
Efficient Data Structures for
Tamper-Evident Logging

Scott A. Crosby

Dan S. Wallach
Rice University

Everyone has logs

Tamper evident solutions

•  Current commercial solutions
–  ‘Write only’ hardware appliances

– Security depends on correct operation

•  Would like cryptographic techniques
– Logger proves correct behavior

– Existing approaches too slow

Our solution

•  History tree
– Logarithmic for all operations

– Benchmarks at >1,750 events/sec

– Benchmarks at >8,000 audits/sec

•  In addition
– Propose new threat model

– Demonstrate the importance of auditing

Threat model

•  Forward integrity
–  Events prior to Byzantine failure are tamper-evident

•  Don’t know when logger becomes evil

–  Clients are trusted

•  Strong insider attacks
–  Malicious administrator

•  Evil logger

–  Clients may be mostly evil
•  Only trusted during insertion protocol

Limitations and Assumptions

•  Limitations
– Detect misbehaviour, not prevent it

– Cannot prevent ‘junk’ from being logged

•  Assumptions
– Privacy is outside our scope

•  Data may encrypted

– Crypto is secure

System design

•  Logger
–  Stores events
–  Never trusted

•  Clients
–  Little storage
–  Create events to be logged
–  Trusted only at time of event creation
–  Sends commitments to auditors

•  Auditors
–  Verify correct operation
–  Little storage
–  Trusted, at least one is honest

Client

Client

Client

Auditor

Auditor

Logger

This talk

•  Discuss the necessity of auditing

•  Describe the history tree

•  Evaluation

•  Scaling the log

Tamper evident log

•  Events come in

•  Commitments go out
– Each commits to the entire past

Logger

Cn-3

Cn-2

Cn-1

Xn-3

Xn-2

Xn-1

Hash chain log

•  Existing approach [Kelsey,Schneier]
– Cn=H(Cn-1 || Xn)

– Logger signs Cn

Xn-5 Xn-4 Xn-3

Cn-3

Hash chain log

•  Existing approach [Kelsey,Schneier]
– Cn=H(Cn-1 || Xn)

– Logger signs Cn

Xn-5 Xn-4 Xn-3 Xn-2

Cn-2

Hash chain log

•  Existing approach [Kelsey,Schneier]
– Cn=H(Cn-1 || Xn)

– Logger signs Cn

Xn-5 Xn-4 Xn-3 Xn-2 Xn-1

Cn-1

Problem

•  We don’t trust the logger!

Cn

Cn-2 Cn-1

Logger returns a stream of commitments

Each corresponds to a log

Cn

Xn-4 Xn-3 Xn-2 Xn-1 Xn

Problem

•  We don’t trust the logger!

Cn

Cn-2 Cn-1

Xn Does really contain the just inserted

Do and really commit the same historical events?

?

Cn Xi Is the event at index i in log really ?

Cn

Xn-4 Xn-3 Xn-2 Xn-1 Xn

Problem

•  We don’t trust the logger!
– Logger signs stream of log heads

– Each corresponds to some log

Cn-3

Cn-2 Cn-1

Xn-3 Does really contain the just inserted

Do and really commit the same historical events?

?

Cn Xi Is the event at index i in log really ?

Solution: Audit the logger

•  Only way to detect tampering
– Check the returned commitments

•  For consistency

•  For correct event lookup

•  Previously
– Auditing = looking historical events

•  Assumed to infrequent

•  Performance was ignored

Cn-2 Cn-1 
Cn-3 Xn-3


Solution

•  Auditors check the returned commitments
– For consistency

– For correct event lookup

•  Previously
– Auditing = looking historical events

•  Assumed to infrequent

•  Performance was ignored

Cn-2 Cn-1 
Cn-3 Xn-3


Auditing is a frequent operation

•  If the logger knows this commitment will not be
audited for consistency with a later commitment.

X’n-3 Xn-2 Xn-1

C’n-1

Xn-6 Xn-4 Xn-3

Cn-3

Xn-5

Auditing is a frequent operation

•  Successfully tampered with a ‘tamper evident’ log

•  Auditing required in forward integrity threat model

X’n-3 Xn-2 Xn-1

C’n-1

Xn-6 Xn-4 Xn-3

Cn-3

Xn-5

Auditing is a frequent operation

•  Every commitment must have a non-zero
probability of being audited

X’n-3 Xn-2 Xn-1

C’n-1

Xn-4 Xn-3

Cn-3

Xn-5 Xn-6

Forking the log

•  Rolls back the log and adds on different events
–  Attack requires two commitments on different forks disagree on

the contents of one event.
–  If system has historical integrity, audits must fail or be skipped

Xn-5 X’n-4 Xn-3 Xn-2 Xn-1

C’n-1

Xn-6 Xn-4 Xn-3

Cn-3

Xn-5

New paradigm

•  Auditing cannot be avoided

•  Audits should occur
–  On every event insertion
–  Between commitments returned by logger

•  How to make inserts and audits cheap
–  CPU
–  Communications complexity
–  Storage

Two kinds of audits

Ci Cn 

•  Membership auditing
– Verify proper insertion

– Lookup historical events

•  Incremental auditing
– Prove consistency between two commitments

Cn Xi 

Cn-3

Membership auditing a hash chain

•  Is ? Cn-3 Xn-5 

Membership auditing a hash chain

•  Is

Xn-5 Xn-4 Xn-3

Cn-3

X’n-4 X’n-3 X’n-5 X’n-6

? Cn-3 Xn-5 

P

Membership auditing a hash chain

•  Is

Xn-5 Xn-4 Xn-3

Cn-3

X’n-4 X’n-3 X’n-5 X’n-6

? Cn-3 Xn-5 

Incremental auditing a hash chain

•  Are ? C’’n-5 C’n-1 

Incremental auditing a hash chain

X’n-5 X’n-4 X’n-3 X’n-2 X’n-1

C’n-1

X’’n-6 X’’n-5

C’’n-5

Xn-4 Xn-3 Xn-2 Xn-1

X’n-6

Xn-5 Xn-6

P

Incremental auditing a hash chain

X’n-5 X’n-4 X’n-3 X’n-2 X’n-1

C’n-1

X’’n-6 X’’n-5

C’’n-5

Xn-4 Xn-3 Xn-2 Xn-1

X’n-6

Xn-5 Xn-6

Cn-5 P

Incremental auditing a hash chain

X’n-5 X’n-4 X’n-3 X’n-2 X’n-1

C’n-1

X’’n-6 X’’n-5

C’’n-5

Xn-4 Xn-3 Xn-2 Xn-1

Cn-1

X’n-6

Xn-5 Xn-6

P

Incremental auditing a hash chain

X’n-5 X’n-4 X’n-3 X’n-2 X’n-1

C’n-1

X’’n-6 X’’n-5

C’’n-5

Xn-4 Xn-3 Xn-2 Xn-1

X’n-6

Xn-5 Xn-6

Cn-5 Cn-1 P

Existing tamper evident log designs

•  Hash chain
– Auditing is linear time

– Historical lookups
•  Very inefficient

•  Skiplist history [Maniatis,Baker]
– Auditing is still linear time

– O(log n) historical lookups

Our solution

•  History tree
– O(log n) instead of O(n) for all operations

– Variety of useful features
•  Write-once append-only storage format

•  Predicate queries + safe deletion

•  May probabilistically detect tampering
–  Auditing random subset of events

– Not beneficial for skip-lists or hash chains

History Tree

•  Merkle binary tree
– Events stored on leaves

– Logarithmic path length
•  Random access

– Permits reconstruction of past version and
past commitments

History Tree

X1

C2

X2

History Tree

X1 X2 X3

C3

History Tree

X1 X2 X3 X4

C4

History Tree

X1 X2 X3 X4 X5

C5

History Tree

X1 X2 X3 X4 X5 X6

C6

History Tree

X1 X2 X3 X4 X5 X7 X6

C7

History Tree

X1 X2 X3 X4 X5 X7 X6

Incremental auditing

Auditor

X1 X2 X3

C3 C3

Auditor

X1 X2 X3 X4

C4

C3

Auditor

X1 X2 X3 X4 X5

C5

C3

Auditor

X1 X2 X3 X4 X5 X6

C6

C3

Auditor

X1 X2 X3 X4 X5 X7 X6

C7

C3

C7

Incremental proof 

X1 X2 X3 X4 X5 X7 X6

Auditor

C3

C7

C7 C3

C7

C3

Incremental proof 

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

C7

C3

C7 C3

Auditor

C3

C7 C7

C3

C7 C3

Auditor

Incremental proof 

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

C7

C3

C7 C3

C3

C7 C7

C3

C7 C3

Auditor

Incremental proof 

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

C3

C7 C7

C3

C7

C3

C7 C3

C7 C3

Incremental proof 

•  P is consistent with
•  P is consistent with
•  Therefore and are consistent.

X1 X2 X3 X4 X5 X7 X6

Auditor

C3

C7 C7

C3

C7

C3

C7 C3

C7 C3

Pruned subtrees

X1 X2 X3 X4 X5 X7 X6

•  Although not sent to auditor
– Fixed by hashes above them
–  , fix the same (unknown) events C7 C3

Auditor

C3

C7 C7

C3

Membership proof that

X1 X2 X3 X4 X5 X7 X6

C’’7

•  Verify that has the same contents as P

•  Read out event

C’’7

X3

 C’’7 X3

Merkle aggregation

Merkle aggregation

•  Annotate events with attributes

$1 $8 $3 $2 $5 $2 $2

Aggregate them up the tree

•  Max()

$1

$8

$8

$8

$8 $3

$3

$2 $5

$5

$5

$4

$4

$2

Included in hashes and checked during audits

Querying the tree

•  Max()

$1

$8

$8

$8

$8 $3

$3

$2 $5

$5

$5

$4

$4

$2

Find all transactions over $6

Safe deletion

•  Max()

$1

$8

$8

$8

$8 $3

$3

$2 $5

$5

$5

$4

$4

$2

Authorized to delete all transactions under $4

$3 $2 $3 $2 $3

Merkle aggregation is flexible

•  Many ways to map events to attributes
– Arbitrary computable function

•  Many attributes
– Timestamps, dollar values, flags, tags

•  Many aggregation strategies
+, *, min(), max(), ranges, and/or, Bloom filters

Generic aggregation

•  (,,)
–  : Type of attributes on each node in history

–  : Aggregation function

–  : Maps an event to its attributes

•  For any predicate P, as long as:
– P(x) OR P(y) IMPLIES P(xy)

– Then:
•  Can query for events matching P

•  Can safe-delete events not matching P

Evaluating the history tree

•  Big-O performance

•  Syslog implementation

Big-O performance

Cj Ci  Cj Xi
 Insert

History tree O(log n) O(log n) O(log n)

Hash chain O(j-i) O(j-i) O(1)

Skip-list history

[Maniatis,Baker]

O(j-i)

or O(n)

O(log n)
or O(n)

O(1)

Skiplist history [Maniatis,Baker]

•  Hash chain with extra links
–  Extra links cannot be trusted without auditing

•  Checking them
–  Best case: only events since last audit

–  Worst case: examining the whole history

–  If extra links are valid
•  Using them for historical lookups

–  O(log n) time and space

Syslog implementation

•  We ran 80-bit security level
–  1024 bit DSA signatures

–  160 bit SHA-1 Hash

•  We recommend 112-bit security level
–  224 bit ECDSA signatures

•  66% faster

–  SHA-224 (Truncated SHA-256)
•  33% slower

•  [NIST SP800-57 Part 1, Recommendations for Key Magament – Part 1: General
(Revised 2007)]

Syslog implementation

•  Syslog
– Trace from Rice CS departmental servers

– 4M events, 11 hosts over 4 days, 5 attributes
per event
•  Repeated 20 times to create 80M event trace

Syslog implementation

•  Implementation
–  Hybrid C++ and Python

–  Single threaded

–  MMAP-based append-only write-once storage for log

–  1024-bit DSA signatures and 160-bit SHA-1 hashes

•  Machine
–  Dual-core 2007 desktop machine

–  4gb RAM

Performance

•  Insert performance: 1,750 events/sec
–  2.4% : Parse
–  2.6% : Insert
–  11.8% : Get commitment
–  83.3% : Sign commitment

•  Auditing performance
–  With locality (last 5M events)

•  10,000-18,000 incremental proofs/sec
•  8,600 membership proofs/sec

–  Without locality
•  30 membership proofs/sec

–  < 4,000 byte self-contained proof size
•  Compression reduces performance and proof size by 50%

Improving performance

•  Increasing audit throughput above
– 8,000 audits/sec

•  Increasing insert throughput above
– 1,750 inserts/sec

Increasing audit throughput

•  Audits require read-only access to the log
– Trivially offloaded to additional cores

•  For infinite scalability
– May replicate the log server

•  Master assigns event indexes

•  Slaves build history tree locally

Increasing insert throughput

•  Public key signatures are slow
– 83% of runtime

•  Three easy optimization
– Sign only some commitments

– Use faster signatures

– Offload to other hosts
•  Increase throughput to 10k events/sec

More concurrency with replication

•  Processing pipeline:
–  Inserting into history tree

•  O(1). Serialization point
•  Fundamental limit

– Must be done on each replica
–  38,000 events/sec using only one core

– Commitment or proofs generation
•  O(log n).

– Signing commitments
•  O(1), but expensive. Concurrently on other hosts

Storing on secondary storage

•  Nodes are frozen (no longer ever change)
–  In post-order traversal

•  Static order

–  Map into an array

1

3

7

2 4

6

5 8

10

11 9

X1 X2 X3 X4 X5 X7 X6

Partial proofs

•  Can re-use node hashes from prior audits
–  (eg, incremental proof from C3 to C4)

X1 X2 X3 X4 X5 X7 X6

C’’7 C’4

Conclusion

•  New paradigm
–  Importance of frequent auditing

•  History tree
– Efficient auditing

– Efficient predicate queries and safe deletion

– Scalable

•  Proofs of tamper-evidence will be in my
PhD Thesis

Questions

?

Historical integrity

X’n-4 X’n-5

C’n-4

Historical integrity

X’n-4 X’n-5

C’n-4

X’n-5 X’n-4

C’n-4

Xn-5 Xn-4 Xn-3 Xn-2 Xn-1

Cn-1

Historical integrity

Historical integrity

X’n-4

Xn-4

X’n-5

C’n-4

Xn-5 Xn-3 Xn-2 Xn-1

Cn-1

Defining historically integrity

•  A logging system is tamper-evident when:
–  If there is a verified incremental proof between

commitments Cj and Ck (j<k), then for all i<j and all
verifiable membership proofs that event i in log Cj is Xi
and event i in log Ck is X’i, we must have Xi=X’i.

X’n-5 X’n-4 X’n-3

C’n-3

Xn-5 Xn-4 Xn-3 Xn-2 Xn-1

Cn-1

Safe deletion

•  Unimportant events may be deleted
–  When auditor requests deleted event

•  Logger supplies proof that ancestor was not important

X1

R

X2 X3 X4 X5 X7 X6

