Ol
Nozzle:

A Defense Against Heap-spraying
Code Injection Attacks

Paruj Ratanaworabhan, Cornell University

Ben Livshits and Ben Zorn, Microsoft Research
(Redmond, WA)

Heap Spraying is a Problem

Thursda

When PDFs

The Shadowsery
Acrobat affecting
exploited. We arg

sample last weeld
clearthat we did
others are aware
Reader8.1.0,8.1.
confirmed via tes|
will also affectit

However, it woul
you DISABLE JAV.
functionality and
should be an eas:

Disabling JavaScr
Click: Edit -> Prefi

FireEye Malware Intelligence Lab

Threat research, analysis, and mitigation | www.fireeye.com

Subscribe

Archives

Home

Common Element:
All vulnerable applications support

embedded scripting languages
(JavaScript, ActionScript, etc.)

Most of the Acrobat exploits over the last several months use the, now common, heap spraying technigue, implemented
in Javascript/ECMAscript, a Turing complete language that Adobe thought would go well with static documents. (Cause
that went so well for Postscript) (Ironically, PDF has now come full circle back to having the features of Postscript that it
was trying to get away from.) The exploit could be made far far [ess reliable, by disabling Javascript in your Adobe
Acrobat Reader.

But apparently there's no easy way to disable Flash through the UL, US-CERT recommends renaming the %
ProgramFiles%"Adobe'\Reader 9.0%Reader‘authplayv.dll and #ProgramFiles%\Ldobe’\Reader 9.0
YReader\rt3d.dll files. [Edit: Actually the source for this advice is the Adobe Product Security Incident Response

Team (PSIRT).]

Anyway, here's why... Flash has it's own version of ECMAScript called Actionscript, and whoever wrote this new 0-day,
finally did something new by implementing the heap-spray routine with Actionscript inside of Flash.

Details http://blog.fireeye.com/research/2009/07/actionscript heap spray.html

OGLE SEARC

-]

Q

O ARCH

¥ 2009(140)

» Angust(11)

¥ July (33)
LuckySploit **

* 8866.0rg,podzone.o

ulaiba.net...

Spam ** 29 July

LuckySploit ** siyou.org

Spam ** 27 July
LuckySploit #*

http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://www.web2secure.com/2009/07/mozilla-firefox-35-heap-spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html

Drive-By Heap Spraying

=]
H —

Drive-By Heap Spraying (2)

ASLR prevents the
Program Heaz attack

<SCRIPT language=" . .
shellcode = unesq TrlggerS the jump

</SCRIPT>

<IFRAME
SRC=file://BBBBBBBBBBEBBBBBBBBBBBBBBBBBBBBEEB ..

഍ ഍">

</IFRAME>

</HTML>

NAME="CCCCCCCCCCCCCCCCCCCcccceeeeeeececcecececececececce ..

Drive-By Heap Spraying (3)

Program Heap

<SCRIPT language:"text/javascript">
shellcode = unescapalsiiddddit

oneblock = unescap
var fullblock = o
while (fullblock.

fullblock += fu

Allocate 1000s of

malicious objects
}

sprayContainer = new Array()
for (i=0; i<1000; i++) {
sprayContainer[i] = fullblock + shellcode;

}
</SCRIPT>

Kittens of Doom
What data can you trust?

Heap spraying is quite
general, easy to implement
Many applications allow
scripts in type safe
languages

— JavaScript, ActionScript

— Java, C#

Many applications accept
data from untrusted sources

— Embed malicious code
in images, documents, DLLs,
etc.

[Sotirov & Dowd BH’08]

Nozzle — Runtime Heap Spraying Detection

Application: Web Browser

Malicious Site » Nozzle answers:

o=
*
==}

How much of my heap
IS suspicious?

o=
*
=r}

Normalized Surface Area

Normal Site |

a 18688 280808 Jooen 48888 oa088 Ga8608 FLiLilils]

o=
*
M

=~]
i3
O O O O O 0O0O0oOooooo0

Logical time (number of allocations/frees)

Outline

* Nozzle design & implementation

* Evaluation
— False positives
— False negatives
— New threats (Adobe Reader)

* Summary

Nozzle Design

Application Threads Nozzle Threads

Advantages
-Just need to hook standard APIs —
malloc, free, HeapAlloc, HeapFree, etc.

- Monitor new applications using Detours
- Can be applied to existing binaries

9
benign
benign object

object

Application Heap

Local Malicious Object Detection

Is this object dangerous?

Code
00000000000 al * |Isthis object code?
Slneltleely aL — Code and data look the same on x86
00000000000 al
00000000000 al * Focus on sled detection
00000000000 al .y .
00000000000 al — Majority of object is sled
00000000000 al — Spraying scripts build simple sleds
* Isthis code a NOP sled?
0101010101] — Previous techniques do not look at heap
0101010101] , _
0101010101 1 — Many heap objects look like NOP sleds
gigigigigi shellcode } — 80% false positive rates using previous
techniques
0101010101 and ah, [edx]
RO and ah, [edx] * Need stronger local techniques

10

Object Surface Area Calculation (1)

e Assume: attacker wants
to reach shell code from
jump to any point in
object

e Goal: find blocks that

are likely to be reached
via control flow

e Strategy: use dataflow
analysis to compute

“surface area” of each
block

» sub [eax], eax Legend:
adc dh, bh L] arithmetic
or eax, 0d172004h] memory
jg 021c7fde] 1/O or syscall
r [] control flow
testcl, ah
jecxz 021¢7fd8
} a

L
add [eax], al

add al, 30h

add al, 80h add [ecx], 0
add al, 38h outs dx, [esi]
jmp 021c7fde

9

» xor [eax], eax

jne 021c7fbe

r
imul eax, [eax], 6ch

in eax, Ox11

An example object from visiting google.com

11

Object Surface Area Calculation (2)

e Each block starts with
its own size as weight

* Weights are propagated
forward with flow

* Invalid blocks don’t
propagate

* |terate until a fixpoint is
reached

 Compute block with
highest weight

1
» sub [eax], eax Legend:
adc dh, bh L] arithmetic
or eax, 0d172004h] memory
jg 021c7fde] 1/O or syscall
2 [] control flow

3

r
ah
21c7fd8

‘

4

"
add [eax], al

-

, 30h
, 80h add [ecx], 0
add al, 38h outs dx, [esi]
jmp 021c7fde
: I
» xor [eax], eax
jne 021c7fbe
6

4
imul eax, [eax], 6¢ch

in eax, Ox11

An example object from visiting google.com

12

Nozzle Global Heap Metric

Normalize to (approx):
P(jump will cause exploit)

NSA(H) obj
I build CFG
oo =
SA(H) B, EZIEE
Compute threat i .

of entire heap

jjjjjjjjjjj

xxxxxxxxxxxx

l dataflow

SA(0) SA(B;)
~ Compute threat of
Compute threat of

. . single block
single object 13

Nozzle Experimental Summary

O False Positives

e 10 popular AJAX-heavy sites
e 150 top Web sites

O False Negatives

e 12 published heap spraying exploits and
e 2,000 synthetic rogue pages generated using Metasploit

Runtime Overhead

e e As high as 2x without sampling
: e 5-10% with sampling

14

w0

A

o o o o

]
E
m »
o
®
.02
= 0 : :

Nozzle on Benign Sites

Nozzle NSA
 Max NSA

always less
than 12%

be set

ch higher

detection
(50% or more)

have low

- C S5 o

* Benign sites
Th
ca
m
fo

Nozzle with Known Heap Sprays

12 published heap spray [Date

pages in multiple
browsers

2,000 synthetic heap
spray pages using
MetaSploit

— advanced NOP
engine

— shellcode database

Browser Description milwOrm
11/2004 IE IFRAME Tag BO 612
04,/2005 1E DHTML Objects Corruption 930
01/2005 IE ANI Remote Stack BO 753
07/2005 IE javaprxy.dll COM Object 1079
03,/2006 IE createTextRang RE 1606
09/2006 IE VML Remote BO 2408
03/2007 IE ADODB Double Free 3577
09,/2006 IE WebViewFolderlcon setSlice 2448
09,/2005 FF 0xAD Remote Heap BO 1224
12/2005 FF compareTo() RE 1369
07,/2006 FF Navigator Object RE 2082
07,/2008 Safari Quicktime Content-Type BO 6013

Result: max NSA between 76% and 96%
Nozzle detects real spraying attacks

Normalized execution time of Nozzle

Nozzle Runtime Overhead

b
(¥l
IH
ha
'Im
[=;]
s
—
—
L
|ﬂ?
lea
=
II:D
=
e
—
b
Pa
B
=]

1 100% B3 25% B 10% E 5% B No Nozzle

I
Sampling rate

17

Using Nozzle in Adobe Reader

det-
‘'oRd32.exe

AcroRd3

Results
- Detecte
- Runtime OVerT

- NSA of normal document < 10%

SA > 75%)

18

Summary

 Heap spraying attacks are
— Easy to implement, easy to retarget
— In widespread use

* Existing detection methods fail to classify
malicious objects on x86 architecture

* Nozzle
— Effectively detects published attacks (known and new)

— Has acceptable runtime overhead
— Can be used both online and offline

Questions?

Paruj Ratanaworabhan (paruj.r@gmail.com)

Ben Livshits (livshits@microsoft.com)

Ben Zorn (zorn@microsoft.com)

Nozzle heap spraying iﬁ]

See us on Channel 9:
http://channel9.msdn.com/posts/Peli/
Heap-Spraying-Attack-Detection-with-Nozzle/

20

mailto:paruj.r@gmail.com
mailto:livshits@microsoft.com
mailto:zorn@microsoft.com

Backup

Attacks on Nozzle

Injecting junk into start of object
— Where does the exploit code begin?

TOCTTOU — When do you scan the object?
Attacks on surface area calculation

— Jumps outside of objects
— Multiple instances of shellcode inside an object

Hiding the code itself

— Code that rewrites heap at last minute

What about Data Execution
Prevention?

 DEP / NX bit = hardware to prevent code
execution on the heap

 DEP is great, but isn’t used everywhere
— Issues with app compatibility
— DEP can be circumvented
— JIT compilers complicate the story

* Nozzle augments DEP for defense in depth

Normalized Surface Area Locally

ZZANY

e 7NN

22NN\

V7NN

/NN

2NN

100%

$193[qo Jo uoIel

 180-0.2 §0.2-04 (00.4-0.6 J0.6-0.8 O 0.8-1,

|
Normalized attack surface range

25

