
Comet: An Active

Distributed Key-Value Store

Roxana Geambasu

Amit Levy

Yoshi Kohno

Arvind Krishnamurthy

Hank Levy

University of Washington

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

2

Data center P2P

Dynamo

amazon.com

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

3

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

4

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Cassandra

Facebook

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

5

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Cassandra

Facebook

Vuze DHT

Vuze

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

6

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Cassandra

Facebook

Vuze DHT

Vuze

uTorrent DHT

uTorrent

 Increasingly, key/value stores are shared by many apps

 Avoids per-app storage system deployment

 However, building apps atop today‟s stores is challenging

Distributed Key/Value Storage Services

7

Data center P2P

Amazon S3

Altexa
Photo

Bucket

Jungle

Disk
Vuze

App

One-

Swarm
Vanish

Vuze DHT

Challenge: Inflexible Key/Value Stores

 Applications have different (even conflicting) needs:

 Availability, security, performance, functionality

 But today‟s key/value stores are one-size-fits-all

 Motivating example: our Vanish experience

8

App 1 App 2 App 3

Key/value

store

 Vanish is a self-destructing data system built on Vuze

 Vuze problems for Vanish:

 Fixed 8-hour data timeout

 Overly aggressive replication, which hurts security

 Changes were simple, but deploying them was difficult:

 Need Vuze engineer

 Long deployment cycle

 Hard to evaluate before

deployment

Motivating Example: Vanish [USENIX Security „09]

Vuze

App
Vanish

Vuze DHT

Vuze

App
Vanish

Vuze DHT

9

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Future

app

Vuze

App
Vanish

Future

app

Vuze DHT

 Vanish is a self-destructing data system built on Vuze

 Vuze problems for Vanish:

 Fixed 8-hour data timeout

 Overly aggressive replication, which hurts security

 Changes were simple, but deploying them was difficult:

 Need Vuze engineer

 Long deployment cycle

 Hard to evaluate before

deployment

Motivating Example: Vanish [USENIX Security „09]

Vuze

App
Vanish

Vuze DHT

Vuze

App
Vanish

Vuze DHT

10

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Future

app

Vuze

App
Vanish

Future

app

Vuze DHT

Question:

How can a key/value store support many

applications with different needs?

Extensible Key/Value Stores

 Allow apps to customize store‟s functions

 Different data lifetimes

 Different numbers of replicas

 Different replication intervals

 Allow apps to define new functions

 Tracking popularity: data item counts the number of reads

 Access logging: data item logs readers‟ IPs

 Adapting to context: data item returns different values to

different requestors

11

Design Philosophy

 We want an extensible key/value store

 But we want to keep it simple!

 Allow apps to inject tiny code fragments (10s of lines of code)

 Adding even a tiny amount of programmability into key/value

stores can be extremely powerful

 This paper shows how to build extensible P2P DHTs

 We leverage our DHT experience to drive our design

12

Outline

 Motivation

 Architecture

 Applications

 Conclusions

13

Comet

 DHT that supports application-specific customizations

 Applications store active objects instead of passive values

 Active objects contain small code snippets that control their

behavior in the DHT

14

App 1 App 2 App 3

Comet

Active object Comet node

Comet‟s Goals

 Flexibility

 Support a wide variety of small, lightweight customizations

 Isolation and safety

 Limited knowledge, resource consumption, communication

 Lightweight

 Low overhead for hosting nodes

15

Active Storage Objects (ASOs)

 The ASO consists of data and code

 The data is the value

 The code is a set of handlers that are called on put/get

16

App 1 App 2 App 3

Comet

ASO

data

code

function onGet()

[…]

end

 Each replica keeps track of number of gets on an object

 The effect is powerful:

 Difficult to track object popularity in today‟s DHTs

 Trivial to do so in Comet without DHT modifications

Simple ASO Example

17

ASO

data

code

aso.value = “Hello world!”

aso.getCount = 0

function onGet()

self.getCount = self.getCount + 1

return {self.value, self.getCount}

end

Local Store

Comet Architecture

18Routing Substrate

K1 ASO1

ASO2K2

DHT Node

T
ra

d
it
io

n
a

l

D
H

T
C

o
m

e
t

Active Runtime

External

Interaction

Handler

Invocation

Sandbox

Policies

ASO1
data
code

ASO Extension API

The ASO Extension API

Applications Customizations

Vanish

Replication

Timeout

One-time values

Adeona
Password access

Access logging

P2P File Sharing
Smart tracker

Recursive gets

P2P Twitter
Publish / subscribe

Hierarchical pub/sub

Measurement
Node lifetimes

Replica monitoring

The ASO Extension API

 Small yet powerful API for a wide variety of applications

 We built over a dozen application customizations

 We have explicitly chosen not to support:

 Sending arbitrary messages on the Internet

 Doing I/O operations

 Customizing routing … 20

Intercept

accesses

Periodic

Tasks

Host

Interaction

DHT

Interaction

onPut(caller) onTimer() getSystemTime() get(key, nodes)

onGet(caller) getNodeIP() put(key, data, nodes)

onUpdate(caller) getNodeID() lookup(key)

getASOKey()

deleteSelf()

The ASO Sandbox

21

1. Limit ASO‟s knowledge and access

 Use a standard language-based sandbox

 Make the sandbox as small as possible (<5,000 LOC)

 Start with tiny Lua language and remove unneeded functions

2. Limit ASO‟s resource consumption

 Limit per-handler bytecode instructions and memory

 Rate-limit incoming and outgoing ASO requests

3. Restrict ASO‟s DHT interaction

 Prevent traffic amplification and DDoS attacks

 ASOs can talk only to their neighbors, no recursive requests

Comet Prototype

 We built Comet on top of Vuze and Lua

 We deployed experimental nodes on PlanetLab

 In the future, we hope to deploy at a large scale

 Vuze engineer is particularly interested in Comet for

debugging and experimentation purposes

22

Outline

 Motivation

 Architecture

 Applications

 Conclusions

23

Applications Customization Lines of Code

Vanish

Security-enhanced replication 41

Flexible timeout 15

One-time values 15

Adeona
Password-based access 11

Access logging 22

P2P File Sharing
Smart Bittorrent tracker 43

Recursive gets* 9

Publish/subscribe 14
P2P Twitter

Hierarchical pub/sub* 20

Measurement
DHT-internal node lifetimes 41

Replica monitoring 21

Comet Applications

24

* Require signed ASOs (see paper)

Three Examples

1. Application-specific DHT customization

2. Context-aware storage object

3. Self-monitoring DHT

25

 Example: customize the replication scheme

 We have implemented the Vanish-specific replication

 Code is 41 lines in Lua

1. Application-Specific DHT Customization

function aso:selectReplicas(neighbors)

[...]

end

function aso:onTimer()

neighbors = comet.lookup()

replicas = self.selectReplicas(neighbors)

comet.put(self, replicas)

end

26

2. Context-Aware Storage Object

 Traditional distributed trackers return a randomized

subset of the nodes

 Comet: a proximity-based distributed tracker

 Peers put their IPs and Vivaldi coordinates at torrentID

 On get, the ASO computes and returns the set of

closest peers to the requestor

 ASO has 37 lines of Lua code

27

Proximity-Based Distributed Tracker

28

Comet tracker

Random tracker

 Example: monitor a remote node‟s neighbors

 Put a monitoring ASO that “pings” its neighbors periodically

 Useful for internal measurements of DHTs

 Provides additional visibility over external measurement

(e.g., NAT/firewall traversal)

3. Self-Monitoring DHT

29

aso.neighbors = {}

function aso:onTimer()

neighbors = comet.lookup()

self.neighbors[comet.systemTime()] = neighbors

end

Example Measurement: Vuze Node Lifetimes

30

Vuze Node Lifetime (hours)

External measurement

Comet Internal measurement

Outline

 Motivation

 Architecture

 Evaluation

 Conclusions

31

Conclusions

 Extensibility allows a shared storage system to support

applications with different needs

 Comet is an extensible DHT that allows per-application

customizations

 Limited interfaces, language sandboxing, and resource and

communication limits

 Opens DHTs to a new set of stronger applications

 Extensibility is likely useful in data centers (e.g., S3):

 Assured delete

 Logging and forensics

32

 Storage location awareness

 Popularity

