 HTTP connec-
tions (7.5%), the server responded with status code 302,
meaning that the requested content had moved. In this
case, we probably cannot see any interesting behavior
to match. In a few hundred cases, we also observed that
the timeout of JACKSTRAWS interrupted the analysis too
early (e.g., the connection downloaded a large file). In
these cases, we usually miss some of the interesting be-
havior. Thus, almost 30 thousand unknown connections
can be immediately discarded as non-C&C traffic.

Furthermore, the detection results of 9,464 new C&C
connections for JACKSTRAWS need to be compared with
the total number of 16,535 connections that the entire
signature set was able to detect.Our generalized tem-
plates were able to detect almost 60% more connec-
tions than hundreds of hand-crafted signatures. Note
that our C&C templates do not inspect network traffic at
all. Thus, they can, by construction, detect C&C connec-
tions regardless of whether the malware uses encryption
or not, something not possible with network signatures.

4.4 Template Quality

The previous section has shown that our C&C templates
are successful in identifying host-based activity related
to both known and novel network connections. We also
manually examined several templates in more detail to
determine whether they capture activity that a human an-
alyst would consider malicious.

JACKSTRAWS was able to extract different kinds of
templates. A few template examples are shown in Ap-
pendix B. More precisely, out of the 417 templates,
more than a hundred templates represent different forms
of information leakage. The leaked information is origi-
nally collected from dedicated registry keys or from spe-
cific system calls (e.g., computer name, Windows ver-
sion and identifier, Internet Explorer version, current
system time, volume ID of the hard disk, or processor
information). About fifty templates represent executable
file downloads or updates of existing files. Additional
templates include process execution: downloaded data

that is injected into a process and then executed. Five
templates also represent complete download and exe-
cute commands. The remaining templates cover vari-
ous other malicious activities, including registry modi-
fications ensuring that the sample is started on certain
events (e.g., replacing the default executable file handler
for Windows Explorer) and for hiding malware activity
(e.g., clearing the MUICache).

We also found 20 “weak” templates (out of 417).
These templates contain a small number of nodes and
do not seem related to any obvious malicious activity.
However, these templates did not trigger any false pos-
itive in the benign test set. This indicates that they still
exhibit enough discriminative power with regards to our
malicious and benign graph sets.

5 Related Work

Given the importance and prevalence of malware, it is
not surprising that there exists a large body of work
on techniques to detect and analyze this class of soft-
ware. The different techniques can be broadly divided
into host-based and network-based approaches, and we
briefly describe the related work in the following.

Host-based detection. Host-based detection techniques
include systems such as traditional anti-virus tools that
examine programs for the presence of known mal-
ware. Other techniques work by monitoring the execu-
tion of a process for behaviors (e.g., patterns of system
calls [12,28, 32]) that indicate malicious activity. Host-
based approaches have the advantage that they can col-
lect a wealth of detailed information about a program
and its execution. Unfortunately, collecting a lot of in-
formation comes with a price; it incurs a significant per-
formance penalty. Thus, detailed but costly monitoring
is typically reserved for malware analysis, while detec-
tion systems, which are deployed on end-user machines,
resort to fast but imprecise techniques [43]. As a result,
current anti-virus products show poor detection rates [4].

A suitable technique to model the host-based activ-
ity of a program is a behavior graph. This approach
has been successfully used in the past [5, 13, 26] and
we also apply this technique. Recently, Fredrikson et
al. introduced an approach to use graph mining on be-
havior graphs in order to distinguish between malicious
and benign programs [13]. Graph mining itself is a well-
known technique [46—48] that we use as a building block
of JACKSTRAWS. Compared to their work, we have an-
other high-level goal: we want to learn which network
connections are related to C&C traffic in an automated
way. Thus we do not only focus on host-level activities,
but also take the network-level view into account and
correlate both. Furthermore, we also cluster the graphs
and perform a generalization step to extract templates
that describe the characteristics of C&C connections.



From a technical point of view, we perform a more fine-
grained analysis by applying taint analysis instead of the
coarse-grained analysis performed by [13].

BOTSWAT [41] analyzes how bots process network
data by analyzing system calls and performing taint
analysis. The system matches the observed behavior
against a set of 18 manually generated behavior patterns.
In contrast, we use mining and machine learning tech-
niques to automatically generate C&C templates. From
a technical point of view, BOTSWAT uses library-call-
level taint analysis and, thus, might miss certain depen-
dencies. In contrast, the data flow analysis support of
JACKSTRAWS enables a more fine grained analysis of
information flow dependency among system calls.

Network-based detection. To complement host-based
systems and to provide an additional layer for defense-
in-depth, researchers proposed network-based detection
techniques [15-18, 45, 49]. Network-based approaches
have the advantage that they can cover a large num-
ber of hosts without requiring these hosts to install any
software. This makes deployment easier and incurs no
performance penalty for end users. On the downside,
network-based techniques have a more limited view
(they can only examine network traffic and encryption
makes detection challenging), and they do not work for
malicious code that does not produce any network traffic
(which is rarely the case for modern malware).

Initially, network-based detectors focused on the ar-
tifacts produced by worms that spread autonomously
through the Internet. Researchers proposed techniques
to automatically generate payload-based signatures that
match the exploits that worms use to compromise remote
hosts [25,27,29,31,39]. With the advent of botnets, mal-
ware authors changed their modus operandi. In fact, bots
rarely propagate by scanning for and exploiting vulnera-
ble machines; instead, they are distributed through drive-
by download exploits [36], spam emails [22], or file
sharing networks [23]. However, bots do need to com-
municate with a command and control infrastructure.
The reason is that bots need to receive commands and
updates from their controller, and also upload stolen data
and status information. As a result, researchers shifted
their efforts to developing ways that can detect and dis-
rupt malicious traffic between bots and their C&C infras-
tructure. In particular, researchers proposed approaches
to identify (and subsequently block) the IP addresses and
domains that host C&C infrastructures [42], techniques
to generate payload signatures that match C&C connec-
tions [15,17,45], and anomaly-based systems to corre-
late network flows that exhibit a behavior characteristic
of C&C traffic [16, 18,49]. In a paper related to ours,
Perdisci et al. studied how network traces of malware
can be clustered to identify families of bots that perform
similar C&C communication [34]. The clustering results

can be used to generate signatures, but their approach
does not take into account that bots generate benign traf-
fic or can even deliberately inject noise [1, 10, 11, 33].
Our work is orthogonal to this approach since we can
precisely identify connections related to C&C traffic.

6 Limitations

We aim at analyzing malicious software, which is a hard
task in itself. An attacker can use different techniques to
interfere with the analysis environment which is of con-
cern for us. Our approach relies on actually observing
the network communication of the sample to build the
corresponding behavior graph. Thus, we need to con-
sider attacks against the dynamic analysis environment,
and, specifically, the taint analysis, since this component
allows us to analyze the interdependence of network and
host activities. Several techniques have been introduced
in the past to enhance the analysis capabilities, for ex-
ample, multi-path execution [30] or the analysis of VM-
aware samples [2]. These and similar methods can be
integrated in JACKSTRAWS so that the dynamic analysis
process produces more extensive analysis reports. Note,
however, that the evaluation results demonstrate that we
can successfully, and in a large scale, analyze complex,
real-world malware samples. This indicates that the pro-
totype version of JACKSTRAWS already provides a ro-
bust framework for performing our analysis

Of course, an attacker might develop techniques to
thwart our analysis, for example, by interleaving unnec-
essary system calls with the calls that represent the ac-
tual, malicious activity. The resulting, additional nodes
might hinder the mining process and prevent the extrac-
tion of a graph core. An attacker might also try to in-
troduce duplicate nodes to launch complexity attacks,
since most of the graph algorithms used in JACKSTRAWS
are known to be NP-complete [6]. However, interleaved
calls have to share some data dependencies with relevant
system calls, otherwise, they would be stripped from
the behavior graph. Moreover, they must be specifically
crafted to escape the collapsing mechanism. Another ap-
proach to disturb the analysis is to mutate the sequence
of system calls that implement a behavior, as discussed
in [21]. A possible solution to this kind of attacks is to
normalize the behavior graphs in input using rewriting
techniques. That is, semantically equivalent graph pat-
terns are rewritten into a canonical form before mining.

7 Conclusion

In this paper, we focused on the problem of identifying
actual C&C traffic when analyzing binary samples. Dur-
ing a dynamic analysis run, bots do not only communi-
cate with their C&C infrastructure, but they often open
also a large number of benign network connections. We
introduced JACKSTRAWS, a tool that can identify C&C



traffic in a sound way. This is achieved by correlating
network traffic with the associated host behavior.

With the help of experiments, we demonstrated the
different templates we extracted and showed that we
can even infer information about unknown bot families
which we did not recognize before. On the one hand, we
showed that our approach can be applied to proprietary
protocols, which demonstrates that it is protocol agnos-
tic. On the other hand, we also applied JACKSTRAWS
to HTTP traffic, which is challenging since we need to
reason about small differences between legitimate and
malicious usage of the Windows API. The results show
that we can still extract precise templates in this case.
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A Graph Labeling and Abstraction

Nodes and edges that are inserted into the behavior
graph are augmented with additional labels that capture
more information about the nature of the system calls
and the dependencies between nodes. In the following,
we describe this labeling in greater detail. For edges,

a label stores the names of the input and output argu-
ments, respectively, of the system calls that are con-
nected through a data dependency. In case of a node,
the label stores the system call name and some optional
information that depends on the specific type of call.

As shown in Table 1, the additional information can
correspond to the type of the resource (files, registry
keys, ...) that a system call operates on as well as flags
(such as mode or permission bits for file operations).
Note that some information is only stored as comments;
this information is ignored for the template generation
and matching, but is saved for a human analyst who
might want to examine a template.

Operations [ [ File [ Registry [ Network

Label Location, Type (Table 2), Key name, Port
Access, Attributes, Value name
CreateDisposition

Comment File name IP address

Table 1: Selected information for labels and comments.

One important additional piece of information stored
for system calls that manipulate files and registry keys is
the name of these files and keys. However, for these re-
source names, it is not desirable to use the actual string.
The reason is that labels are taken into account during
the matching process, and two nodes are considered the
same only when their labels match. Thus, some type of
abstraction is necessary for labels that represent resource
names, otherwise, graphs become too specific.

In the case of files, the name string is split into three
parts: the path representing the location of the file, the
short name of the file and its extension. Table 2 shows
how the paths, short names and extensions are mapped
to several generic classes of location and type, that are
then used for the file name label. Similarly, the registry
key names are split into two parts: the location of the key
and its short name. The location is first normalized using
the standard registry abbreviations (HKLM, HKU, HKCU,
HKCR). The short key name is then confronted to generic
types (number, path, url). If the name does not comply
with any format, but still shows a high number of simi-
lar close variations, a generic type random is attributed.
Additional examples of this abstraction process can be
observed in the examples of template of the next section.

B Template Examples

We manually examined C&C templates to determine
whether they capture activity that a human analyst would
consider malicious. We now present two examples that
were automatically generated by JACKSTRAWS.

Figure 4 shows a template we extracted from bots
that use a proprietary, binary protocol for communicat-
ing with the C&C server. The behavior corresponds to
some kind of information leakage: the samples query the



Location | File Path || Type | Extension

InWindowsDirectory\ \ Windows\ IsExecutable * exe
InSystemDirectory\ Windows\ System* IsDynamicLibrary | *.dil
InDocumentDirectory Documents and Settings IsDriver *.5ys, *.drv
InStartupDirectory \ \Documents and Settings\ *\Startup\ IsConfiguration *.ini, *.cfg
InTemporaryDirectory\ | \Documents and Settings\ *\Local Settings\Temp\ IsWebPage * htm, *.php, *.xml
InInternetDirectory \ \Documents and Settings\ *\ Local Settings\ Temporary Internet Files\ IsScript *js, *.vbs
InProgramDirectory\ \Program Files\ IsCookie \Cookies\ *@*.ixt
IsDevice \Device\
IsNetworkDevice \Device\AfdEndPoint

Table 2: File abstraction based on location and type.

systemcall: NtAllocateVirtualMemory
*: X

arg: ObjectAttributes=buf arg: ip=buf

arg: ObjectAttributes=buf|arg: ObjectAttributes=RegionSize

arg: Socket=Socket

arg: FileHandle=FileHandle arg: FileHandle=FileHandle

arg: Buffer=buf
arg: Length=buf

arg: FileInformation=buf[ arg: InputBuffer=bu’ arg: buf=buf

systemcall: NtDeviceloControlFile

*. %

Figure 5: Template that describes the download and execute functionality of a bot: an executable file is created, its
content is downloaded from the network, decoded, written to disk, its information is modified before being executed.
In the NtCreateFile node, the file name /dr.exe is only mentioned as a comment. Comments help a human analyst

when looking at a template, but they are ignored by the matching.

arg: ObjectAttributes=KeyHandle

samples use their own protocol.
arg: KeyHandle=KeyHandle

arg: buf=KeyValuelnformation / Socket=Socket

describes this specific behavior in a generic way.

Figure 4: Template that describes leaking of sensitive
data. Darker nodes constitute the template core, whereas
lighter ones are optional.

registry for the computer name and send this information
via the network to a server. We consider this a malicious
activity, which is often used by bots to generate a unique
identifier for an infected machine. In the network traffic
itself this activity cannot be easily identified, since the

As another example, consider the template shown in
network: connect Figure 5. This template corresponds to the download &
porti execute behavior, i.e., data is downloaded from the net-
work, written to disk, and then executed. The template



