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RFID tagsComputational
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CRFIDs

• Batteryless

• Powered by harvested energy

• Interact with RFID readers

• Programmable

WISP 1.0

3
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CRFIDs

WISP 1.0
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• Tiny energy reservoir

• Frequent power loss

• Limited use of local storage
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Local Storage... at a Price

4

Read

Write 56.97

0.64

Energy Consumption (!J)

• Energy intensive writes 128 Bytes
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Local Storage... at a Price

4

Read

Write 56.97

0.64

Energy Consumption (!J)

• Energy intensive writes

• Erase-before-write

• Small nonvolatile memory

• WISP 4.0: 32 KB flash

Read

Write

Erase 46.81

56.97

0.64

Energy Consumption (!J)
128 Bytes
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Inexpensive Radio

Mote
[Hydrowatch]
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Outsource Storage?
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Outsource Storage?

6

Send

Receive
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Outsource Storage?

Problem: a reader is not necessarily trustworthy
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Junk

Read

Outsource Storage?

Problem: a reader is not necessarily trustworthy
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Cryptographic Computational Continuation Passing 
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Cryptographic Computational Continuation Passing 
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ENC
MAC
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Cryptographic Computational Continuation Passing 
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ENC
MAC

DEC
MAC
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Goal: Computational Progress

• Change of computational state toward a goal

" Example: completion of a loop

• Eliminate Sisyphean tasks

8
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• Some workloads may never complete given 

typical energy availability

• Manually splitting tasks is not necessarily 

easy or effective

Sisyphean Tasks
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Mementos [Ransford ’08]
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Mementos [Ransford ’08]

10

T1 T2 T3 T4Task = { }

Tuesday, August 18, 2009



Shane Clark, USENIX Security ’09

Mementos [Ransford ’08]
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Energy =

T1 T2 T3 T4Task = { }
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Mementos [Ransford ’08]

• Checkpoint state (locally) as energy wanes

• Spread computations over multiple lifecycles

10

Energy =

T1 T2 T3 T4Task = { }
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Mementos [Ransford ’08]

• Checkpoint state (locally) as energy wanes

• Spread computations over multiple lifecycles

10

Energy =

T1 T2 T3 T4Task = { }

Checkpoint Retrieve

T1 T2 T3 T4{ }
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Mementos [Ransford ’08]

• Checkpoint state (locally) as energy wanes

• Spread computations over multiple lifecycles

10

Energy =

• Problem: flash write takes precious energy.

T1 T2 T3 T4Task = { }

Checkpoint Retrieve

T1 T2 T3 T4{ }
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Security Goals

• Confidentiality

• Integrity

• Authentication

• Data Freshness

• Availability 
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Expensive flash

No ba
tte

ry

Security Goals

• Confidentiality

• Integrity

• Authentication

• Data Freshness

• Availability 

11

Tiny capacitor
Reboots every few seconds

Small RAM
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Security Primitives

• Stream cipher for confidentiality

• UMAC for integrity/authentication [Black ’99]

• Low cost in terms of energy
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Security Primitives

• Stream cipher for confidentiality

• UMAC for integrity/authentication [Black ’99]

• Low cost in terms of energy

12

• Challenge: Maintaining the keystreams
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Precomputation?

• Keystreams are required by the cipher and 
the MAC

• Cannot reuse keystream bits

• Not enough energy to compute on the fly

13
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Good Power Seasons

• Times when the CRFID is idle

• CRFID is awake and has no computation 
left to complete.

• CRFID finds a reader that does not 
understand CCCP.

• Plentiful energy ! time to produce 

keystream bits
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Data Freshness

• Some state must be in 
trusted storage

• Nonvolatile memory is too 
expensive to use frequently

• How can we use it frugally?
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Hole Punching
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Hole Punching
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000001112   (=710)

(a) Binary Counter
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Hole Punching
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(a) Binary Counter
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000010002   (=810)000010002   (=810)

Hole Punching
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000001112   (=710)

111111112   (erase) 

(a) Binary Counter
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000010002   (=810)000010002   (=810)

Hole Punching

16

000001112   (=710)

111111112   (erase) 

(a) Binary Counter

111100000001   (=710)

(b) Unary Counter
(complemented)
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000010002   (=810)000010002   (=810)

Hole Punching

16

000001112   (=710)

111111112   (erase) 

(a) Binary Counter

111100000001   (=710)

(b) Unary Counter
(complemented)

111000000001   (=810)
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Protocol

Reader

CRFID
st
at
e
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Protocol

Reader

CRFID
st
at
e

Non-autonomous
communication
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Store Procedure

Reader

CRFID
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Store Procedure
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Store Procedure

Reader

CRFID

Q
uery

Tasks 1..k
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Retrieve Procedure

Reader

CRFID
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Retrieve Procedure

RetrieveReader

CRFID
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Retrieve Procedure

C
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Retrieve Procedure

C
iphertext+

M
A
C

1. Verify
2. Dec

RetrieveReader

CRFID
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Retrieve Procedure

C
iphertext+
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1. Verify
2. Dec

RetrieveReader

CRFID
Tasks k..n
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Evaluation
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Experimental setup
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Experimental setup
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1. Program the CRFID with a task
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Experimental setup
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1. Program the CRFID with a task

2. Charge CRFID to voltage V
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1. Program the CRFID with a task
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Tuesday, August 18, 2009



Shane Clark, USENIX Security ’09

Experimental setup

21

1. Program the CRFID with a task

4. Observe the voltage drop and 
execution time

2. Charge CRFID to voltage V

3. Disconnect the power supply
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CCCP/Auth CCCP/NoSec
Flash Write+Erase (Calculated)

CCCP provides CRFIDs with secure, 
remote storage that is cheaper than

local memory.
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Extensions/Future Work
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• CRFID hardware design

• Long-term storage

• WOM codes [Rivest ’82]

• PKCS on CRFIDs
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Summary
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• CRFIDs can go where other platforms cannot

• They are limited by available energy

• Remote storage is cheap

• CCCP provides remote storage that is secure 
and yet less expensive than local storage. 
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Summary
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• CRFIDs can go where other platforms cannot

• They are limited by available energy

• Remote storage is cheap

• CCCP provides remote storage that is secure 
and yet less expensive than local storage. 

More info at: www.cs.umass.edu/~ssclark/crfid
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