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Everyone has logs 



Tamper evident solutions 

•  Current commercial solutions 
–  ‘Write only’ hardware appliances 

– Security depends on correct operation 

•  Would like cryptographic techniques 
– Logger proves correct behavior 

– Existing approaches too slow 



Our solution 

•  History tree 
– Logarithmic for all operations 

– Benchmarks at >1,750 events/sec 

– Benchmarks at >8,000 audits/sec 

•  In addition 
– Propose new threat model 

– Demonstrate the importance of auditing 



Threat model 

•  Forward integrity  
–  Events prior to Byzantine failure are tamper-evident  

•  Don’t know when logger becomes evil 

–  Clients are trusted 

•  Strong insider attacks 
–  Malicious administrator 

•  Evil logger 

–  Clients may be mostly evil 
•  Only trusted during insertion protocol 



Limitations and Assumptions 

•  Limitations 
– Detect misbehaviour, not prevent it 

– Cannot prevent ‘junk’ from being logged 

•  Assumptions 
– Privacy is outside our scope 

•  Data may encrypted 

– Crypto is secure 



System design 

•  Logger 
–  Stores events 
–  Never trusted 

•  Clients 
–  Little storage 
–  Create events to be logged 
–  Trusted only at time of event creation 
–  Sends commitments to auditors 

•  Auditors 
–  Verify correct operation 
–  Little storage 
–  Trusted, at least one is honest 

Client 

Client 

Client 

Auditor 

Auditor 

Logger 



This talk 

•  Discuss the necessity of auditing 

•  Describe the history tree 

•  Evaluation 

•  Scaling the log 



Tamper evident log 

•  Events come in 

•  Commitments go out 
– Each commits to the entire past 

Logger 

Cn-3 

Cn-2 

Cn-1 

Xn-3 

Xn-2 

Xn-1 



Hash chain log 

•  Existing approach [Kelsey,Schneier] 
– Cn=H(Cn-1 || Xn) 

– Logger signs Cn 

Xn-5 Xn-4 Xn-3 

Cn-3 



Hash chain log 
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Hash chain log 

•  Existing approach [Kelsey,Schneier] 
– Cn=H(Cn-1 || Xn) 

– Logger signs Cn 
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Problem 

•  We don’t trust the logger! 

Cn 

Cn-2 Cn-1 

Logger returns a stream of commitments 

Each corresponds to a log 
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Problem 

•  We don’t trust the logger! 

Cn 

Cn-2 Cn-1 

Xn Does really contain the just inserted 

Do and really commit the same historical events? 

? 

Cn Xi Is the event at index i in log really ? 

Cn 

Xn-4 Xn-3 Xn-2 Xn-1 Xn 



Problem 

•  We don’t trust the logger! 
– Logger signs stream of log heads 

– Each corresponds to some log 

Cn-3 

Cn-2 Cn-1 

Xn-3 Does really contain the just inserted 

Do and really commit the same historical events? 

? 

Cn Xi Is the event at index i in log really ? 



Solution: Audit the logger 

•  Only way to detect tampering 
– Check the returned commitments 

•  For consistency 

•  For correct event lookup 

•  Previously 
– Auditing = looking historical events 

•  Assumed to infrequent 

•  Performance was ignored 

Cn-2 Cn-1  
Cn-3 Xn-3 




Solution   

•  Auditors check the returned commitments 
– For consistency 

– For correct event lookup 

•  Previously 
– Auditing = looking historical events 

•  Assumed to infrequent 

•  Performance was ignored 

Cn-2 Cn-1  
Cn-3 Xn-3 




Auditing is a frequent operation 

•  If the logger knows this commitment will not be 
audited for consistency with a later commitment. 

X’n-3 Xn-2 Xn-1 

C’n-1 

Xn-6 Xn-4 Xn-3 

Cn-3 

Xn-5 



Auditing is a frequent operation 

•  Successfully tampered with a ‘tamper evident’ log 

•  Auditing required in forward integrity threat model 

X’n-3 Xn-2 Xn-1 

C’n-1 

Xn-6 Xn-4 Xn-3 

Cn-3 

Xn-5 



Auditing is a frequent operation 

•  Every commitment must have a non-zero 
probability of being audited 

X’n-3 Xn-2 Xn-1 

C’n-1 

Xn-4 Xn-3 

Cn-3 

Xn-5 Xn-6 



Forking the log 

•  Rolls back the log and adds on different events 
–  Attack requires two commitments on different forks disagree on 

the contents of one event. 
–  If system has historical integrity, audits must fail or be skipped 

Xn-5 X’n-4 Xn-3 Xn-2 Xn-1 
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Xn-6 Xn-4 Xn-3 

Cn-3 

Xn-5 



New paradigm 

•  Auditing cannot be avoided 

•  Audits should occur 
–  On every event insertion 
–  Between commitments returned by logger 

•  How to make inserts and audits cheap 
–  CPU 
–  Communications complexity 
–  Storage 



Two kinds of audits 

Ci Cn  

•  Membership auditing 
– Verify proper insertion 

– Lookup historical events 

•  Incremental auditing 
– Prove consistency between two commitments 

Cn Xi  



Cn-3 

Membership auditing a hash chain 

•  Is ? Cn-3 Xn-5  



Membership auditing a hash chain 

•  Is 

Xn-5 Xn-4 Xn-3 
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P 



Membership auditing a hash chain 

•  Is 
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Incremental auditing a hash chain 

•  Are  ? C’’n-5 C’n-1  



Incremental auditing a hash chain 
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Incremental auditing a hash chain 
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Incremental auditing a hash chain 
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Incremental auditing a hash chain 
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Existing tamper evident log designs 

•  Hash chain 
– Auditing is linear time 

– Historical lookups 
•  Very inefficient 

•  Skiplist history [Maniatis,Baker] 
– Auditing is still linear time 

– O(log n) historical lookups 



Our solution 

•  History tree 
– O(log n) instead of O(n) for all operations 

– Variety of useful features 
•  Write-once append-only storage format 

•  Predicate queries + safe deletion 

•  May probabilistically detect tampering  
–  Auditing random subset of events 

– Not beneficial for skip-lists or hash chains 



History Tree 

•  Merkle binary tree 
– Events stored on leaves 

– Logarithmic path length 
•  Random access 

– Permits reconstruction of past version and 
past commitments 



History Tree 
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History Tree 

X1 X2 X3 
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History Tree 
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History Tree 

X1 X2 X3 X4 X5 

C5 



History Tree 
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History Tree 
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History Tree 

X1 X2 X3 X4 X5 X7 X6 



Incremental auditing 



Auditor 

X1 X2 X3 

C3 C3 



Auditor 
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Auditor 
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Auditor 
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Auditor 
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Incremental proof       

X1 X2 X3 X4 X5 X7 X6 
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Incremental proof       

•  P is consistent with  
•  P is consistent with  
•  Therefore      and      are consistent. 
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Auditor 

Incremental proof       
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Auditor 

Incremental proof       
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Incremental proof       

•  P is consistent with  
•  P is consistent with  
•  Therefore      and      are consistent. 
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Pruned subtrees 

X1 X2 X3 X4 X5 X7 X6 

•  Although not sent to auditor 
– Fixed by hashes above them 
–       ,      fix the same (unknown) events C7 C3 

Auditor 

C3 

C7 C7 

C3 



Membership proof that             

X1 X2 X3 X4 X5 X7 X6 

C’’7 

•  Verify that      has the same contents as P 

•  Read out event 

C’’7 

X3 

 C’’7 X3 



Merkle aggregation 



Merkle aggregation 

•  Annotate events with attributes 

$1 $8 $3 $2 $5 $2 $2 



Aggregate them up the tree 

•  Max() 

$1 

$8 

$8 

$8 

$8 $3 

$3 

$2 $5 

$5 

$5 

$4 

$4 

$2 

Included in hashes and checked during audits 



Querying the tree 

•  Max() 

$1 

$8 

$8 

$8 

$8 $3 

$3 

$2 $5 

$5 

$5 

$4 

$4 

$2 

Find all transactions over $6 



Safe deletion 

•  Max() 

$1 

$8 

$8 

$8 

$8 $3 

$3 

$2 $5 

$5 

$5 

$4 

$4 

$2 

Authorized to delete all transactions under $4 

$3 $2 $3 $2 $3 



Merkle aggregation is flexible 

•  Many ways to map events to attributes 
– Arbitrary computable function 

•  Many attributes 
– Timestamps, dollar values, flags, tags  

•  Many aggregation strategies 
+, *, min(), max(), ranges, and/or, Bloom filters 



Generic aggregation 

•  (,,) 
–  : Type of attributes on each node in history 

–  : Aggregation function 

–  : Maps an event to its attributes 

•  For any predicate P, as long as: 
– P(x) OR P(y) IMPLIES P(xy) 

– Then: 
•  Can query for events matching P 

•  Can safe-delete events not matching P 



Evaluating the history tree 

•  Big-O performance 

•  Syslog implementation 



Big-O performance 

Cj Ci  Cj Xi 
 Insert 

History tree O(log n) O(log n) O(log n) 

Hash chain O(j-i) O(j-i) O(1) 

Skip-list history 

[Maniatis,Baker] 

O(j-i)  

or O(n) 

O(log n) 
or O(n) 

O(1) 



Skiplist history [Maniatis,Baker] 

•  Hash chain with extra links 
–  Extra links cannot be trusted without auditing 

•  Checking them 
–  Best case: only events since last audit 

–  Worst case: examining the whole history 

–  If extra links are valid 
•  Using them for historical lookups 

–  O(log n) time and space 



Syslog implementation 

•  We ran 80-bit security level  
–  1024 bit DSA signatures 

–  160 bit SHA-1 Hash  

•  We recommend 112-bit security level 
–  224 bit ECDSA signatures 

•  66% faster 

–  SHA-224 (Truncated SHA-256) 
•  33% slower 

•  [NIST SP800-57 Part 1, Recommendations for Key Magament – Part 1: General 
(Revised 2007)] 



Syslog implementation 

•  Syslog 
– Trace from Rice CS departmental servers 

– 4M events, 11 hosts over 4 days, 5 attributes 
per event 
•  Repeated 20 times to create 80M event trace 



Syslog implementation 

•  Implementation 
–  Hybrid C++ and Python 

–  Single threaded 

–  MMAP-based append-only write-once storage for log 

–  1024-bit DSA signatures and 160-bit SHA-1 hashes 

•  Machine 
–  Dual-core 2007 desktop machine 

–  4gb RAM 



Performance 

•  Insert performance: 1,750 events/sec 
–    2.4% : Parse 
–    2.6% : Insert 
–  11.8% : Get commitment 
–  83.3% : Sign commitment 

•  Auditing performance 
–  With locality (last 5M events) 

•  10,000-18,000 incremental proofs/sec 
•  8,600 membership proofs/sec 

–  Without locality 
•  30 membership proofs/sec 

–  < 4,000 byte self-contained proof size 
•  Compression reduces performance and proof size by 50% 



Improving performance 

•  Increasing audit throughput above 
– 8,000 audits/sec 

•  Increasing insert throughput above  
– 1,750 inserts/sec  



Increasing audit throughput 

•  Audits require read-only access to the log 
– Trivially offloaded to additional cores 

•  For infinite scalability 
– May replicate the log server 

•  Master assigns event indexes 

•  Slaves build history tree locally 



Increasing insert throughput 

•  Public key signatures are slow  
– 83% of runtime 

•  Three easy optimization 
– Sign only some commitments 

– Use faster signatures 

– Offload to other hosts 
•  Increase throughput to 10k events/sec 



More concurrency with replication 

•  Processing pipeline: 
–  Inserting into history tree 

•  O(1). Serialization point 
•  Fundamental limit 

– Must be done on each replica 
–  38,000 events/sec using only one core 

– Commitment or proofs generation 
•  O(log n).  

– Signing commitments 
•  O(1), but expensive. Concurrently on other hosts 



Storing on secondary storage 

•  Nodes are frozen (no longer ever change) 
–  In post-order traversal 

•  Static order 

–  Map into an array  

1 

3 

7 

2 4 

6 

5 8 

10 

11 9 

X1 X2 X3 X4 X5 X7 X6 



Partial proofs 

•  Can re-use node hashes from prior audits 
–  (eg, incremental proof from C3 to C4 ) 

X1 X2 X3 X4 X5 X7 X6 

C’’7 C’4 



Conclusion 

•  New paradigm 
–  Importance of frequent auditing 

•  History tree 
– Efficient auditing 

– Efficient predicate queries and safe deletion 

– Scalable 

•  Proofs of tamper-evidence will be in my 
PhD Thesis 



Questions 

? 
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Historical integrity 
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Defining historically integrity 

•  A logging system is tamper-evident when: 
–  If there is a verified incremental proof between 

commitments Cj and Ck (j<k), then for all i<j and all 
verifiable membership proofs that event i in log Cj is Xi 
and event i in log Ck is X’i, we must have Xi=X’i.   

X’n-5 X’n-4 X’n-3 

C’n-3 

Xn-5 Xn-4 Xn-3 Xn-2 Xn-1 

Cn-1 



Safe deletion 

•  Unimportant events may be deleted 
–  When auditor requests deleted event 

•  Logger supplies proof that ancestor was not important 

X1 

R 

X2 X3 X4 X5 X7 X6 


