Memory Safety for Low-
[evel Software/Hardware
Interactions

g John Criswell
Nicolas Geoffray

Montreal or Bust! Vikram Adve

& &
“ > >

IIIIIIIII

Memory Safety Future 1s Bright

User-space memory safety is improving

Safe languages

SAFECode, CCured, Baggy bounds checking,
Softbound, etc

Memory safety for operating systems exists!
Singularity (C#), SPIN (Modula-3)
Linux on Secure Virtual Architecture (C)

A New Enemy Arises:
Software/Hardware Interactions

What is a low-level software-hardware interaction?
Instruction that manipulates hardware resources
Below semantics of the programming language

Perfectly type-safe code! But:

Can corrupt control-flow or data-flow
Examples:

Processor State
/O Objects
MMU mappings

Memory Safety: Processor State

Operating systems explicitly manage Processor State
Processor states saved in memory buffers

Type-safe stores can modify a saved processor state
Can subvert control/data-flow integrity

P R1
Pointer in OS R2
R3

PC

SP

Memory

Memory Safety: Processor State

Operating systems explicitly manage Processor State
Processor states saved in memory buffers

Type-safe stores can modify a saved processor state
Can subvert control/data-flow integrity

P R1
Pointer in OS R2
= Rsﬂ“’?
%’b

Memory

Memory Safety: Processor State

Operating systems explicitly manage Processor State
Processor states saved in memory buffers

Type-safe stores can modify a saved processor state
Can subvert control/data-flow integrity

o R1 Context Switch
Pointer in OS R2
LR —
éP

Memory CPU

Memory Safety: I/0

/O device memory and RAM in same address space

However, I|/O memory is different

/O memory incompatible with standard compiler analysis
/O memory has side effects on hardware

Intel E1000E Bug on Linux 2.6

nvalid write on I/O memory

Damaged Intel E1000E Network Cards
Potential DoS Attack

Memory Safety: MMU

MMU can violate type

safety

T1" P1

—

Memory Pointers

12" P2

—

Virtual
Memory

N

—

Physical
Memory

Memory Safety: MMU

MMU can violate type

safety

T1" P1

—>

Memory Pointers

12" P2

—>

Virtual
Memory

Physical
Memory

Memory Safety: MMU

T1*P1 |
MMU can violate type memory Pointers
safety

T2*P2 |~ —

Virtual Physical
Memory Memory

MMU can make kernel pages User B
accessible to user-space —_—
BID9356, BID9686, BID18177 Kemel / g

(www.securityfocus.com)

Virtual Physical
Memory Memory

http://www.securityfocus.com
http://www.securityfocus.com

Memory Safety: MMU

T1*P1 |
MMU can violate type memory Pointers
safety

T2*P2 —

Virtual Physical
Memory Memory

MMU can make kernel pages User e
accessible to user-space

BID9356, BID9686, BID18177 Kernel
(www.securityfocus.com) Pl

Virtual Physical
Memory Memory

http://www.securityfocus.com
http://www.securityfocus.com

It’s Already Here!

Intel E1000E Bug
MMU exploits in Linux

Need solutions before these attacks become more
sophisticated and commonplace!

%

L

p

SVA-OS: Memory Safety for Low-
[Level Software-Hardware Interactions

First system to provide comprehensive memory
safety for low-level software/hardware interactions

Linux 2.4.22 on Secure Virtual Architecture (SVA)

Compiler analysis and runtime checks

Little overhead above and beyond traditional memory
safety

Effective at preventing software/hardware exploits

Outline

Motivation

High-level Solutions

Design of SVA-OS
Experimental Results

Future Work and Conclusions

Foundations: What Do We Need?

System that provides traditional memory safety
SVA-OS will preserve memory safety

Examples
Type-safe languages, e.g. Singularity

Compiler techniques for commodity operating
systems, e.g. Secure Virtual Architecture (SVA)

Solution: Processor State

New instruction to save old state and restore new state
State saved in internal SVA-OS memory
State referenced by ID returned from VM

Policy left to OS
Scheduling, context switching, signal delivery

ID1 ID2 ID3

Process 1: 1D 1 R1 R1 R1

. R2 R2 R2

Process 3: ID 2 PC PC PC

Process 8: ID 3 SP SP SP
OS SVA-OS Memory CPU

Task Structures

Solution: Memory Mapped 1/0

New instruction to map I/O memory into address space
New instructions to load/store 1/O objects

Add run-time checks to ensure that:
Regular load/stores access memory
/O accesses access |/O memory

P1

—— Memory Pointer

lostore (v, *p1);

P2
/O Pointer

store (v, *p2);

Solution: Memory Mapped 1/0

New instruction to map I/O memory into address space
New instructions to load/store 1/O objects

Add run-time checks to ensure that:
Regular load/stores access memory
/O accesses access |/O memory

P1

—— Memory Pointer

S

P2
/O Pointer

store (v, *p2);

Solution: Memory Mapped 1I/0

New instruction to map I/O memory into address space
New instructions to load/store 1/O objects

Add run-time checks to ensure that:
Regular load/stores access memory
/O accesses access |/O memory

P1

—— Memory Pointer

P2
/O Pointer

S
S

Solution: MMU

Add run-time checks on MMU updates
Mapping kernel memory into user-space
Mapping data inconsistent with types

Same mechanism as VMMs
Finer-grain checks

* —>
User T1* P1 N
Kernel /_
e T2°P2 | >

Virtual Physical Virtual Physical
Memory Memory Memory Memory

Solution: MMU

Add run-time checks on MMU updates
Mapping kernel memory into user-space
Mapping data inconsistent with types

Same mechanism as VMMs
Finer-grain checks

T1*P1 |
User
s N

Kernel

e T2°P2 | >

Virtual Physical Virtual Physical
Memory Memory Memory Memory

Solution: MMU

Add run-time checks on MMU updates
Mapping kernel memory into user-space
Mapping data inconsistent with types

Same mechanism as VMMs
Finer-grain checks

Virtual Physical
Memory Memory

Solution: MMU

Add run-time checks on MMU updates
Mapping kernel memory into user-space
Mapping data inconsistent with types

Same mechanism as VMMs
Finer-grain checks

Virtual
Memory

—> -

Physical
Memory

Solution: MMU

Add run-time checks on MMU updates
Mapping kernel memory into user-space
Mapping data inconsistent with types

Same mechanism as VMMs
Finer-grain checks

12" P2

Me

ory

Outline

Motivation

High-level Solutions

Design of SVA-OS
Experimental Results

Future Work and Conclusions

Secure Virtual Architecture!

Compiler-based virtual machine
Hosts a commodity OS (e.g., Linux)

Provides traditional memory safety guarantees (control-flow and
data-flow integrity)

OS Kernel
OS Memory Allocator
SVA ISA
Safety Compiler
Native Code Generator . SVA Virtual

SVA Run-time Memory Safety Machine
Li Run-time Lib
— — Native ISA
ﬂ} Hardware

ICriswell et al. [SOSP 2007]

From SVA to SVA-OS

Extend the SVA software/hardware interface

New instructions control software/hardware
Interactions

Enforce memory safety for low-level operations
Use static analysis when possible
Add run-time checks when necessary

Solution: Processor State

Save old state and place new state in a single instruction
sva_swap_integer

Return opaque handle

Buffer saved in SVA-OS memory

Buffer released on sva_swap_integer call

Process 1: ID 1

Process 3: ID 2

Process 8: ID 3

0S
Task Structures

D1

D2

ID3

R1

R1

R1

R2

R2

R2

PC

PC

PC

SP

SP

SP

SVA-OS Memory

CPU

Solution: Processor State

Save old state and place new state in a single instruction
sva_swap_integer

Return opaque handle

Buffer saved in SVA-OS memory

Buffer released on sva_swap_integer call

ID1 ID2
Process 1: 1D 1 R1 R1 R1
. R2 R2 R2
Process 3: ID 2 PC PC PC
Process 8: ID 3 SP SP SP
OS SVA-OS Memory CPU

Task Structures

Solution: Memory Mapped 1/0

Operating system uses a pseudo-allocator
Map |I/O objects into virtual address space

New instructions for I/O reads and writes
sva_io_readb, sva_io_writeb

Compiler marks 1/O memory as type-unknown
Load/store check on each access
Load/store checks on memory objects that alias

Solution: MMU

VMM-like interface to declare and update MMU mappings
sva_declare |1 _page, sva_declare_I2 page
sva_update |1 _mapping, sva_update 12 mapping

Runtime checks for typed memory
Pointer analysis in SVA segregates data by types
SVA-OS ensures this stays consistent

Run-time checks for dividing memory
SVA-OS memory and kernel memory
Kernel memory and user-space memory
/O memory and regular kernel memory

[Linux 2.4 Port on SVA-OS

Less than 100 lines changes from original SVA
Linux port

switch _to — sva_swap integer

readb — sva io readb

set _pte — sva_update |1 _mapping

pte alloc_one — sva declare |1 _page

Compiler changes:
Allocation of I/O objects: ioremap

Outline

Motivation

High-level Solutions

Design of SVA-OS
Experimental Results
Future Work and Conclusions

Does It Work?

Tested two real world MMU exploits

BID9356, BID9686 on Linux 2.4
BID18177 exploit code not available

Injected errors into our Linux 2.4 port
New system calls

Studied the E1000E Intel Network bug

Paper study because only on Linux 2.6

MMU Exploits on Linux 2.4

BID9356

fork, mmap

User

Kernel

Map count = 1

Virtual
Memory

—>

Physical
Memory

MMU Exploits on Linux 2.4

BID9356 Map count = 2

fork, mmap —

User

Kernel

Virtual Physical
Memory Memory

MMU Exploits on Linux 2.4

BID9356

fork, mmap

User

Kernel

Map count =3

—

Virtual
Memory

—

Physical
Memory

MMU Exploits on Linux 2.4

Map count = 4

BID9356

fork, mmap

User

Kernel

Virtual Physical
Memory Memory

MMU Exploits on Linux 2.4

BID9356 Map count =0

fork, mmap User >

Kernel

Virtual Physical
Memory Memory

MMU Exploits on Linux 2.4

BID9356

fork, mmap

User

Kernel

Map count =0

Virtual
Memory

—>

/

Physical
Memory

MMU Exploits on Linux 2.4

BID9356

fork, mmap

User

Kernel

Map count =0

Virtual
Memory

—>

"

Physical
Memory

MMU Exploits on Linux 2.4

Map count =0

BID9356
fork, mmap User
Kernel
Virtual
Memory
BID9686

—>

"

Missing error check on mremap

MMU mappings not cleared

Physical
Memory

MMU Exploits on Linux 2.4

BID9356 Map count = 0
fork, mmap User .
Kernel /®/ |
|
Virtual Physical
Memory Memory
BID9686

Missing error check on mremap
MMU mappings not cleared

Both bugs were detected by SVA-OS, not SVA

Error Injection

Modification of Processor State

Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds

Error Injection

Modification of Processor State
SVA: control flow changed

SVA-OS: Caught as an invalid integer to pointer cast
Double mapping of a type-safe memory object

Modify metadata of SVA with incorrect bounds

Error Injection

Modification of Processor State
SVA: control flow changed

SVA-OS: Caught as an invalid integer to pointer cast
Double mapping of a type-safe memory object
SVA: Subsequent store succeeds

SVA-0S: Second mapping caught by MMU checks
Modify metadata of SVA with incorrect bounds

Error Injection

Modification of Processor State
SVA: control flow changed

SVA-OS: Caught as an invalid integer to pointer cast
Double mapping of a type-safe memory object
SVA: Subsequent store succeeds

SVA-0S: Second mapping caught by MMU checks
Modify metadata of SVA with incorrect bounds

SVA: Memory safety guarantees disabled

SVA-0S:Access to SVA memory caught by MMU checks

E1000E Bug on Linux 2.6

cmpxchg on dangling pointer
Instruction thought it was code memory
Unpredictable behavior on I/O memory
Network card damaged

With SVA-OS
No I/O memory mapped on code page
Load/Store checks on I/O memory

Web Server Bandwidth: thttpd

Athlon 2100+, 1GB of RAM, 1Gb/s network
Higher is better
Micro-benchmark overheads in paper

1.0000

0.7500

0.5000

0.2500

SVA B SVA-0OS

Web Server Bandwidth Normalized to Native

2 4

8

16 32 64
File Size (KB)

128 256 512 1024

User-Application Benchmarks

Negligible overhead on user-space applications

Benchmark | i386 (s) | SVA (s) | SVA-OS (s) | % Increase (i386 to SVA-OS)
bzip2 18.7 18.3 18.0 0.0%
lame 133.3 132.0 126.0 -0.1%
perl 22.3 22.3 22.3 0.0%

Outline

Motivation

High-level Solutions

Design of SVA-OS
Experimental Results

Future Work and Conclusions

Future Work

Improve Static Analysis
Reduce run-time checks

Additional Security Properties
Information flow control

Apply to other systems
Type-safe language OS, e.g. Singularity
JVMs, hypervisors

Contributions

|dentified memory-safety violations from low-
level software/hardware operations

First system to provide comprehensive safety
guarantees for such operations

Leaves control under OS
Incurs little run-time overhead above SVA

Questions?

See what we do at http://sva.cs.uiuc.edu

