Accountable Virtual Machines

Andreas Haeberlen University of Pennsylvania

Paarijaat Aditya Rodrigo Rodrigues Peter Druschel Max Planck Institute for Software Systems (MPI-SWS)

Max
Planck
Institute
for
Software Systems

Scenario: Multiplayer game

 Alice decides to play a game of Counterstrike with Bob and Charlie

What Alice sees

Could Bob be cheating?

- In Counterstrike, ammunition is local state
 - Bob can manipulate counter and prevent it from decrementing
 - Such cheats (and many others) do exist, and are being used

This talk is not (just) about cheating!

- Cheating is a serious problem in itself
 - Multi-billion-dollar industry
- But we address a more general problem:
 - Alice relies on software that runs on a third-party machine
 - Examples: Competitive system (auction), federated system...
 - How does Alice know if the software running as intended?

Goal: Accountability

- We want Alice to be able to
 - Detect when the remote machine is faulty
 - Obtain evidence of the fault that would convince a third party

Challenges:

- Alice and Bob may not trust each other
 - Possibility of intentional misbehavior (example: cheating)
- Neither Alice nor Bob may understand how the software works
 - Binary only no specification of the correct behavior

Outline

- Problem: Detecting faults on remote machines
 - Example: Cheating in multiplayer games
- Solution: Accountable Virtual Machines

- Evaluation
 - Using earlier example (cheating in Counterstrike)
- Summary

- Bob runs Alice's software image in an AVM
 - AVM maintains a log of network in-/outputs
- Alice can check this log with a reference image
 - AVM correct: Reference image can produce same network outputs when started in same state and given same inputs
 - AVM faulty: Otherwise

Tamper-evident logging

474: SEND(Alice, Firing)

-473: SEND(Charlie, Got ammo)

-472: RECV(Alice, Got medipack)

471: SEND(Charlie, Moving left)

Moving right

- Message log is tamper-evident [SOSP'07]
 - Log is structured as a hash chain
 - Messages contain signed authenticators
- Result: Alice can either...
 - ... detect that the log has been tampered with, or

... get a complete log with all the observable messages

Execution logging

- How does Alice know whether the log matches a correct execution of her software image?
- Idea: AVMM can specify an execution
 - AVMM additionally logs all nondeterministic inputs
 - AVM correct: Can replay inputs to get execution

AVM faulty: Replay inevitably (!) fails

Auditing and replay

371: SEND(Alice, Firing)

370: SEND(Alice, Firing)

369: SEND(Alice, Firing)

368: Mouse button clicked

367: SEND(Alice, Got medipack)

366: Mouse moved left

373: SEND(Alice, Firing)

372: SEND(Alice, Firing)

371: SEND(Alice, Firing)

370: SEND(Alice, Firing)

369: SEND(Alice, Firing)

368: Mouse button clicked

367: SEND(Alice, Got medipack)

366: Mouse moved left

. . .

AVM properties

- Strong accountability
 - Detects faults
 - Produces evidence
 - No false positives

- Works for arbitrary, unmodified binaries
 - Nondeterministic events can be captured by AVM Monitor
- Alice does not have to trust Bob, the AVMM, or any software that runs on Bob's machine
 - If Bob tampers with the log, Alice can detect this
 - If Bob's AVM is faulty, ANY log Bob could produce would inevitably cause a divergence during replay

Outline

- Problem: Detecting faults on remote machines
 - Example: Cheating in multiplayer games
- Solution: Accountable Virtual Machines
- Evaluation
 NEXT
 - Using earlier example (cheating in Counterstrike)
- Summary

Methodology

- We built a prototype AVMM
 - Based on logging/replay engine in VMware Workstation 6.5.1
 - Extended with tamper-evident logging and auditing
- Evaluation: Cheat detection in games
 - Setup models competition / LAN party
 - Three players playing Counterstrike 1.6
 - Nehalem machines (i7 860)
 - Windows XP SP3

Evaluation topics

- Effectiveness against real cheats
- Overhead
 - Disk space (for the log)
 - Time (auditing, replay)
 - Network bandwidth (for authenticators)
 - Computation (signatures)
 - Latency (signatures)
- Impact on game performance
- Online auditing
- Spot checking tradeoffs

Please refer to the paper for additional results!

Using a different application: MySQL on Linux

AVMs can detect real cheats

98: RECV(Alice, Hit) 97: SEND(Alice, Fire@(2,7)) 96: Mouse button clicked 95: Interrupt received 94: RECV(Alice, Jumping) BC=59 EIP=0x861e BC=59 EIP=0x2d16 BC=49 EIP=0x2d16 BC=49 EIP=0x6771 BC=37 EIP=0x570f

Bob's log

If the cheat needs to be installed in the AVM to be effective, AVM can trivially detect it

Event timing (for replay)

- Reason: Event timing + control flow change
- Examined real 26 cheats from the Internet; all detectable

AVMs can detect real cheats

- Couldn't cheaters adapt their cheats?
- There are three types of cheats:
 - Detection impossible (Example: Collusion)
 - Detection not guaranteed, but evasion technically difficult
 - Detection guaranteed (≥15% of the cheats in our sample)

Impact on frame rate

- Frame rate is ~13% lower than on bare hw
 - 137fps is still a lot! 60--80fps generally recommended
 - 11% due to logging; additional cost for accountability is small

Cost of auditing

- When auditing a player after a one-hour game,
 - How big is the log we have to download? 148 MB
 - How much time is needed for replay? ~ 1 hour

Online auditing

- Idea: Stream logs to auditors during the game
 - Result: Detection within seconds after fault occurs
 - Replay can utilize unused cores; frame rate penalty is low

Summary

- Accountable Virtual Machines (AVMs) offer strong accountability for unmodified binaries
 - Useful when relying on software executing on remote machines: Federated system, multiplayer games, ...
 - No trusted components required
- AVMs are practical
 - Prototype implementation based on VMware Workstation
 - Evaluation: Cheat detection in Counterstrike

Questions?

Thank you!

Our enthusiastic Counterstrike volunteers