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Abstract
In this work we perform the first comprehensive study
of physical-layer identification of RFID transponders.
We propose several techniques for the extraction of
RFID physical-layer fingerprints. We show that RFID
transponders can be accurately identified in a controlled
environment based on stable fingerprints corresponding
to their physical-layer properties. We tested our tech-
niques on a set of 50 RFID smart cards of the same
manufacturer and type, and we show that these tech-
niques enable the identification of individual transpon-
ders with an Equal Error Rate of 2.43% (single run) and
4.38% (two runs). We further applied our techniques to a
smaller set of electronic passports, where we obtained
a similar identification accuracy. Our results indicate
that physical-layer identification of RFID transponders
can be practical and thus has a potential to be used in a
number of applications including product and document
counterfeiting detection.

1 Introduction

Passively powered Radio Frequency Identification De-
vices (RFID) are becoming increasingly important com-
ponents of a number of security systems such as elec-
tronic passports [3], contactless identity cards [4], and
supply chain systems [16]. Due to their importance,
a number of security protocols have been proposed for
RFID authentication [46, 25, 17], key management [31,
28] and privacy-preserving deployment [6, 29, 26, 37,
19, 14, 13]. International standards have been accepted
that specify the use of RFID tags in electronic travel
documents [3]. Although the literature contains a num-
ber of investigations of RFID security and privacy proto-
cols [27, 5] on the logical level, little attention has been
dedicated to the security implications of the RFID phys-
ical communication layer.

In this work, we focus on the RFID physical com-
munication layer and perform the first study of RFID

transponder physical-layer identification. We present a
hardware set-up and a set of techniques that enable us to
perform the identification of individual RFID transpon-
ders of the same manufacturer and model. We show that
RFID transponders can be accurately identified in a con-
trolled measurement environment based on stable finger-
prints corresponding to their physical-layer properties.
The measurement environment requires close proximity
and fixed positioning of the transponder with respect to
the acquisition antennas.

Our techniques are based on the extraction of the mod-
ulation shape and spectral features of the signals emit-
ted by transponders when subjected to both well formed
reader signals, and to out of specification reader signals.
We tested our techniques on a set of 50 RFID smart
cards of the same manufacturer and type and show that
these techniques enable the identification of individual
cards with an Equal Error Rate of 2.43% (single run) and
4.38% (two runs). We further applied our techniques to
a smaller set of electronic passports, where we obtained
a similar identification accuracy. We also tested the clas-
sification accuracy of our techniques, and show that they
achieve an average classification error of 0% for a set of
classes corresponding to the countries of issuance. We
further show that our techniques produce features that
form compact and computationally efficient fingerprints.
Given the low frequencies of operation of the transpon-
ders in our study, the extraction of the fingerprints is
inexpensive, and could be performed using a low-cost
purpose-built reader.

Although the implications of physical-layer identifi-
cation of RFID transponders are broad, we believe that
the techniques we present can potentially find their use
in the detection of cloned products and identity docu-
ments, where the (stored) fingerprints of legitimate doc-
uments are compared with those of the presented doc-
uments. Our experimental setup corresponds to this
application in which the transponders are fingerprinted
from close proximity and in a controlled environment.



It has been recently shown that despite numerous pro-
tections, RFIDs in current electronic documents can be
successfully cloned [18, 34, 33, 47], even if they ap-
ply the full range of protective measures specified by
the standard [3], including active authentication. We see
our techniques as an additional, efficient and inexpen-
sive mechanism that can be used to detect RFID cloning.
More precisely, to avoid detection of a cloned document,
an adversary has to produce a clone using a transponder
with the same fingerprint as the original document. Al-
though, it may be hard to perform such task, the amount
of effort required is an open research problem. We dis-
cuss two methods of applying RFID physical-layer iden-
tification to cloning detection and compare it to other
anti-cloning solutions, like those based on physically-
unclonable functions (PUFs) [12].

Our results show the feasibility of RFID transponder
fingerprinting in a controlled environment. Using the
proposed methods is not enough to extract the same or
similar fingerprints from a larger distance (e.g., 1 meter).
In our experiments, such remote feature extraction pro-
cess resulted in incorrect identification. Therefore, we
cannot assert that chip holder privacy can be compro-
mised remotely using our techniques. This result further
motivates an investigation of physical-layer features of
RFID transponders that would allow their remote iden-
tification, irrespective of (e.g., random) protocol-level
identifiers that the devices use on the logical communi-
cation level. Our current results do not allow us to con-
clude that such distinguishable features can be extracted
remotely.

The remainder of this paper is organized as follows. In
Section 2, we present our system model and investigation
parameters. In Section 3, we detail our fingerprinting
setup (i.e., a purpose-built reader), signal capturing pro-
cess and summarize the data acquisition procedure and
collected data. The proposed features for transponder
classification and identification are explained in Section
4 and their performance is analyzed in Section 5. We dis-
cuss an application of our techniques to document coun-
terfeiting detection in Section 6, make an overview of
background and related work in Section 7 and conclude
the paper in Section 8.

2 Problem and System Overview

In this work, we explore physical-layer techniques for
detection of cloned and/or counterfeit devices. We
focus on building physical-layer fingerprints of RFID
transponders for the following two objectives:

1. RFID transponder classification: the ability to as-
sociate RFID transponders to previously defined
transponder classes. In the case of identity docu-

ments classes might, for example, be defined based
on the country that issued the document and the year
of issuance.

2. RFID transponder identification: the ability to iden-
tify same model and manufacturer RFID transpon-
ders. In the case of identity documents, this could
mean identifying documents from the same country,
year and place of issuance.

A classification system must associate unknown RFID
transponder fingerprints to previously defined classes C.
It performs ”1-to-C” comparisons and assigns the RFID
fingerprint to the class with the highest similarity accord-
ing to a chosen similarity measure (Section 5.1). This
corresponds to a scenario in which an authority verifies
whether an identity document belongs to a claimed class
(e.g., country of issuance).

An identification system typically works in one of
two modes: either identification of one device among
many, or verification that a device’s fingerprint matches
its claimed identity [8]. In this work, we consider veri-
fication of a device’s claimed or assumed identity. This
corresponds to a scenario in which the fingerprint of an
identity document (e.g., passport), stored in a back-end
database or in the document chip, is compared to the
measured fingerprint of the presented document. The
verification system provides an Accept/Reject decision
based on a threshold value T (Section 5.1). Identity ver-
ification requires only ”1-to-1” fingerprint comparison
and is therefore scalable in the number of transponders.

In this study we use a single experimental setup for ex-
amination of both classification and identification. Our
setup consists of two main components: a signal acquisi-
tion setup (i.e., a purpose-built RFID reader) (Section 3)
and a feature selection and matching component (Sec-
tion 4). In our signal acquisition setup we use a purpose-
built reader to transmit crafted signals which then stim-
ulate a response from the target RFID transponders. We
then capture and analyze such responses. In particular,
we consider transponder responses when subjected to the
following signals from the reader: standard [4] transpon-
der wake-up message, transponder wake-up message
at intentionally out-of-specification carrier frequencies,
a high-energy burst of sinusoidal carrier at an out-of-
specification frequency, and a high-energy linear fre-
quency sweep.

To evaluate the system accuracy, we make use of
two different device populations (Table 1). The first
population consists of 50 ”identical” JCOP NXP 4.1
smart cards [2] which contain NXP RFID transponders
(ISO 14443, HF 13.56 MHz). We chose these transpon-
ders since they are popular for use in identity docu-
ments and access cards, and because they have also been
used by hackers to demonstrate cloning attacks against
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e-passports [47]. The second population contains 8
electronic passports from 3 different countries1. These
two populations allow us to define different transponder
classes (e.g., 3 issuing countries, and a separate class for
JCOP cards) for classification and include a sufficient set
of identical transponders to quantify the identification ac-
curacy of the transponders of the same model and manu-
facturer.

In summary, in this work, we answer the following
interrelated questions:

1. What is the classification accuracy for different
classes of transponders, given the extracted fea-
tures?

2. What is the identification accuracy for transponders
of the same model and manufacturer, given the ex-
tracted features?

3. How is the classification and identification accuracy
affected by the number of signals used to build the
transponder fingerprint?

4. How stable are the extracted features, across differ-
ent acquisition runs and across different transponder
placements (relative to the reader)?

3 Experimental Setup and Data

In this section, we first describe our signal acquisition
setup. We then detail the different types of experiments
we performed and present the collected datasets from our
population of transponders.

3.1 Hardware Setup
Figure 1 displays the hardware setup that we use to col-
lect RF signals from the RFID devices. Our setup is
essentially a purpose-built RFID reader that can oper-
ate within the standardized RFID communication spec-
ifications [4], but can also operate out of specifications,
thus enabling a broader range of experiments. The setup
consists of two signal generators, used for envelope gen-
eration (envelope generator) and for signal modulation
(modulation generator), and of transmitting and acqui-
sition antennas. The envelope generator is fed with a
waveform that represents the communication protocol
wake-up command2 required for initiating communica-
tion with RFID transponders. The envelope waveform

1The small quantity of the electronic passports used in the experi-
ments is due to the difficulty of finding people who are in possession of
such passports and at the same time willing to allow experimentation
on them.

2ISO/IEC 14443 for RFID communication defines two different
communication protocols, Type A and B, which use different wake-up
commands: WUQA and WUQB, respectively.

is then sent to the modulation generator and is modu-
lated according to the ISO/IEC 14443 protocol Type A or
B, depending on the transponders being contacted. The
modulated signal is then sent over a PCB transmitting an-
tenna. Finally, the wake-up signal and the response from
the transponder are received at the acquisition antenna
and captured at the oscilloscope. The separation of the
envelope generation and modulation steps allowed us to
independently vary envelope and modulation character-
istics in our experiments.

In order to collect the RF signal response, we built a
”sandwich” style antenna arrangement (Figure 2b) where
an acquisition antenna is positioned between the trans-
mission antenna and the target RFID transponder. An
wooden platform holds the transmission and acquisition
antennas in a fixed position to avoid changes in antenna
polarization3. The platform is separated from the desk by
a non-metallic wooden cage. The transmission and ac-
quisition antennas are both connected to an oscilloscope.
We used the RF signal on the transmission antenna to
trigger the acquisition and then record the transponder’s
response at the acquisition antenna. It should be noted
that we can also observe the transponder’s response at
the transmission antenna, however as the acquisition an-
tenna had a higher gain than the transmission antenna, we
used the described setup to obtain better signal-to-noise
ratio.

3.2 Performed Experiments

Using the proposed setup, we performed four major ex-
periments:
Experiment 1 (Standard): In this experiment we initi-
ate communication with the transponders as defined by
Type A and B protocols in the ISO/IEC 14443 standard.
The envelope generator generates the Type A and B en-
velopes and the modulation generator modulates the sig-
nal at a carrier frequency Fc= 13.56 MHz, using 100%
ASK for Type A and 10% ASK for Type B at the nomi-
nal bit rate of Fb ∼ 106kbit/s.4 The experiment consists
of the following steps: a period of unmodulated carrier
is transmitted to power the transponder at which time
the oscilloscope begins recording the data. The carrier
is then modulated according to the envelope such that it
corresponds to a WUQA (Type A) or WUQB (Type B)
wake-up command. When the commands are no longer
transmitted, an unmodulated period of carrier is then sus-
tained while the oscilloscope records the response from
the transponder. The carrier is turned off between each

3It has been observed that such changes can reduce the identifica-
tion accuracy [11].

4For 100% ASK modulation we used pulse modulation as standard
built-in amplitude modulation (AM) in our generators could not reach
the required precision.
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Figure 1: Signal acquisition setup. Envelope and modulation generators generate wake-up signals that initiate the
response from the RFID transponder. This wake-up signal is transmitted by the transmitting antenna. The acquisition
antenna captures both the wake-up signal and the response from the transponder. The signal from the acquisition
antenna is then captured and recorded by the oscilloscope.
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Figure 2: a) Transmission and acquisition antennas. b) An electronic identity document being placed in the finger-
printing setup.

observation to ensure the transponder reboots each time.
Figures 3a and 3b show the collected samples from Type
A and Type B RFID transponders, respectively. This ex-
periment enables us to test if the transponder’s responses
can be distinguished when they are subjected to standard
signals from the reader.
Experiment 2 (Varied Fc): In this experiment, we test
transponder responses to the same signals as in Exper-
iment 1, but on out of (ISO/IEC 14443) specification
carrier frequencies. Instead of on Fc=13.56 MHz, our
setup transmits the signals on carrier frequencies be-
tween Fc=12.96 MHz and 14.36 MHz. Figures 3c and
3d display sample transponder responses to signals on
Fc=13.06 MHz. We expect the variation in the transpon-
der responses to be higher when they are subjected to out
of specification signals, since the manufacturers mainly
focus on transponder responses within the specified fre-
quency range.
Experiment 3 (Burst): In this experiment, we tested
transponder responses to bursts of RF energy. We sub-
jected the transponders to 10 cycles (2 µs) of non-
modulated 5 MHz carrier at an amplitude of Vpp=10 V
(the maximum frequency and amplitude supported by

our generators while in burst mode). Figure 4a shows
a sample transponder response to such an RF burst. This
experiment tests the response of transponders to an addi-
tional out-of-specification signal. We expect to see vari-
ation in different transponders’ responses for a variety
of reasons. For example since each transponder’s an-
tenna and charge pump is unique, we believe that dur-
ing power-up it will present a unique modulation of an
activating field.
Experiment 4 (Frequency Sweep): This experiment
consists of observing transponder responses to a non-
modulated carrier linear sweep from 100 Hz to 15 MHz
at an amplitude of Vpp=10 V (as measured at transmit-
ting antenna). The duration of the sweep is fixed to the
maximum allowed by our generator, 10 ms. In this test
we examine how the transponders react to many differ-
ent frequencies. Among other things, such an experiment
provides information about the resonances of the RF cir-
cuitry in each transponder. Figure 4b shows a sample
transponder response to a frequency sweep. Note the dif-
ferent shape artifacts.

We found that samples collected from Experiment 2
were well suited for transponder classification, whereas
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Figure 3: Experiment 1: Type A (a) and Type B (b) RFID transponder responses to WUQA and WUQB commands
sent on the ISO/IEC 14443 specified carrier frequency (Fc=13.56 MHz). Experiment 2: Type A (c) and Type B
(d) RFID transponder responses ATQA and ATQB to WUQA and WUQB commands respectively sent on an out of
ISO/IEC 14443 specification carrier frequency (Fc=13.06 MHz)
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Figure 4: a) Experiment 3: transponder response sample to a non-modulated 5 MHz carrier in duration of 10 cycles.
b) Experiment 4: transponder response sample to a non-modulated carrier linear sweep from 100 Hz to 15 MHz. The
duration of the sweep is 10 ms.

those collected from Experiments 3 and 4 were better
suited for identification of individual RFID transponders.
We discuss this result at greater length in Section 4.

3.3 Collected Data
Using the proposed setup, we performed the experiments
described in Section 3.2 and collected samples from
8 passports and 50 JCOP NXP 4.1 smart cards (same
model and manufacturer). The types of devices used in
the experiments are shown in Table 1. For the privacy of
our research subjects we arbitrarily labeled the passports
as ID1 to 8. To further protect their privacy we give the
country and place of issuance under the pseudonyms C1
to C3 and P1 to P6 respectively.

Our data collection procedure for a single experi-
ment ”run” was as follows: We positioned the target
RFID device on the experimental platform with all other
transponders being at an out-of-range distance from the

activating field. We then placed a heavy non-metallic
weight on top of the transponder to position it firmly
and horizontally on the platform. For each device we
then performed Experiments 1-4 at fixed acquisition tim-
ing offset and sampling rate and saved the samples to
a disk for later analysis. For each transponder we per-
formed two runs, completely removing and replacing
the target transponder on the experimental platform be-
tween runs. This ensures that extracted features are sta-
ble across repositioning.

In each iteration of Experiment 2 we collected 4 sam-
ples per run for 14 different carrier frequencies starting
from Fc=12.96 up to 14.36 MHz with a step of 100 KHz.
This resulted in 64 samples per transponder per run. In
Experiments 3 and 4 we collected 50 samples per device
per run.
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Table 1: RFID device populations (passports and JCOP NXP smart cards).
Type Number Label Country Year Place of Issue

Passport 2 ID1, ID2 C1 2006 P1
1 ID3 C1 2006 P2
1 ID4 C1 2006 P3
1 ID5 C1 2007 P4
1 ID6 C2 2008 P5
1 ID7 C3 2008 P6
1 ID8 C1 2008 P1

JCOP 50 J1..J50 JCOP NXP 4.1 cards (same model and manufacturer)

4 Feature Extraction and Selection

The goal of the feature extraction and selection is to ob-
tain distinctive fingerprints from raw data samples col-
lected in the proposed experiments, which most effec-
tively support the two objectives in our work, namely
classification and identification. In this section, we de-
tail the extraction and matching procedures of two types
of features effective for that purpose: modulation-shape
features (Section 4.1) and spectral PCA features (Sec-
tion 4.2). We also investigated the use of some tim-
ing features, such as the time interval within which the
transponder responds to an WUQ command and the du-
ration of that response (Figure 5a). These timing features
performed poorly in both tasks, hence in this work we fo-
cus on the modulation-shape and spectral features.

4.1 Modulation-shape Features
In this section, we describe the extraction and match-
ing procedures for the features extracted from the shape
of the modulated signal of the transponder responses at
a given carrier frequency Fc (Experiment 1&2). Fig-
ure 5 b) shows the shape of the On-Off keying modu-
lation for the JCOP NXP 4.1 card for the first packet in a
transponder’s response to a wake-up command. All Type
A transponders in our study had a logically identical first
packet.

For a given transponder, the features of the modulated
signal are extracted from the captured transponder re-
sponse (see Figure 3) denoted as f(t, l), using Hilbert
transformation. Here, f(t, l) is the amplitude of the sig-
nal l at time t. The Hilbert transformation is a com-
mon transformation in signal processing used to obtain
the signal envelope [38].

In Step (i), we apply Hilbert transformation on f(t, l)
to obtain H(t, l):

H(t, l) = Hil(f(t, l)) (1)

where Hil is a function implementing the Hilbert trans-
form [36].

In Step (ii), the starting point of the modulation in
H(t, l) is determined using the variance-based threshold
detection algorithm described in [40]. The end point is
fixed to a pre-defined value (see Section 5) and then the
modulation-shape fingerprint is extracted.

Feature matching between a reference and a test fin-
gerprints is performed using standardized Euclidean dis-
tance, where each coordinate in the sum of squares is
inverse weighted by the sample variance of that coordi-
nate [35].

4.2 Spectral Features

In this section, we describe the extraction and match-
ing of spectral features from data collected from Experi-
ments 3 (Burst) and 4 (Sweep) (Section 3.2).

Both frequency sweep and burst data samples are ex-
tremely high-dimensional: each sweep data sample con-
tains 960000 points (dimensions) and each burst data
sample contains 40000. Such high-dimensional data typ-
ically contain many noisy dimensions which are detri-
mental to finding distinctive features. Therefore, it is
critical to remove the noise as much as possible from the
raw data samples.

We explored two basic approaches to solve the dimen-
sionality problem. In the first approach, we considered
transforming the data in the frequency domain by means
of the Fast Fourier Transform (FFT) and remove the high
frequencies (usually considered noisy) by filtering. How-
ever, matching experiments using direct vector similarity
measures such as Euclidean and Cosine distance failed
to produce distinctive enough features. This may be be-
cause in removing the high frequencies we are also re-
moving frequencies that contain discriminative capabil-
ities. Such behavior is commonly noticed in biometrics
research [10]. In the second approach we down-sampled
the signal at different rates in order to reduce the dimen-
sionality. We then transformed the data in the frequency
domain by FFT and applied standard vector similarity
measures. Again reducing the dimensionality in this way
did not prove to be effective in extracting sufficiently dis-
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Figure 5: a) Timing features extracted from Type B transponder responses. b) Modulation-shape features.

criminative features.
To overcome the above problems, we use a modifi-

cation of Principal Component Analysis (PCA) for high-
dimensional data [7], that reduces data dimensionality by
discarding dimensions that do not contribute to the total
covariance. Given that the number of dimensions is very
high, orders of magnitude higher than the number of data
samples we can process, a standard PCA procedure can-
not be applied. In the following subsection, we briefly
describe the used PCA modification.

4.2.1 Feature Extraction and Matching

For a given RFID device, spectral PCA features are ex-
tracted from N captured samples using a linear transfor-
mation derived from PCA for high-dimensional data. We
denote a signal by f(t, l), where f(t, l) is the amplitude
of the signal l at time t. The features are extracted in the
following three steps:
In Step (i), we apply a one-dimensional Fourier transfor-
mation on f(t, l) to obtain F (ω, l):

F (ω, l) =
1√
M

M−1∑
m=0

f(t, l) exp(−2πi
tω

M
) (2)

where M is the length of signal considered and 0 ≤ t ≤
M − 1 is time. We then remove from F (ω, l) its DC
component and the redundant part of the spectrum; we
denote the remaining part of the spectrum by ~sl.
In Step (ii), a projected vector ~gl, also called a spectral
feature, is extracted from the Fourier spectrum using a
PCA matrix WPCA:

~gl = W t
PCA~sl (3)

The feature extraction from N captured samples for a
given transponder is then given by G = W t

PCAS where
G is an array of ~gl and S is a matrix S = [ ~s0 .. ~sl .. ~sN ].

Finally, in Step (iii), the feature template (fingerprint) h
used for matching is computed:

h = {Ĝ; ΣG} (4)

where Ĝ denotes the mean vector of G and ΣG denotes
the covariance matrix of G. The number of captured
samples N used to build the feature template and the
number of projected vectors in WPCA (i.e., the subspace
dimension) are experimentally determined.

Mahalanobis distance is used to find the similarities
between fingerprints5. The result of matching a reference
hR and a test hT feature templates is a matching score,
calculated as follows.

scr(hR, hT ) = min(
√

(ĜT − ĜR)tΣ−1
GR(ĜT − ĜR),√

(ĜT − ĜR)tΣ−1
GT (ĜT − ĜR)) (5)

Values of the matching score closer to 0 indicate a bet-
ter match between the feature templates. The proposed
matching uses the mean and covariance of both test and
reference templates. It also ensures the symmetric prop-
erty, that is scr(hR, hT ) = scr(hT , hR).

It should be noted that the proposed feature extraction
and matching method can be efficiently implemented
in hardware as they use only linear transformations for
feature extraction and inter-vector distance matchings.
These operations have a low memory footprint and are
computationally efficient.

4.2.2 PCA Training

In order to compute the eigenvalues and corresponding
eigenvectors of the high-dimensional data (the number

5We discovered that the feature templates are distributed in ellip-
soidal manner and therefore use Mahalanobis distance that weights
each projected sample according to the obtained eigenvalues.
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of samples � the number of dimensions), we used the
following lemma:

Lemma: For any K × D matrix W , mapping x →
Wx is a one-to-one mapping that maps eigenvectors of
WTW onto those of WWT .

Here W denotes a matrix containing K samples of di-
mensionality D. Using this lemma, we can first eval-
uate the covariance matrix in a lower space, find its
eigenvectors and eigenvalues and then compute the high-
dimensional eigenvectors in the original data space by
normalized projection [7]. Based on this description, we
compute the PCA matrix WPCA=[ ~u1 ~u2 . . . ~ui] by solv-
ing the eigenvector equation:

(
1
K
XTX)(XT ~vi) = λi(XT ~vi) (6)

where X is the training data matrix K ×D and ~vi are
the eigenvectors of XXT . We then compute the eigen-
vectors of our matrix ~ui by normalizing:

~ui =
1√
Kλi

(XT ~vi) (7)

It should be noted that other algorithms like proba-
bilistic PCA (e.g., EM for PCA) can potentially be also
used given the fact that we discovered that only 5-10
eigenvectors are predominant. We intend to investigate
these as a part of our future work.

5 Performance Results

In this section, we present the performance results of our
fingerprinting system. First, we review the metrics that
we use to evaluate the classification and identification ac-
curacy.

5.1 Evaluation Metrics
As a metric for classification, we adopt the average clas-
sification error rate, defined as the percentage of incor-
rectly classified signatures to a predefined set of classes
of signatures (e.g., countries). We used the 1-Nearest
Neighbor rule [7] for estimating the similarity between
testing and reference signatures from a given class; that
is, a testing signature is matched to all reference sig-
natures from all classes and assigned to the class with
nearest distance similarity. It should be noted that more
sophisticated classifiers can be devised such as Support
Vector Machines (SVM), Probabilistic Neural Networks
(PNN) [7]. However these classifiers require more train-
ing which we do not consider in this work.

As metrics for identification, we adopt the Equal Error
Rate (EER) and the Receiver Operating Characteristic
(ROC) since these are the most agreed metrics for eval-
uating identification systems [8]. The False Accept Rate

(FAR) and the False Reject Rate (FRR) are the frequen-
cies at which the false accept and the false reject events
occur. The FAR and FRR are closely related to each
other in the Receiver Operating Characteristic (ROC).
ROC is a curve which allows to automatically compute
FRR when the FAR is fixed at a desired level and vice
versa [8]. The operating point in ROC, where FAR and
FRR are equal, is called the Equal Error Rate (EER). The
EER represents the most common measure of the accu-
racy of identification systems [1]. The operating thresh-
old value at which the EER occurs is our threshold T for
an Accept/Reject decision.

To increase the clarity of presentation, we use the Gen-
uine Accept Rate (GAR = 1 - FRR) in the ROC because it
shows the rate of Accepts of legitimate identities. In ad-
dition, we also compute FRR for common target values
of FAR (e.g., FAR = 1%).

5.2 Classification Results

In this section, we present the results of the classifica-
tion using modulation-shape and spectral features. In
this evaluation, we consider all our passport samples and
5 of the JCOP NXP 4.1 cards. Here, the identity docu-
ments ID1, ID2, ID3, ID4, ID7, ID8 (see Table 1) and
the JCOP cards implement Type A communication pro-
tocol, whereas ID5 and ID6 use Type B protocol. It is
interesting to notice that within the same country class
(C1) we have documents with two different communi-
cation protocols (ID1-ID4 and ID8 implement Type A,
whereas ID5 implements Type B protocol).

5.2.1 Classification using Modulation-shape Fea-
tures

The modulation-shape features described in Section 4
show the discriminant artifacts in the transponder’s re-
sponse. In particular, we discovered that these artifacts
(shapes) vary from one transponder to another on out-of-
specification carrier frequencies.

Figure 6 shows the modulation envelope shapes of the
initial sequence of the RFID transponder’s response af-
ter Hilbert transformation for 4 different classes of Type
A protocol devices. These were recorded at an out of
specification carrier frequency Fc=13.16MHz. Visual in-
spection shows that the modulation shapes not only dif-
fer from class to class but also are stable within different
runs.

In order to quantify these observations more precisely,
we considered classification with 3 classes (2 countries +
JCOP cards) with all fingerprints from two different runs.
The classification process was repeated 8 times with 8
different reference fingerprints per class for validation.
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Table 2: Classification using modulation-shape features (Experiment 2)
Number of Classes Class structure Average Classification Error Rate

3 (C1),(C2),(JCOP) 0%
4 (ID1,ID3,ID4,ID8), (ID2), (ID7), (JCOP) 0%
2 (ID5-C1),(ID6-C3) 0%
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Figure 6: Modulation shape of the responses of 4 different classes (C1),(C1-ID2),(C2),(JCOP): a) first run b) second
run. In each run, the sample transponders were freshly placed in the fingerprinting setup. These plots show the stability
of the collected modulation-shape features across different runs.

The results show perfect separability of the classes
with average classification error rate of 0%. In addi-
tion, after detailed inspection of the modulation-shape
features we discovered that ID2 from C1 differs signif-
icantly from the representatives of that class. We there-
fore formed a new classification scenario with 5 classes
and obtained again a classification error rate of 0%. It
is an interesting result given that ID1 and ID2 are is-
sued by the same country, in the same year and place
of issue. However, their transponders are apparently dif-
ferent. The modulation-shapes of ID1,ID3 and ID4 from
C1 could not be further distinguished using the combina-
tion of modulation-shape features and Euclidean match-
ing. Table 2 shows the results.

Similar to Type A, the 2 Type B transponders from
two different countries (C1,C3) available in our popula-
tion showed complete separability with classification er-
ror rate of 0%. We acknowledge that our data set is insuf-
ficient due to the difficulty of obtaining e-passports. We
believe however that our results are promising to stimu-
late future work with a larger set of e-passports.

In summary, the modulation shapes at an out-of-
specification carrier frequency are successful in catego-
rizing different classes of transponders (e.g., countries).
They are quickly extractable and stable across different
runs. For the classification task, there is no need of statis-

tical analysis in contrast with the proposed spectral fea-
tures analyzed in the next sections. An additional ad-
vantage is that specialized hardware is not required as
current RFID readers can be easily adapted.

5.2.2 Classification using Burst and Sweep Spectral
Features

We also performed classification using burst and sweep
spectral features (Experiment 3 & 4) on the same set
of classes as with modulation-shape features (Table 2).
Similar to the modulation-shape features, this classifica-
tion achieved a 0% classification error rate on the pro-
posed classes. Moreover, using the spectral features we
were also able to distinguish individually each of our 9
identity documents with an EER=0%, i.e. we were able
to verify the identify of each individual document with
an accuracy of 100% with FRR=FAR=0%. This result
motivated us to estimate the identification accuracy of
spectral features on a larger set of identical (of the same
make and model) transponders.

5.3 Identification results

In this section we present the results of the identification
capabilities of the (burst and sweep) spectral features for
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Figure 7: Spectral features identification accuracy for different number of samples N used to built the fingerprint
and for different subspace dimensions: a) burst spectral features, b) sweep spectral features. 50 identical (same
manufacturer and model) transponders are used in the computation.

our data population (50 identical JCOP NXP 4.1 cards).
We adopt the following approach. We first evaluate the
accuracy over the data collected in a single run of the
experiment (Section 5.3.1 and 5.3.2). We then quantify
the feature stability of the spectral features by consider-
ing samples from two independent runs together (Section
5.3.3).

We validate our results using cross-validation [7]. We
measured 50 samples per transponder per run of which
we use 5-10 samples for training and the remaining 40-
45 samples for testing depending on the number of sam-
ples N used to build the fingerprint. The training and
testing data are thus separated and allow validation of
the identification accuracy.

5.3.1 Identification using Burst Spectral Features

In this evaluation, we consider the samples from the burst
dataset, from a single experiment run (Experiment 3) in
order to obtain a benchmark accuracy. We varied two
parameters: the number of samples N used to build the
feature templates (fingerprints) and the dimension of the
PCA subspace used to project the original features into.
The dimension of the PCA subspace is also related to the
feature template size which we discuss below.

The results of this analysis are presented in Figure 7a
for different N and subspace dimensionality. The di-
mension of the features before the projection is 19998.
The results show the EER of the system reaching 0.0537
(5.37%) for N=15. This means that our system correctly
identifies individual identical transponders with an accu-
racy of approximately 95% (GAR at the EER operating
point) using the features extracted from the burst sam-

ples. We later show that this accuracy is preserved in
cross-matchings between different runs. Table 3 summa-
rizes the underlying data, namely the number of samples
N , total genuine and imposter matchings performed for
EER computation6, Accept/Reject threshold, EER and
confidence interval (CI).

The results in Figure 7a also confirm that using the
first 5 eigenvectors to project and store the feature tem-
plate provides the highest accuracy. Our proposed fea-
tures therefore form compact and computationally effi-
cient fingerprints (see Section 5.4).

5.3.2 Identification using Sweep Spectral Features

Similarly to the above analysis, we considered the first
run of samples from the sweep experiment (Experiment
4) dataset. For computational reasons, we did not con-
sider the entire sample. Instead, we extracted the spec-
tral features from the part of the sample between 220 to
270 microseconds. As it can be seen in Figure 4, this
part contains the biggest shape changes in the frequency
sweep. This decision reduced the considered space to
100000 points which allowed reasonably fast feature ex-
traction (26 s per sample). This clearly excludes some
discriminant information from our analysis, and future
work should include other sections of the sample signals.

The results are presented in Figure 7b for N=15 and

6The number of genuine and imposter matchings depends on the
number of available fingerprints per transponder. For N=10, we are
able to built 4 different fingerprints with the testing data within a run.
This results in 6 different matchings of fingerprints from the same de-
vice (i.e., genuine matchings) and 392 different matchings of finger-
prints from different transponders (i.e., imposter matchings). For 50
transponders, this makes 300 genuine and 19600 imposter matchings.
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Figure 8: Feature stability in identification: a) burst spectral features b) sweep spectral features. 50 identical (same
manufacturer and model) transponders are used in the experiments. c) burst and sweep spectral features on independent
transponder sets for training and testing; 20 transponders are used for training and 30 transponders - for testing; N=15.

different subspace dimensions. The dimension of the
original features before projection is 49998. We com-
puted the EER for N=15 (see Burst analysis in Sec-
tion 5.3.1). The obtained EER is 0.0469 (4.69%), when
using the first 5 eigenvectors to project and store the fea-
ture template. The obtained accuracy is therefore similar
to the one obtained with the burst features, i.e. our sys-
tem correctly identifies the individual identical transpon-
ders with an accuracy of approximately 95% (GAR at the
EER point). Table 3 shows the confidence intervals.

5.3.3 Feature Stability

In the previous sections we have analyzed the identifi-
cation accuracy using burst and sweep spectral features
within a single experiment run. This allows us to have a
benchmark for estimating the stability of the features. In
particular, we performed the following stability analysis:

1. Using the linear transformations WPCA obtained in
the first run, we selected 4 feature templates (2 from
each run) and computed again the EER by consid-
ering only the cross matching scores of fingerprints
from different runs7. The process was repeated 3
times with different feature templates from the two
runs to validate the feature stability.

2. We trained the system over the first 20 transpon-
ders and then used the obtained linear transforma-
tion to estimate the accuracy over the remaining 30
transponders. This analysis tests the stability of the
obtained linear transformations to discriminate in-
dependent transponder populations8.

7This procedure is required in order to remove any possible bias
from cross matching scores of fingerprints from the same run. We
point out that this results in a reduced number of genuine and imposter
matchings for the EER computation, 200 and 9800 respectively (see
Table 3).

8The motivation behind this division (20 vs. 30) is that it gives

Figure 8 compares the EER accuracy obtained with
the first run (Run 1) and the accuracy obtained by mix-
ing fingerprints of both runs (Run 1×2) for a fixedN=15.
Table 3 displays the confidence interval for subspace di-
mension of 5 eigenvectors. The obtained EERs do not
show a statistically significant difference between the
two experiments for both the burst and sweep features
using 4-fold validation.

Figure 9 displays the EER accuracy obtained using in-
dependent transponder sets for training and testing for
a fixed N=15. Here, the fingerprints from both runs
are mixed as in the previous analysis. Table 4 summa-
rizes the numeric results together with confidence in-
tervals of the EER. Even though the testing population
(30 transponders) is smaller, we observe that the sweep
features do not show any significant accuracy deviation
from the benchmark accuracy on Run 1×2 (Table 3). On
the other hand, the burst features slightly decreased the
accuracy on average (Table 3). The reason for this might
be that 20 different transponders are not sufficient to train
the system; however, we cannot assert this with certainty.

5.3.4 Combining Sweep and Burst Features

Given that the identification accuracies of both burst and
sweep spectral features are similar; in order to fully char-
acterize the identity verification we computed the ROC
curves for the burst and sweep features as shown in Fig-
ure 9b. We notice that while the EERs are similar, the
curves exhibit different accuracies at different FARs. In
particular, for low FAR≤1% the sweep features show
lower GAR.

The burst and sweep features discriminate the finger-
prints in a different way, and therefore these features can
be combined in order to further increase the accuracy.
Such combinations are being researched in multi-modal

reasonable number of transponders for both training and testing.
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Table 3: Summary of accuracy for the 5-dimensional spectral features (50 transponders).
Type Run N Test matchings Threshold T EER (%) EER CI (%) Validation

Genuine Imposter lower upper
Burst 1 15 150 11025 1.88 5.37 4.38 6.36 4-fold

1 10 300 19600 2.91 7.79 5.29 10.28 4-fold
1 5 300 19600 7.56 13.47 13.22 13.72 4-fold

1x2 15 200 9800 2.64 6.57 6.25 6.89 4-fold
Sweep 1 15 150 11025 1.68 4.69 3.65 5.74 4-fold

1x2 15 200 9800 1.93 5.46 5.08 5.84 4-fold

Table 4: Accuracy when independent sets are used for training (20) and testing (30) transponders.
Type Run N Test matchings Threshold T EER (%) EER CI (%) Validation

Genuine Imposter lower upper
Burst 1x2 15 120 3480 2.78 7.33 6.01 8.65 3-fold
Sweep 1x2 15 120 3480 2.03 5.75 5.45 6.05 3-fold

biometrics [42] where different ”modalities” (e.g., fin-
gerprint and vein) are combined to increase the identifi-
cation accuracy and bring more robustness to the identi-
fication process [42].

A number of integration strategies have been proposed
based on decision rules [32], logistic functions to map
output scores into a single overall score [24], etc. Fig-
ure 9 shows the EERs and ROC curves of feature combi-
nation by using the sum as an integration function. The
overall matching score between a test and a reference
template is the sum of the matching scores obtained sep-
arately for the burst and sweep features. Table 5 summa-
rizes the results.

For the benchmark datasets (Run 1), we observe
significant improvement of the accuracy reaching an
EER=2.43%. The improvement is also significant for all
target FARs (e.g., 0.1%, 1%) as shown in Figure 9b. We
also observe a statistically significant improvement on
using fingerprints from both Run 1 and 2. The accuracy
is slightly lower (EER=4.38%). These results motivate
further research on feature modalities and novel integra-
tion strategies.

5.4 Summary and Discussion

In this section, we have experimentally analyzed the clas-
sification and identification capabilities of three different
physical-layer features with related signal acquisition,
feature extraction and matching procedures.

The results show that classification can successfully
be achieved using the modulation shape of the transpon-
der’s response to a wake-up command at an out-of-
specification frequency (e.g., Fc=13.06 MHz). This
technique is fast, does not require special hardware and
can be applied without statistically training the classifi-
cation process.

For identification, we proposed using spectral features
extracted from the transponder’s reaction to purpose-
built burst and linear frequency sweep signals. Our pro-
posed signal acquisition and feature extraction/matching
techniques achieved separately an identification accu-
racy of approximately EER=5% over 50 identical RFID
transponders. The proposed features are stable across ac-
quisition runs. In addition, our spectral features showed
that they can be combined in order to further improve the
accuracy to EER=2.43%.

The results also confirm that using the first 5 eigenvec-
tors is sufficient to represent the proposed features while
keeping the identification accuracy high. Therefore, our
proposed features also form very compact and compu-
tationally efficient fingerprints. Typically, if each dimen-
sion is represented by a 4-byte floating-point number, the
size of the corresponding feature template h = {Ĝ; ΣG}
is 20 (5×4) bytes for Ĝ and 100 (5x5x4) bytes for the
square covariance matrix ΣG resulting in a total of 120
bytes.

In terms of feature extraction performance, given the
much lower dimensionality of the burst samples (40000
vs. 960000 for the sweep), they are much faster to digi-
tally acquire and extract with approximately 2 sec. com-
pared to 26 sec. for the sweep data samples. The times
are measured on a machine with 2.00 GHz CPU, 2 GB
RAM running Linux Ubuntu. It should be noted that all
the components of the feature extraction can be imple-
mented efficiently in hardware which would significantly
improve the performance.

6 Application to Cloning Detection

The classification and identification results presented in
Section 5 indicate that physical-layer fingerprinting can
be practical in a controlled environment. In this section,
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Figure 9: a) The identification accuracy combining the sweep and burst features b) Receiver Operating Characteristic
(ROC) for N=15 for burst and sweep spectral features and their combination. 50 identical transponders are used. The
subspace dimension is fixed to 5. See Table 5 for the underlying data.

Table 5: Summary of accuracy when a combination of burst and sweep features used (50 transponders).
Type Run N Test matchings Threshold T EER (%) EER CI (%) Validation

Genuine Imposter lower upper
Burst/Sweep 1 15 150 11025 1.56 2.43 1.54 3.33 4-fold
Burst/Sweep 1x2 15 200 9800 2.18 4.38 3.9 4.9 4-fold

we discuss how it could be used in the context of product
or document cloning detection. We point out however
that the cloning detection will obey to the achieved er-
ror rates. Despite a number of protective measures, it
has been recently shown [18, 34, 33, 47] that even RFID
transponders in electronic identity documents can be suc-
cessfully cloned, even if the full range of protective mea-
sures specified by the standard [3], including active au-
thentication, is used. We consider the physical-layer fin-
gerprinting described in this work as an additional ef-
ficient mechanism that can be used to detect document
counterfeiting.

We foresee two use cases in which fingerprints can
be applied for anti-counterfeiting. In the first use case,
the fingerprints are measured before RFID deployment
and are stored in a back-end database, indexed with the
unique transponder (document) identifier. When the au-
thenticity of the document with identifier ID is verified,
the fingerprint of the document transponder is measured,
and then compared with the corresponding transponder
fingerprint of document ID stored in the database. In
order to successfully clone the document, the attacker
needs to perform two tasks:

1. Obtain the fingerprint template of the transponder
in the original document and

2. Produce or find a document (transponder) with the
same fingerprint.

In order to extract a fingerprint template the attacker
needs to fully control the target document (hold it in
possession) for long enough to complete the extraction.
Using the methods from our study, it would be hard, if
not infeasible, for the attacker to extract the same fin-
gerprints remotely (e.g., from few meters away). In our
experiments, such remote feature extraction process re-
sulted in an EER of approximately 50%. We assume that
this is due to the change of acquisition antenna orienta-
tion and lower signal-to-noise ratio. We do not exclude
the possibility that other discriminant features could be
found that could be extracted remotely. However, this
does not appear to be the case for our features. After
obtaining the original fingerprint, the attacker now needs
to produce or find an RFID transponder with that finger-
print (i.e., such that it corresponds to the one of the origi-
nal document), which is hard given that the extracted fin-
gerprints are due to manufacturing process variation. Al-
though manufacturing process variation effects the RFID
micro-controller itself, it is likely that the main source
of detectable variation lies in the RFID radio circuitry.
However, we cannot conclude with certainty which com-
ponent of the entire transponder circuit contributes most
to the fingerprints. We leave this determination to future
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work. Because of the complexity of these circuits this
is a challenging task in the lab, let alone in ”the wild”
environment of the attacker.

In the second use case, transponder fingerprints are
measured before their deployment as in the first case, but
are stored on the transponders instead of in a back-end
database. Here, we assume that the fingerprints stored
on the transponders are digitally signed by the document-
issuing authority and that they are protected from unau-
thorized remote access; the digital signature binds the
fingerprint to the document unique identifier, and both
are stored on the transponder. When the document au-
thenticity is validated, the binding between the document
ID and the fingerprint stored on the transponder is en-
sured through cryptographic verification of the author-
ity’s signature. If the signature is valid, the stored fin-
gerprint is compared to the measured fingerprint of the
document transponder. The main advantage in this use
case is that the document authenticity can be verified
”off-line”. The main drawback is that the fingerprint is
now stored on the transponder and without appropriate
access protection, it can be remotely obtained by the at-
tacker. Here, minimal access protection can be ensured
by means of e.g., Basic Access Authentication [3] al-
though, that mechanism has been shown to have some
weaknesses due to predictable document numbers [33].
As we mentioned in Section 5.4, our technique generates
compact fingerprints, which can be stored in approxi-
mately 120 bytes. This means that they can easily be
stored in today’s e-passports. The ICAO standard [3]
provides space for such storage in files EF.DG[3-14],
which are left for additional biometric and future use;
transponder fingerprints can be stored in those files. Our
proposal does not require the storage of a new public key
or maintenance of a separate public-key infrastructure,
since the integrity of the fingerprints, stored in EF.DG[3-
14] will be protected by the existing passive authentica-
tion mechanisms implemented in current e-passports.

The closest work to ours in terms of transponder
cloning protection is the work of Devadas et al. [12],
where the authors propose and implement Physically Un-
clonable Function(PUF)-Based RFID transponders. Pro-
cessors in these transponders are specially designed and
contain special circuits, PUFs, that are hard to clone and
thus prevent transponder cloning. The main difference
between PUF-based solutions and our techniques is that
our techniques can be used with existing RFID transpon-
ders, whereas PUF-based solutions can detect cloning
only of PUF-based transponders. However, PUF-based
solutions do have an advantage that they rely on ”con-
trolled” randomness, unlike our techniques, that relies
on randomness that is unintentionally introduced in the
manufacturing of the RFID tags.

7 Related Work

Besides PUF-based RFIDs [12], that we discuss in the
previous section, the following works relate to ours.

In [41], Richter et al., report on the possibility of de-
tecting the country that issued a given passport by look-
ing at the bytes that an e-passport sends as a reply in
response to some carefully chosen commands from the
reader. This technique therefore enables classification of
RFID transponders used in e-passports. Our technique
differs from that proposal as it enables not only classi-
fication, but also identification of individual passports.
Equally, the technique proposed in [41] cannot be used
for cloning detection since the attacker can modify the
responses of a tag on a logical level.

The proliferation of radio technologies has triggered a
number of research initiatives to detect illegally operated
radio transmitters [44, 45, 23], mobile phone cloning
[30], defective transmission devices [48] and identify
wireless devices [20, 22, 43, 40, 39, 9] by using physi-
cal characteristics of the transmitted signals [15]. Below,
we present the most relevant work to ours in terms of
signal similarities, features and objectives.

Hall et al. [20, 21] explored a combination of features
such as amplitude, phase, in-phase, quadrature, power
and DWT of the transient signal. The authors tested on
30 IEEE 802.11b transceivers from 6 different manu-
facturers and scored a classification error rate of 5.5%.
Further work on 10 Bluetooth transceivers from 3 manu-
facturers recorded a classification error rate of 7% [22].
Ureten et al. [39] extracted the envelope of the instanta-
neous amplitude by using the Hilbert transformation and
classified the signals using a Probabilistic Neural Net-
work (PNN). The method was tested on 8 IEEE 802.11b
transceivers from 8 different manufacturers and regis-
tered a classification error rate of 2%-4%. Rasmussen
et al. [40] explored transient length, amplitude variance,
number of peaks of the carrier signal and the difference
between mean and maximum value of the transient. The
features were tested on 10 identical Mica2 (CC1000)
sensor devices (approx. 15cm from the capturing an-
tenna) and achieved a classification error rate of 30%.
Brik et al. [9] proposed a device identification technique
based on the variance of modulation errors. The method
was tested on 100 identical 802.11b NICs (3-15 m from
the capturing antenna) and achieved a classification er-
ror rate of 3% and 0.34% for k-NN and SVM classifiers
respectively. In [11] the authors demonstrate the fea-
sibility of transient-based Tmote Sky (CC2420) sensor
device identification with an EER of 0.24%. The same
work considered the stability of the proposed fingerprint
features with respect to capturing distance, antenna po-
larization and voltage, and related attacks on the identifi-
cation system.
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8 Conclusion

In this work we performed the first comprehensive study
of physical-layer identification of RFID transponders.
We showed that RFID transponders have stable finger-
prints related to physical-layer properties which enable
their accurate identification. Our techniques are based
on the extraction of the modulation shape and spectral
features of the response signals of the transponders to the
in- and out- of specification reader signals. We tested our
techniques on a set of 50 RFID smart cards of the same
manufacturer and type and we showed that these tech-
niques enable the identification of individual transpon-
ders with an Equal Error Rate of 2.43% (single run) and
4.38% (two runs). We further applied our techniques to a
smaller set of electronic passports, where we obtained
a similar identification accuracy. We tested the clas-
sification accuracy of our techniques, and showed that
they achieve 0% average classification error for a set of
classes corresponding to manufacturers and countries of
issuance. Finally, we analyzed possible applications of
the proposed techniques to the detection of cloned prod-
ucts and documents.

Acknowledgements

This work was partially supported by the Zurich Infor-
mation Security Center. It represents the views of the
authors.

References
[1] Fingeprint verification competitions (FVC). http://bias.csr.uni-

bo.it/fvc2006/.

[2] IBM JCOP family. ftp://ftp.software.ibm.com/software/ perva-
sive/info/JCOP Family.pdf.

[3] ICAO. http://www.icao.int/.

[4] ISO/IEC 14443 standard. http://www.iso.org/.

[5] RFID security and privacy lounge. http://www.avoine.net/rfid /in-
dex.html.

[6] AVOINE, G., AND OECHSLIN, P. RFID traceability: A multi-
layer problem. In Financial Cryptography (2005), A. Patrick and
M. Yung, Eds., vol. 3570 of LNCS, pp. 125–140.

[7] BISHOP, C. Pattern Recognition and Machine Learning.
Springer, 2006.

[8] BOLLE, R., CONNELL, J., PANKANTI, S., RATHA, N., AND
SENIOR, A. Guide to Biometrics. Springer, 2003.

[9] BRIK, V., BANERJEE, S., GRUTESER, M., AND OH, S. Wire-
less device identification with radiometric signatures. In Proc.
ACM MobiCom (2008).

[10] COSTEN, N., PARKER, D., AND CRAW, I. Effects of high-pass
and low-pass spatial filtering on face identification. Perception &
Psychophysics 58, 4 (1996), 602–612.
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