Depot

Cloud storage with minimal trust

Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement,
Lorenzo Alvisi, Mike Dahlin, Michael Walfish

The University of Texas at Austin

Monday, October 11, 2010

Cloud storage is appealing

“add =~ to

album”

Storage

Prince

“show album”

Mike -1
B

<

Monday, October 11, 2010

Cloud storage is appealing

“add =~ to

| album” Iy | Putk,)
Prince 1 B8 |

Storage
Provider __

“show album”

Mike & |
|

<

SR =

>

Monday, October 11, 2010

Risks of cloud storage

CloudPic
Prince g \ | (
B.|
Mike | Q
(Provider

Failures cause undesired behavior

Monday, October 11, 2010

Risks of cloud storage

Opl: “revoke Mikes

access to album”

CloudPic
< | Put(k, ||
Prince z—.. ‘ :
Mike

' Storage

Provider

Failures cause undesired behavior

Monday, October 11, 2010

Risks of cloud storage

Oplizigyore 1 Op2:“add Pfo album”
access to album
CloudPic
- | Put(k, ||
Prince z—.. | (
[
: " eS toraqe
Mike ¥ 7 . S
’ Provider

Failures cause undesired behavior

Monday, October 11, 2010

Risks of cloud storage

Oplizigyore 1 Op2:“add Pfo album”
access to album
CloudPic
@ | Put(k, B
Prince > z—.. | (
[
r;show albunj f : i
, ® Storage
Mike : ¥ 7 :
- il Provider

Failures cause undesired behavior

Monday, October 11, 2010

Risks of cloud storage

af
B Disk Failures in the Real World: What Does an MTTF of 1,000,000 Hours Mean to You?
E u Bianca Schroeder and Garth A. Gibson, Camegie Mellon University

n Failure Trends in a Large Disk Drive Population
Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Bamoso, Google Inc.

T S Why San Francisco's network admin went
Amazon S3 Availability Event: July 20, 2008 rogue

i in IT / Why San Francisco's network admin went rogue

We wanted to provide some additional detail about the problem we experienced An inside source reveals details of missteps and
- misunderstandings in the curious case of Terry Childs, network
P ST T T S &3 ey ’
r l IRON file systems
Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. foWorld

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau University of Wisconsin - , ;
[

_. Amazon S3 Issues: Loé Balancers and MD5

chet news LYUNNS happens to data when a Web start-up dies? ne 27th, 2008 : Rich Miller

it v N P | N
Google Data Center Fire Returns Worldwide 404“ Amazon’s S3 storage system had some issues last week with data corruption

Errors |on files using MDS5 to perform integrity checks. After some investigation,

Travis Wright | Apr 01, 2010 | Comments (3)

d Amazon confirmed the problems and identified the cause:
| S—

Gma|l Disaster: Reports Of Mass We've isolated this issue to a single load balancer that

. . was brought into service at 10:55pm PDT on Friday,
E::::!ﬁRilEthﬂS 6/20. It was taken out of service at 11am PDT Sunday,
Dec 28 2006 ? 6/22. While it was in service it handled a small fraction of

"Rethink the Sync i o in the US. Intermittently,
o 6 Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn, University

of Michigan single bytes in the byte

7th USENIX Symposium eXPLODE: A Lightweight, General System for Finding Serious Storage System Errors :stigation with both internal
ysioms Junfeng Yang, Can Sar, and Dawson Engler, Stanford University

Monday, October 11, 2010

We have a conflict

Much to like Much to give pause
@ Geographic @ Black box
b
replication % Efisolex

® Professional

@ Error-prone
management

® Low cost

Our approach:
A radical fault-tolerance stance

Monday, October 11, 2010

Cloud storage with minimal frust

g Storage B8
): ~ Provider

@ Eliminates trust for @ Minimizes trust for
0 GET availability
0 Durability

o PUT availability
o Eventual consistency
0 Staleness detection

0 Dependency
preservation

Monday, October 11, 2010

Cloud storage with minimal frust

g Storage B8
): ~ Provider

@ Eliminates trust for @ Minimizes trust for
0 GET availability
0 Durability

o PUT availability
o Eventual consistency
0 Staleness detection

0 Dependency
preservation

Monday, October 11, 2010

Cloud storage with minimal frust

-
5.

@ Eliminates trust for @ Minimizes trust for
o PUT availability 0 GET availability
0 Durability

o Eventual consistency
0 Staleness detection

0 Dependency
preservation

Monday, October 11, 2010

Cloud storage with minimal frust

-
5.

@ Eliminates trust for @ Minimizes trust for
o PUT availability 0 GET availability
0 Durability

o Eventual consistency
0 Staleness detection

0 Dependency
preservation

Monday, October 11, 2010

Rest of the talk

I. How does Depot work?

II. What properties does it provide?

ITI. How much does It cost?

Depot in a nutshell

Ensuring high availability
@ Multiple servers

@ Dont enforce sequential (CAP tradeoff)
@ Fall back on client-client communication

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

~ams | PTOVider] m=s

EEEN <

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Depot in a nutshell

Preventing omission, reordering

® Add metadata to PuTs
® Add local state to nodes
® Add checks on received metadata

Monday, October 11, 2010

Protecting Consistency

3 > |

(1) Update metadata
@ {nodelD, key, H(value), LocalClock, History}nodern

g
(2) Nodes store update metadata |-

@ Logically: Store all previous updates ()
[See paper for garbage collection]

Monday, October 11, 2010

Protecting Consistency

(3) Local checks
@ Accept an update u created by N if

0 No omissions
> All updates in us History are also in local state

o Dont modify history

» u IS newer than any prior update by N

Monday, October 11, 2010

Protecting Consistency

(3) Local checks
@ Accept an update u created by N if

0 No omissions
> All updates in us History are also in local state

o Dont modify history

» u IS newer than any prior update by N

Monday, October 11, 2010

Faults can cause forks

Fork:

@ Expose inconsistent views to different nodes
@ Each nodes view locally consistent

Monday, October 11, 2010

Faults can cause forks

Forks partition correct nodes

@ Correct nodes’ future updates tainted
@ Receivers update checks fail

Forks prevent eventual consistency
@ Inconsistently tainted nodes cannot communicate

Monday, October 11, 2010

Faults can cause forks

Forks partition correct nodes

@ Correct nodes’ future updates tainted
@ Receivers update checks fail

Forks prevent eventual consistency
@ Inconsistently tainted nodes cannot communicate

Monday, October 11, 2010

Join forks for eventual consistency

Convert faults info concurrency

@ Faulty node --> Two (correct) virtual nodes
@ Correct nodes can accept subsequent updates
@ Correct nodes can evict faulty node

Monday, October 11, 2010

Faults v. Concurrency

Converting faults into concurrency
@ Allows correct nodes to converge

Concurrency can introduce conflicts
@ Conflict: Concurrent updates to same object

@ Problem not introduced by Depot

D Already possible due to decentralized server

o Applications built for high availability (such as Amazon
S3) allow concurrent writes

@ Depot exposes conflicts to applications
0 GET returns set of most recent concurrent updates

Monday, October 11, 2010

Summary: Basic Protocol

@ Protect safety
0 Local checks

@ Protect liveness

o Joining forks
0 Reduce failures to concurrency

@ Fork-join-causal consistency

0 A novel consistency semantics
o Suitable for environments with minimal ftrust

Monday, October 11, 2010

Rest of the talk

II. What properties does Depot provide?

ITI. How much does it cost?

Depot Properties

s ' Safety/ Droiary Correct Nodes
e Liveness g Required
Consistency Safety Fork-Join Causal Any Subset
Safety Bounded Staleness Any Subset
Safety Eventual Consistency (s) Any Subset
Availability Liveness Eventual consistency (l) Any Subset
Liveness Always write Any Subset
Liveness Always exchange Any Subset
Liveness Read availability/ A correct node
durability has data
Integrity Safety Only auth. PUT Any Subset
Eviction Safety Valid eviction Any Subset

Monday, October 11, 2010

GET Availability, Durability

Ideal "Trust Only Yourself”

@ Cant reach that goal

Depot

1. Minimize required number of correct nodes

O Data can safely flow via any path
O If any correct node has data, GET eventually succeeds

2. Make it likely a correct node has data

[l SSP replicates to multiple servers
[Additional replication to protect against total SSP failure

Monday, October 11, 2010

Contingency Plan

@ Protect against correlated SSP failure
D Availability event or permanent failure

@ Key: Storage servers are untrusted

0 Pick any node with low correlation to SSP
o Prototype:

> Client that issues PUT keeps copy of data

» Gossiped update metadata sufficient to route GET requests
when SSP unavailable

0 Alternatives:

» Private cloud storage node (e.g., Eucalyptus/Walrus)
» Another external SSP

Monday, October 11, 2010

Depot Tolerates SSP Failure

39
30
25
20
15
10

\-:'-" :I— | F3elm

Staleness (sec)

apatLY ‘?I;T".l 1T g
'--F'"‘E‘:"&&‘{z&w"’;"ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ?ﬁ1ﬁ1ﬁ l-i l-i FiIRiBIRIR IR IR ImIN]
mial I.III-III e e e e P P -

0 100 200 300 400 500 600
Time (sec)

Complete cloud failure at 300s

@ Depots GeT, PuT continue
@ Depots staleness increases

Monday, October 11, 2010

Rest of the talk

. L
o o < v . g % # q
NYONoeYr T '{‘j"){tﬂ? S .3 DO :
._'lT_J Ji 4 ,.-' p | i ':i--_ ‘1-4 T_";‘, - .:" Y & H f_.‘-'é E

III. How much does Depot cost?
@ Latency, resources, dollars

How much does it cost?

Latency cost

@ Compare GET and PuT latencies

Resource cost

@ Processing (client and server)
@ Network (client-server and server-server)
@ Storage (client and server)

Dollar cost
@ Weighted Processing + Network + Storage

Monday, October 11, 2010

Sources of overhead in Depot

buT

Sources of overhead in Depot

TR metadata check =
datra check = SHA256 check
SHA256 check R
P + RSA verify

Setup

® 12 nodes on local Emulab

o 8 clients + 4 servers
» Quad core Intel Xeon X3220 2.40 GHz processor
» 8 GB RAM
» two local 7200 RPM disk

o 1 Gbps link

@ Each client issues 1 request/sec
0 Measure latency, per-request cost

@ Emulate traditional cloud storage
0 Servers implemented Depot without any checks
o Clients dont receive any metadata

Monday, October 11, 2010

Depot adds little latency

15 | S
| D
/U? ; -+
E 10} B B
= | T T
§ | i N
< Bt e o
=3 | Q0] Q0] (q0] (€))
o M
o | st E
GET (10KB) PUT (10KB)

Depot overheads on GETs are very small
Overheads on PUTs are modest

Depot GET overheads
are modest

©
&
B + H + Sign

Depot

)
o
ase
B + Hash

B

Cost/(Depot Cost)

1.O-I . I I .
0.0

NW (C-S) CPU (C) CPU (S)
(KB) (ms) (ms)

Depot PUT overheads

are modest

= 3.0 c%,

S 2.0 as

B oL L O

o DF + oo

é‘i 1O_mmmo

: LT
@)

=
o

NW (C-S) Stor/Ver (C) CPU (C) CPU (S)
(KB) (KB) (ms) (ms)

@ Metrics that didnt change are omitted.
@ E.g. Storage(S), NW(S-S)

® Metadata transfer=>NW cost

® Metadata verification=>CPU cost

@ Metadata store=>Storage cost

Monday, October 11, 2010

Cost Model

Client-Server

NW Bandwidth $0.10/GB

el i $0.01/GB
Disk Storage $0.025 GB/month

CPU Processing $0.10/hour

Based (loosely) on current cloud pricing

Monday, October 11, 2010

Depot dollar costs are small

Ii 7l

=

250 ¢ D

|)
200 | ®©*t._
| %-—--8_

h ok

Cost ($/TB)

100
O |

GET(TB) PUT(TB) Store (TB-mo.)

Related Work

@ Fork-based systems

@ SUNDR [Li et al. OSDI 2004]

® BFT2F [Li and Mazieres NSDI 2007]
@ SPORC [Feldman et al. OSDI 2010]
@ Venus [Shraer et al. CCSW 2010]

@ Quorums and state machines

BQS [Malkhi and Reiter Dist. Comp. 1998]
PBFT [Castro and Liskov TOCS 2002]
Q/U [El-Malek et al. SOSP 2005]

HQ [Cowling and Liskov OSDI 2006]
Zyzzyva [Kotla et al. SOSP 2007]

Q 0 © O Q

@ Many others

Conclusion

@ Depot: Cloud storage with minimal trust

® Radical fault tolerance

o Any node could fail in any way

o Eliminate trust for consistency, staleness,
update exchange, eviction, ...
» Any subset of correct clients get these properties

0 Minimize trust for GET availability, durability
» GET succeeds if any correct, reachable node has data
» Protocol hooks to make this likely

Monday, October 11, 2010

