
Can the Production Network
Be the Testbed?

Rob Sherwood
Deutsche Telekom Inc.

R&D Lab

Glen Gibb, KK Yap, Guido Appenzeller,
Martin Cassado,

Nick McKeown, Guru Parulkar

Stanford University, Big Switch Networks,
Nicira Networks

Problem:

Realisticly evaluating new network services
is hard

• services that require changes to switches and routers
• e.g.,

o routing protocols
o traffic monitoring services
o IP mobility

Result: Many good ideas don't gets deployed;
 Many deployed services still have bugs.

Why is Evaluation Hard?

Real
Networks

Testbeds

Not a New Problem

• Build open, programmable network hardware
o NetFPGA, network processors
o but: deployment is expensive, fan-out is small

• Build bigger software testbeds
o VINI/PlanetLab, Emulab
o but: performance is slower, realistic topologies?

• Convince users to try experimental services
o personal incentive, SatelliteLab
o but: getting lots of users is hard

Solution Overview: Network Slicing

• Divide the production network into logical slices
o each slice/service controls its own packet forwarding
o users pick which slice controls their traffic: opt-in
o existing production services run in their own slice

 e.g., Spanning tree, OSPF/BGP

• Enforce strong isolation between slices
o actions in one slice do not affect another

• Allows the (logical) testbed to mirror the production network

o real hardware, performance, topologies, scale, users

Rest of Talk...

• How network slicing works: FlowSpace, Opt-In

• Our prototype implementation: FlowVisor

• Isolation and performance results

• Current deployments: 8+ campuses, 2+ ISPs

• Future directions and conclusion

Current Network Devices

Control
Plane

Data
Plane

Switch/Router

General-purpose
CPU

Custom
ASIC

• Computes forwarding rules
• “128.8.128/16 --> port 6”

• Pushes rules down to data
plane

• Enforces forwarding rules
• Exceptions pushed back to

control plane
• e.g., unmatched packets

Rules ExceptsControl/Data
 Protocol

Add a Slicing Layer Between Planes

Data
Plane

Rules Excepts

Slice 1
Control
Plane

Slice 2
Control
Plane

Control/Data
Protocol

Slice
Policies

Slice 3
Control
Plane

Network Slicing Architecture

A network slice is a collection of sliced switches/routers

• Data plane is unmodified
– Packets forwarded with no performance penalty
– Slicing with existing ASIC

• Transparent slicing layer
– each slice believes it owns the data path
– enforces isolation between slices

• i.e., rewrites, drops rules to adhere to slice police
– forwards exceptions to correct slice(s)

Slicing Policies

The policy specifies resource limits for each slice:

– Link bandwidth
– Maximum number of forwarding rules
– Topology
– Fraction of switch/router CPU

– FlowSpace: which packets does the slice
control?

FlowSpace: Maps Packets to Slices

Real User Traffic: Opt-In

• Allow users to Opt-In to services in real-time
o Users can delegate control of individual flows to

Slices
o Add new FlowSpace to each slice's policy

• Example:
o "Slice 1 will handle my HTTP traffic"
o "Slice 2 will handle my VoIP traffic"
o "Slice 3 will handle everything else"

• Creates incentives for building high-quality services

Rest of Talk...

• How network slicing works: FlowSpace, Opt-In

• Our prototype implementation: FlowVisor

• Isolation and performance results

• Current deployments: 8+ campuses, 2+ ISPs

• Future directions and conclusion

Implemented on OpenFlow

• API for controlling
packet forwarding

• Abstraction of control
plane/data plane
protocol

• Works on commodity
hardware
– via firmware upgrade
– www.openflow.orgData

Plane

Switch/
Router
Switch/
Router

OpenFlow
Firmware

Data Path

Custom
Control
Plane

Stub
Control
Plane

OpenFlow
Protocol

Server

Network

OpenFlow
Controller

Control Path

FlowVisor Implemented on OpenFlow

Custom
Control
Plane

Stub
Control
Plane

Data
Plane

OpenFlow
Protocol

Switch/
Router

Server

Network

Switch/
Router

Servers

OpenFlow
Firmware

Data Path

OpenFlow
Controller

Switch/
Router
Switch/
Router

OpenFlow
Firmware

Data Path

OpenFlow
Controller

OpenFlow
Controller

OpenFlow
Controller

FlowVisor
OpenFlow

OpenFlow

FlowVisor Message Handling

OpenFlow
Firmware

Data Path

Alice
Controller

Bob
Controller

Cathy
Controller

FlowVisor
OpenFlow

OpenFlow

Packet

Exception

Rule

Policy Check:
Is this rule
allowed?

Policy Check:
Who controls
this packet?

Full Line Rate
Forwarding

FlowVisor Implementation

●Custom handlers for each of OpenFlow's 20
message types

● Transparent OpenFlow proxy
● 8261 LOC in C
● New version with extra API for GENI

●Could extend to non-OpenFlow (ForCES?)

●Code: `git clone git://openflow.org/flowvisor.git`

Rest of Talk...

• How network slicing works: FlowSpace, Opt-In

• Our prototype implementation: FlowVisor

• Isolation and performance results

• Current deployments: 8+ campuses, 2+ ISPs

• Future directions and conclusion

Isolation Techniques

Isolation is critical for slicing

In talk:
• Device CPU

In paper:
● FlowSpace
● Link bandwidth
● Topology
● Forwarding rules

As well as performance and scaling numbers

Device CPU Isolation

• Ensure that no slice monopolizes Device CPU

• CPU exhaustion
• prevent rule updates
• drop LLDPs ---> Causes link flapping

• Techniques
• Limiting rule insertion rate
• Use periodic drop-rules to throttle exceptions
• Proper rate-limiting coming in OpenFlow 1.1

CPU Isolation: Malicious Slice

Rest of Talk...

• How network slicing works: FlowSpace, Opt-In

• Our prototype implementation: FlowVisor

• Isolation and performance results

• Current deployments: 8+ campuses, 2+ ISPs

• Future directions and conclusion

FlowVisor Deployment: Stanford

• Our real, production network
o 15 switches, 35 APs
o 25+ users
o 1+ year of use
o my personal email and

web-traffic!

• Same physical network
hosts Stanford demos
o 7 different demos

FlowVisor Deployments: GENI

Future Directions

• Currently limited to subsets of actual topology
• Add virtual links, nodes support

• Adaptive CPU isolation
• Change rate-limits dynamically with load
• ... message type

• More deployments, experience

Conclusion: Tentative Yes!

• Network slicing can help perform more realistic
evaluations

• FlowVisor allows experiments to run concurrently
but safely on the production network

• CPU isolation needs OpenFlow 1.1 feature

• Over one year of deployment experience

• FlowVisor+GENI coming to a campus near you!

Questions?
git://openflow.org/flowvisor.git

Backup Slides

What about VLANs?

• Can't program packet forwarding
– Stuck with learning switch and spanning tree

• OpenFlow per VLAN?
– No obvious opt-in mechanism:

• Who maps a packet to a vlan? By port?
– Resource isolation more problematic

• CPU Isolation problems in existing VLANs

FlowSpace Isolation

● Discontinuous FlowSpace:
• (HTTP or VoIP) & ALL == two rules

● Isolation by rule priority is hard
● longest-prefix-match-like ordering issues
● need to be careful about preserving rule ordering

Policy Desired Rule Result

HTTP ALL HTTP-only

HTTP VoIP Drop

Scaling

Performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

