Efficient Data Structures for
Tamper-Evident Logging

Scott A. Crosby
Dan S. Wallach

Rice University

Everyone has logs

The Standard

of Good Practice

for Information Security

=

HEALTH INSURANCE PORTABILITY
and ACCOUNTABILITY ACT

| e,

ADMINISTRATIVE SIMPLIFICATION:
PRIVACY, SECURITY, TRANSACTIONS

Includes practical
advice for CEOs
and CFOs
A Reference
for the,

Rest of Us!

Tamper evident solutions

« Current commercial solutions
— "Write only’ hardware appliances
— Security depends on correct operation

* Would like cryptographic techniques
— Logger proves correct behavior
— Existing approaches too slow

Our solution

* History tree
— Logarithmic for all operations
— Benchmarks at >1,750 events/sec
— Benchmarks at >8,000 audits/sec

 In addition
— Propose new threat model
— Demonstrate the importance of auditing

Threat model

* Forward integrity

— Events prior to Byzantine failure are tamper-evident
« Don’t know when logger becomes evil

— Clients are trusted

« Strong insider attacks
— Malicious administrator
 Evil logger

— Clients may be mostly evil
 Only trusted during insertion protocol

Limitations and Assumptions

* Limitations
— Detect misbehaviour, not prevent it
— Cannot prevent ‘junk’ from being logged

« Assumptions

— Privacy is outside our scope
« Data may encrypted

— Crypto is secure

System design

Logger
— Stores events
— Never trusted

Clients
— Little storage
— Create events to be logged
— Trusted only at time of event creation
— Sends commitments to auditors

Auditors
— Verify correct operation
— Little storage
— Trusted, at least one is honest

()

Client

—
()

Client
-
)

A

Client

——

A

Auditor

A

Auditor

Logger

This talk

* Describe the history tree
« Evaluation
* Scaling the log

Tamper evident log

e Events come In

« Commitments go out

— Each commits to the entire past

(CrE)

Logger

Hash chain log

» EXisting approach [kelsey,Schneier]
_ Cn=H(Cn-1 ” Xn)
— Logger signs C,

Xn—5 Xn-4 Xn—3

Hash chain log

» EXisting approach [kelsey,Schneier]
_ Cn=H(Cn-1 ” Xn)
— Logger signs C,

Hash chain log

» EXisting approach [kelsey,Schneier]
_ Cn=H(Cn-1 ” Xn)
— Logger signs C,

X, X 4 X, X, X,

n- n- n- n- n-

Problem

* We don't trust the logger!

)

@ Logger returns a stream of commitments

Each corresponds to a log

Problem

* We don't trust the logger!

Does @ really contain the just inserted

Do @ and @ really commit the same historical events?

)

X

n

Is the event at index / in log @ really

X

Problem

* We don't trust the logger!

— Logger signs stream of log heads
— Each corresponds to some log

Does @ really contain the just inserted

Xn—3

?

Do @ and @ really commit the same historical events?

Is the event at index 7 in log @ really

X

?

Solution: Audit the logger

* Only way to detect tampering
— Check the returned commitments

* For consistency @‘M@
* For correct event lookup X s LY.
* Previously

— Auditing = looking historical events
« Assumed to infrequent
« Performance was ignored

Solution

* Auditors check the returned commitments
— For consistency Col¥e,)
— For correct event lookup | X |4

* Previously

— Auditing = looking historical events

« Assumed to infrequent
» Performance was ignored

Auditing is a frequent operation

* If the logger knows this commitment will not be
audited for consistency with a later commitment.

Auditing is a frequent operation

« Successfully tampered with a ‘tamper evident’ log
 Auditing required in forward integrity threat model

Auditing is a frequent operation

* Every commitment must have a non-zero
probability of being audited

Forking the log

* Rolls back the log and adds on different events

— Attack requires two commitments on different forks disagree on
the contents of one event.

— If system has historical integrity, audits must fail or be skipped

Xn-3 Xn-2 Xn-1

New paradigm

* Auditing cannot be avoided

 Audits should occur
— On every event insertion
— Between commitments returned by logger

 How to make inserts and audits cheap
- CPU
— Communications complexity
— Storage

Two kinds of audits

» Membership auditing [% [¥e)
— Verify proper insertion
— Lookup historical events

* Incremental auditing (c){¥]c,)
— Prove consistency between two commitments

Membership auditing a hash chain

o Is| X [¥ey?

Membership auditing a hash chain

o Is| x5 [¥Jc)?

Membership auditing a hash chain

o Is| x5 [¥Jc)?

Incremental auditing a hash chain

Incremental auditing a hash chain

Xn—4 Xn—3 Xn—2 Xn—1

P

>

Incremental auditing a hash chain

O e O oo P
X 6 Xn_}\ Xnoa Xn-3 X X1
1T 1 e

b il oo s s

Incremental auditing a hash chain

BEE SR 4Y

Xn-6 Xn-5 Xn-4 Xn-3 Xn-2 Xn-1
l“ l“ l l“ l“ l“
X’n-6 X,n-5 X’n-4 X’n-3 X’n-2 X,n-1

Xn-6 Xn5

e

Incremental auditing a hash chain

LT

V4
rme o oe

y"n-6 x’n-5 X’n-4 X’n-3 X’n-2 X,n-‘l

X n-6 X n-5

Existing tamper evident log designs

* Hash chain
— Auditing is linear time
— Historical lookups
* Very inefficient

 Skiplist history [Maniatis,Baker]
— Auditing is still linear time
— O(log n) historical lookups

Our solution

* History tree
— O(log n) instead of O(n) for all operations

— Variety of useful features
» Write-once append-only storage format
* Predicate queries + safe deletion
» May probabilistically detect tampering

— Auditing random subset of events
— Not beneficial for skip-lists or hash chains

History Tree

* Merkle binary tree
— Events stored on leaves

— Logarithmic path length
 Random access

— Permits reconstruction of past version and
past commitments

History Tree

History Tree

History Tree

History Tree

History Tree

History Tree

History Tree

Incremental auditing

[N

Auditor

\)

()

Auditor

\

/

(c)
Auditor

(c)
Auditor

~

()

~

Auditor

\

/

Incremental proof G,

uuuuuuuuuu

F|
8
F
F
PR

()

~

Auditor

uuuuuuuuuu

F|
8
F
F
PR

(c)
Auditor

Incremental proof G,

~

. P is consistent with (¢,
» P is consistent with (c,)
 Therefore @and @ are consistent.

» P is consistent with (c,)
 Therefore @and @ are consistent.

()

~

Auditor

\@
L

/

. P is consistent with (¢,

()

 Therefore @and @ are consistent.

Auditor

P is consistent wit
P is consistent wit

uuuuuuuuuu

Incremental proof Gyl

&and ©

Pruned subtrees

(c)
Auditor

o
* Although not sent to auditor

— Fixed by hashes above them
—(cy , (o) fix the same (unknown) events

Membership proof that

» Verify that € has the same contents as P

« Read out event

X3

Merkle aggregation

Merkle aggregation

 Annotate events with attributes

$1 $8 $3 $2 $5 $2 $2

Aggregate them up the tree

* Max()
5

$1| |$8| |[$3| |82 $5| |$2| |[$4]

Included in hashes and checked during audits

Querying the tree

* Max()

s1] s8] [$3] |$2 $5 (32| [$4

Find all transactions over $6

Safe deletion

Authorized to delete all transactions under $4

Merkle aggregation is flexible

 Many ways to map events to attributes
— Arbitrary computable function

* Many attributes
— Timestamps, dollar values, flags, tags

* Many aggregation strategies
+,* min(), max(), ranges, and/or, Bloom filters

Generic aggregation

)

—] : Type of attributes on each node in history
¥] : Aggregation function
— ¥} : Maps an event to its attributes

* For any predicate P, as long as:
— P(x) OR P(y) IMPLIES P(x[¥]y)
— Then:

« Can query for events matching P
« Can safe-delete events not matching P

y 3

Evaluating the history tree

» Big-O performance
* Syslog implementation

Big-O performance

c¥c) || x |fc) | Insert

History tree O(log n) |O(log n) | | O(log n)

Hash chain O(/-1) O(/-1) O(1)

Skip-list history |O(j-i) O(log n) [|O(1)
[Maniatis,Baker] | or O(n) |or O(n)

Skiplist history [Maniatis,Baker]

 Hash chain with extra links

— Extra links cannot be trusted without auditing

* Checking them
— Best case: only events since last audit
— Worst case: examining the whole history
— |If extra links are valid

» Using them for historical lookups
— O(log n) time and space

A

1

1

1

1

1

1

1

1
A
A
A

A
|
1
.
1

Alk

A

A

A

A

A

A

Syslog implementation

* We ran 80-bit security level
— 1024 bit DSA signatures
— 160 bit SHA-1 Hash

 We recommend 112-bit security level
— 224 bit ECDSA signatures
* 66% faster
— SHA-224 (Truncated SHA-256)

* 33% slower

[NIST SP800-57 Part 1, Recommendations for Key Magament — Part 1. General
(Revised 2007)]

Syslog implementation

* Syslog
— Trace from Rice CS departmental servers

— 4M events, 11 hosts over 4 days, 5 attributes
per event

» Repeated 20 times to create 80M event trace

Syslog implementation

* Implementation
— Hybrid C++ and Python
— Single threaded
— MMAP-based append-only write-once storage for log
— 1024-bit DSA signatures and 160-bit SHA-1 hashes

« Machine

— Dual-core 2007 desktop machine
— 4gb RAM

Performance

* Insert performance: 1,750 events/sec
— 2.4% : Parse
— 2.6% : Insert
— 11.8% : Get commitment
— 83.3% : Sign commitment

* Auditing performance

— With locality (last 5M events)

» 10,000-18,000 incremental proofs/sec
» 8,600 membership proofs/sec

— Without locality
» 30 membership proofs/sec
— < 4,000 byte self-contained proof size
« Compression reduces performance and proof size by 50%

Improving performance

* Increasing audit throughput above
— 8,000 audits/sec

* Increasing insert throughput above
— 1,750 inserts/sec

Increasing audit throughput

* Audits require read-only access to the log
— Trivially offloaded to additional cores

* For infinite scalability

— May replicate the log server
» Master assigns event indexes
 Slaves build history tree locally

Increasing insert throughput

* Public key signatures are slow
— 83% of runtime

* Three easy optimization
— Sign only some commitments
— Use faster signatures

— Offload to other hosts
* Increase throughput to 10k events/sec

More concurrency with replication

* Processing pipeline:

— Inserting into history tree
* O(1). Serialization point
 Fundamental limit

— Must be done on each replica
— 38,000 events/sec using only one core

— Commitment or proofs generation
* O(log n).
— Signing commitments
* O(1), but expensive. Concurrently on other hosts

Storing on secondary storage

X, X, X5 X Xs Xs X

* Nodes are frozen (no longer ever change)

— In post-order traversal
 Static order

— Map into an array

Partial proofs
@)

« Can re-use node hashes from prior audits
— (eg, incremental proof from C;to C,)

Conclusion

* New paradigm

— Importance of frequent auditing
* History tree

— Efficient auditing

— Efficient predicate queries and safe deletion
— Scalable

* Proofs of tamper-evidence will be in my
PhD Thesis

Questions

?

Historical integrity

Historical integrity

Historical integrity

Xn-5 Xn-4

o oo
_?/J/

><,n-5 X,n-4

Historical integrity

IR g

Xn-5 Xn-4 Xn-3 Xn-2 Xn-1

TP

><,n-5 X,n-4

Defining historically integrity

* Alogging system is tamper-evident when:

— If there is a verified incremental proof between
commitments C; and C, (j<k), then for all I<j and all
verifiable membershlp proofs that event j in log C; is X;
and event jin log C, is X', we must have X=X",

@

k
Xn-4

_®

X n-4

Safe deletion

« Unimportant events may be deleted

— When auditor requests deleted event
» Logger supplies proof that ancestor was not important

