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Problem:

Realisticly evaluating new network services 
is hard

• services that require changes to switches and routers
• e.g., 

o routing protocols
o traffic monitoring services
o IP mobility

Result: Many good ideas don't gets deployed; 
            Many deployed services still have bugs.
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Not a New Problem

• Build open, programmable network hardware
o NetFPGA, network processors
o but: deployment is expensive, fan-out is small

• Build bigger software testbeds
o VINI/PlanetLab, Emulab
o but: performance is slower, realistic topologies?

• Convince users to try experimental services
o personal incentive, SatelliteLab
o but: getting lots of users is hard



Solution Overview: Network Slicing

• Divide the production network into logical slices
o each slice/service controls its own packet forwarding
o users pick which slice controls their traffic: opt-in
o existing production services run in their own slice

 e.g., Spanning tree, OSPF/BGP

• Enforce strong isolation between slices
o actions in one slice do not affect another

        
• Allows the (logical) testbed to mirror the production network

o real hardware, performance, topologies, scale, users



Rest of Talk...

• How network slicing works: FlowSpace, Opt-In
 
• Our prototype implementation: FlowVisor

• Isolation and performance results

• Current deployments: 8+ campuses, 2+ ISPs

• Future directions and conclusion 
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• “128.8.128/16 --> port 6”

• Pushes rules down to data 
plane 

• Enforces forwarding rules 
• Exceptions pushed back to 

control plane
• e.g., unmatched packets

Rules ExceptsControl/Data 
 Protocol



Add a Slicing Layer Between Planes
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Network Slicing Architecture

A network slice is a collection of sliced switches/routers

• Data plane is unmodified
– Packets forwarded with no performance penalty
– Slicing with existing ASIC

• Transparent slicing layer
– each slice believes it owns the data path
– enforces isolation between slices

• i.e., rewrites, drops rules to adhere to slice police
– forwards exceptions to correct slice(s) 



Slicing Policies

The policy specifies resource limits for each slice:

– Link bandwidth
– Maximum number of forwarding rules
– Topology
– Fraction of switch/router CPU

– FlowSpace: which packets does the slice 
control?



FlowSpace: Maps Packets to Slices



Real User Traffic: Opt-In

• Allow users to Opt-In to services in real-time
o Users can delegate control of individual flows to 

Slices
o Add new FlowSpace to each slice's policy

• Example:
o "Slice 1 will handle my HTTP traffic"
o "Slice 2 will handle my VoIP traffic"
o "Slice 3 will handle everything else"

• Creates incentives for building high-quality services



Rest of Talk...

• How network slicing works: FlowSpace, Opt-In
 
• Our prototype implementation: FlowVisor

• Isolation and performance results

• Current deployments: 8+ campuses, 2+ ISPs

• Future directions and conclusion 



Implemented on OpenFlow

• API for controlling 
packet forwarding

• Abstraction of control 
plane/data plane 
protocol

• Works on commodity 
hardware
– via firmware upgrade
– www.openflow.orgData
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FlowVisor Implemented on OpenFlow
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FlowVisor Message Handling
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FlowVisor Implementation

●Custom handlers for each of OpenFlow's 20 
message types

● Transparent OpenFlow proxy
● 8261 LOC in C 
● New version with extra API for GENI

●Could extend to non-OpenFlow (ForCES?)

●Code: `git clone git://openflow.org/flowvisor.git` 
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Isolation Techniques

Isolation is critical for slicing

In talk: 
• Device CPU

In paper:
● FlowSpace
● Link bandwidth
● Topology
● Forwarding rules

As well as performance and scaling numbers



Device CPU Isolation

• Ensure that no slice monopolizes Device CPU

• CPU exhaustion
• prevent rule updates
• drop LLDPs ---> Causes link flapping

• Techniques
• Limiting rule insertion rate
• Use periodic drop-rules to throttle exceptions
• Proper rate-limiting coming in OpenFlow 1.1



CPU Isolation: Malicious Slice
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FlowVisor Deployment: Stanford

• Our real, production network
o 15 switches, 35 APs
o 25+ users
o 1+ year of use
o my personal email and 

web-traffic!

• Same physical network 
hosts Stanford demos
o 7 different demos



FlowVisor Deployments: GENI



Future Directions

• Currently limited to subsets of actual topology
• Add virtual links, nodes support

• Adaptive CPU isolation
• Change rate-limits dynamically with load
• ... message type

• More deployments, experience



Conclusion: Tentative Yes!

• Network slicing can help perform more realistic 
evaluations

• FlowVisor allows experiments to run concurrently 
but safely on the production network

• CPU isolation needs OpenFlow 1.1 feature

• Over one year of deployment experience

• FlowVisor+GENI coming to a campus near you!

Questions?
git://openflow.org/flowvisor.git



Backup Slides



What about VLANs?

• Can't program packet forwarding
– Stuck with learning switch and spanning tree

• OpenFlow per VLAN?
– No obvious opt-in mechanism:

• Who maps a packet to a vlan?  By port?
– Resource isolation more problematic

• CPU Isolation problems in existing VLANs



FlowSpace Isolation

● Discontinuous FlowSpace:
• (HTTP or VoIP) & ALL == two rules

● Isolation by rule priority is hard
● longest-prefix-match-like ordering issues
● need to be careful about preserving rule ordering

Policy Desired Rule Result

HTTP ALL HTTP-only 

HTTP VoIP Drop 



Scaling



Performance
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