
Memory Safety for Low-
Level Software/Hardware 
Interactions

John Criswell
Nicolas Geoffray

Vikram AdveMontreal or Bust!



Memory Safety Future is Bright

User-space memory safety is improving
Safe languages
SAFECode, CCured, Baggy bounds checking, 

Softbound, etc
Memory safety for operating systems exists!

Singularity (C#), SPIN (Modula-3)
Linux on Secure Virtual Architecture (C)



A New Enemy Arises: 
Software/Hardware Interactions

What is a low-level software-hardware interaction?
 Instruction that manipulates hardware resources
Below semantics of the programming language

Perfectly type-safe code! But:
Can corrupt control-flow or data-flow

Examples:
Processor State
 I/O Objects
MMU mappings



Memory Safety: Processor State

Operating systems explicitly manage Processor State
Processor states saved in memory buffers 

Type-safe stores can modify a saved processor state
Can subvert control/data-flow integrity

R1
R2
R3
PC
SP

P

Memory

Pointer in OS



Memory Safety: Processor State

Operating systems explicitly manage Processor State
Processor states saved in memory buffers 

Type-safe stores can modify a saved processor state
Can subvert control/data-flow integrity

R1
R2
R3
PC
SP

P

Memory

Pointer in OS



Memory Safety: Processor State

Operating systems explicitly manage Processor State
Processor states saved in memory buffers 

Type-safe stores can modify a saved processor state
Can subvert control/data-flow integrity

R1
R2
R3
PC
SP

P R1
R2
R3
PC
SP

CPUMemory

Context Switch

Pointer in OS



Memory Safety: I/O

 I/O device memory and RAM in same address space
However, I/O memory is different

 I/O memory incompatible with standard compiler analysis
 I/O memory has side effects on hardware

 Intel E1000E Bug on Linux 2.6
 Invalid write on I/O memory
 Damaged Intel E1000E Network Cards
 Potential DoS Attack



Memory Safety: MMU

Virtual
Memory

Physical
Memory

T1* P1

T2* P2

Memory PointersMMU can violate type 
safety



Memory Safety: MMU

Virtual
Memory

Physical
Memory

T1* P1

T2* P2

Memory PointersMMU can violate type 
safety



Memory Safety: MMU

MMU can make kernel pages 
accessible to user-space
 BID9356, BID9686, BID18177 

(www.securityfocus.com)

Virtual
Memory

Physical
Memory

Virtual
Memory

Physical
Memory

User

Kernel

T1* P1

T2* P2

Memory PointersMMU can violate type 
safety

http://www.securityfocus.com
http://www.securityfocus.com


Memory Safety: MMU

MMU can make kernel pages 
accessible to user-space
 BID9356, BID9686, BID18177 

(www.securityfocus.com)

Virtual
Memory

Physical
Memory

Virtual
Memory

Physical
Memory

User

Kernel

T1* P1

T2* P2

Memory PointersMMU can violate type 
safety

http://www.securityfocus.com
http://www.securityfocus.com


It’s Already Here!

 Intel E1000E Bug
MMU exploits in Linux

Need solutions before these attacks become more
sophisticated and commonplace!



SVA-OS: Memory Safety for Low-
Level Software-Hardware Interactions

First system to provide comprehensive memory 
safety for low-level software/hardware interactions
Linux 2.4.22 on Secure Virtual Architecture (SVA)

Compiler analysis and runtime checks
Little overhead above and beyond traditional memory 

safety

Effective at preventing software/hardware exploits



Outline

Motivation
High-level Solutions
Design of SVA-OS
Experimental Results
Future Work and Conclusions



Foundations: What Do We Need?

System that provides traditional memory safety
SVA-OS will preserve memory safety

Examples
Type-safe languages, e.g. Singularity
Compiler techniques for commodity operating 

systems, e.g. Secure Virtual Architecture (SVA)



Solution: Processor State

New instruction to save old state and restore new state
 State saved in internal SVA-OS memory
 State referenced by ID returned from VM

Policy left to OS 
 Scheduling, context switching, signal delivery

R1
R2
PC
SP

Process 1: ID 1 R1
R2
PC
SP

CPUSVA-OS MemoryOS
Task Structures

R1
R2
PC
SP

ID1 ID2 ID3

Process 3: ID 2

Process 8: ID 3



Solution: Memory Mapped I/O

New instruction to map I/O memory into address space
New instructions to load/store I/O objects
Add run-time checks to ensure that:

 Regular load/stores access memory
 I/O accesses access I/O memory

P1
Memory Pointer

P2
I/O Pointer

store (v, *p2);

iostore (v, *p1);



Solution: Memory Mapped I/O

New instruction to map I/O memory into address space
New instructions to load/store I/O objects
Add run-time checks to ensure that:

 Regular load/stores access memory
 I/O accesses access I/O memory

P1
Memory Pointer

P2
I/O Pointer

store (v, *p2);

iostore (v, *p1);



Solution: Memory Mapped I/O

New instruction to map I/O memory into address space
New instructions to load/store I/O objects
Add run-time checks to ensure that:

 Regular load/stores access memory
 I/O accesses access I/O memory

P1
Memory Pointer

P2
I/O Pointer

store (v, *p2);

iostore (v, *p1);



Solution: MMU

Add run-time checks on MMU updates
 Mapping kernel memory into user-space
 Mapping data inconsistent with types

Same mechanism as VMMs
 Finer-grain checks

Virtual
Memory

Physical
Memory

T1* P1

T2* P2
Virtual

Memory
Physical
Memory

User

Kernel



Solution: MMU

Add run-time checks on MMU updates
 Mapping kernel memory into user-space
 Mapping data inconsistent with types

Same mechanism as VMMs
 Finer-grain checks

Virtual
Memory

Physical
Memory

T1* P1

T2* P2
Virtual

Memory
Physical
Memory

User

Kernel



Solution: MMU

Add run-time checks on MMU updates
 Mapping kernel memory into user-space
 Mapping data inconsistent with types

Same mechanism as VMMs
 Finer-grain checks

Virtual
Memory

Physical
Memory

T1* P1

T2* P2
Virtual

Memory
Physical
Memory

User

Kernel



Solution: MMU

Add run-time checks on MMU updates
 Mapping kernel memory into user-space
 Mapping data inconsistent with types

Same mechanism as VMMs
 Finer-grain checks

Virtual
Memory

Physical
Memory

T1* P1

T2* P2
Virtual

Memory
Physical
Memory

User

Kernel



Solution: MMU

Add run-time checks on MMU updates
 Mapping kernel memory into user-space
 Mapping data inconsistent with types

Same mechanism as VMMs
 Finer-grain checks

Virtual
Memory

Physical
Memory

T1* P1

T2* P2
Virtual

Memory
Physical
Memory

User

Kernel



Outline

Motivation
High-level Solutions
Design of SVA-OS
Experimental Results
Future Work and Conclusions



Secure Virtual Architecture1 

Compiler-based virtual machine
 Hosts a commodity OS (e.g., Linux)
 Provides traditional memory safety guarantees (control-flow and 

data-flow integrity) 

Memory Safety
Run-time Library

Hardware 

OS Memory Allocator

SVA Virtual 
Machine

OS Kernel

SVA ISA

Native ISA

Native Code Generator
SVA Run-time

Library

Safety Compiler

Hardware

1Criswell et al. [SOSP 2007]



From SVA to SVA-OS

Extend the SVA software/hardware interface
New instructions control software/hardware 

interactions

Enforce memory safety for low-level operations
Use static analysis when possible
Add run-time checks when necessary 



Solution: Processor State

Save old state and place new state in a single instruction
 sva_swap_integer

Return opaque handle
Buffer saved in SVA-OS memory

 Buffer released on sva_swap_integer call

R1
R2
PC
SP

Process 1: ID 1

CPUSVA-OS MemoryOS
Task Structures

R1
R2
PC
SP

ID1 ID2

PC
SP

R1
R2

ID3

Process 3: ID 2

Process 8: ID 3



Solution: Processor State

Save old state and place new state in a single instruction
 sva_swap_integer

Return opaque handle
Buffer saved in SVA-OS memory

 Buffer released on sva_swap_integer call

R1
R2
PC
SP

Process 1: ID 1 R1
R2
PC
SP

CPUSVA-OS MemoryOS
Task Structures

R1
R2
PC
SP

ID1 ID2

Process 3: ID 2

Process 8: ID 3



Solution: Memory Mapped I/O

Operating system uses a pseudo-allocator
Map I/O objects into virtual address space

New instructions for I/O reads and writes
sva_io_readb, sva_io_writeb

Compiler marks I/O memory as type-unknown
Load/store check on each access
Load/store checks on memory objects that alias



Solution: MMU

VMM-like interface to declare and update MMU mappings
 sva_declare_l1_page, sva_declare_l2_page
 sva_update_l1_mapping, sva_update_l2_mapping

Runtime checks for typed memory
 Pointer analysis in SVA segregates data by types
 SVA-OS ensures this stays consistent

Run-time checks for dividing memory
 SVA-OS memory and kernel memory
 Kernel memory and user-space memory
 I/O memory and regular kernel memory



Linux 2.4 Port on SVA-OS

Less than 100 lines changes from original SVA 
Linux port
switch_to ➞ sva_swap_integer
 readb ➞ sva_io_readb
set_pte ➞ sva_update_l1_mapping
pte_alloc_one ➞ sva_declare_l1_page

Compiler changes:
Allocation of I/O objects: ioremap



Outline

Motivation
High-level Solutions
Design of SVA-OS
Experimental Results
Future Work and Conclusions



Does It Work?

Tested two real world MMU exploits
BID9356, BID9686 on Linux 2.4
BID18177 exploit code not available

Injected errors into our Linux 2.4 port
New system calls

Studied the E1000E Intel Network bug
Paper study because only on Linux 2.6



MMU Exploits on Linux 2.4

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 1BID9356
 fork, mmap



MMU Exploits on Linux 2.4

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 2BID9356
 fork, mmap



MMU Exploits on Linux 2.4

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 3BID9356
 fork, mmap



MMU Exploits on Linux 2.4

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 4BID9356
 fork, mmap



MMU Exploits on Linux 2.4

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 0BID9356
 fork, mmap



MMU Exploits on Linux 2.4

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 0BID9356
 fork, mmap



MMU Exploits on Linux 2.4

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 0BID9356
 fork, mmap



MMU Exploits on Linux 2.4

BID9686
 Missing error check on mremap
 MMU mappings not cleared

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 0BID9356
 fork, mmap



MMU Exploits on Linux 2.4

BID9686
 Missing error check on mremap
 MMU mappings not cleared

Virtual
Memory

Physical
Memory

User

Kernel

Map count = 0

Both bugs were detected by SVA-OS, not SVA

BID9356
 fork, mmap



Error Injection 

Modification of Processor State

Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds



Error Injection 

Modification of Processor State

Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds

SVA-OS: Caught as an invalid integer to pointer cast
SVA: control flow changed



Error Injection 

Modification of Processor State

Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds

SVA-OS: Caught as an invalid integer to pointer cast

SVA-OS: Second mapping caught by MMU checks

SVA: control flow changed

SVA: Subsequent store succeeds



Error Injection 

Modification of Processor State

Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds

SVA-OS: Caught as an invalid integer to pointer cast

SVA-OS: Second mapping caught by MMU checks

SVA: Memory safety guarantees disabled

SVA: control flow changed

SVA: Subsequent store succeeds

SVA-OS:Access to SVA memory caught by MMU checks



E1000E Bug on Linux 2.6

cmpxchg on dangling pointer
Instruction thought it was code memory
Unpredictable behavior on I/O memory
Network card damaged

With SVA-OS
No I/O memory mapped on code page
Load/Store checks on I/O memory



Web Server Bandwidth: thttpd

0

0.2500

0.5000

0.7500

1.0000

1 2 4 8 16 32 64 128 256 512 1024

Web Server Bandwidth Normalized to Native

File Size (KB)

SVA SVA-OS

 Athlon 2100+, 1GB of RAM, 1Gb/s network
 Higher is better
 Micro-benchmark overheads in paper



User-Application Benchmarks

Benchmark i386 (s) SVA (s) SVA-OS (s) % Increase (i386 to SVA-OS)

bzip2 18.7 18.3 18.0 0.0%

lame 133.3 132.0 126.0 -0.1%

perl 22.3 22.3 22.3 0.0%

 Negligible overhead on user-space applications



Outline

Motivation
High-level Solutions
Design of SVA-OS
Experimental Results
Future Work and Conclusions



Future Work

Improve Static Analysis
Reduce run-time checks

Additional Security Properties
Information flow control

Apply to other systems
Type-safe language OS, e.g. Singularity
JVMs, hypervisors



Contributions

Identified memory-safety violations from low-
level software/hardware operations

First system to provide comprehensive safety 
guarantees for such operations
Leaves control under OS
Incurs little run-time overhead above SVA

Questions?
See what we do at http://sva.cs.uiuc.edu


