
Centre for Ultra-Broadband Information Networks
THE UNIVERSITY OF MELBOURNE

Virtualize Everything but Time

Timothy Broomhead (t.broomhead@ugrad.unimelb.edu.au)
Laurence Cremean (l.cremean@ugrad.unimelb.edu.au)
Julien Ridoux (jrid@unimelb.edu.au)
Darryl Veitch (dveitch@unimelb.edu.au)

1

Introduction

! Clock synchronization, who cares?
๏ Network monitoring / Traffic analysis
๏ Telecommunications Industry; Finance; Gaming, ...
๏ Distributed `scheduling’: timestamps instead of message passing

! Status quo under Xen
๏ Based on ntpd, amplifies its flaws
๏ Fails under live VM migration

! We propose a new architecture
๏ Based on RADclock client synchronization solution
๏ Robust, accurate, scalable
๏ Enables dependent clock paradigm
๏ Seamless migration

2
2

Key Idea

! Each physical host has a single clock which never migrates

! Only a (stateless) clock read function migrates

3
3

! Hypervisor
๏ minimal kernel managing physical resources

! Para-virtualization
๏ Guest OS’s have access to hypervisor via hypercalls
๏ Fully-virtualized more complex, not addressed here

! Focus on Xen
๏ But approach has general applicability !
๏ Focus on Linux OS’s (2.6.31.13 Xen pvops branch)
๏ Guest OS’s:

‣ Dom0: privileged access to hardware devices
‣ DomU: access managed by Dom0

๏ Use Hypervisor 4.0 mainly

Para-Virtualization and Xen

4
4

! Clocks built on local hardware (oscillators ! counters)
๏ HPET, ACPI, TSC
๏ Counters imperfect, they drift (temperature driven)
๏ Affected by OS

‣ ticking rate
‣ access latency

! TSC (counts CPU cycles)
๏ Highest resolution and lowest latency - preferred! but..
๏ May be unreliable

‣ multi-core ! multiple unsynchronised TSCs
‣ power management ! variable rate, including stopping !

! HPET
๏ Reliable, but
๏ Lower resolution, higher latency

Hardware Counters

5
5

A hardware/software hybrid timer provided by the hypervisor

! Purpose
๏ Combine reliability of HPET with low latency of TSC
๏ Compensate for TSC unreliability
๏ Provides 1GHz 64-bit counter

! Performance of XCS versus HPET
๏ XCS performs well: low latency and high stability
๏ HPET not that far behind, and a lot simpler

Xen Clocksource

6
6

! Timekeeping and timestamping are distinct
! Raw timestamps and clock timestamps are distinct
! A scaled counter is not a good clock: drift !
! Purpose of clock sync algo is to correct for drift
! Network based sync is convenient, exchange timing packets:

Clock Fundamentals

7

! Two key problems
๏ Dealing with delay variability (complex, but possible)
๏ Path asymmetry (simple, but impossible)

Server

Host time

Network

d↑ d↓

r

7

! NTP (ntpd)
๏ Status Quo
๏ Feedback based

‣ Event timestamps are system clock stamps
‣ Feedback controller (PLL,FLL) tries to lock onto rate

๏ Intimate relationship with system clock (API, dynamics..)
๏ In Xen, ntpd uses Xen Clocksource

! RADclock (Robust Absolute and Difference Clock)
๏ Algo developed in 2004, extensively tested
๏ Feedforward based

‣ Event timestamps are raw stamps
‣ Clock error estimates made and removed when clock read

๏ `System clock’ has no dynamics, just a function call
๏ Can use any raw counter: here use HPET, Xen Clocksource

Synchronisation Algorithms

8
8

Experimental Methodology

9

Unix PC
NTP Server
Stratum 1

GPS
Receiver

Hub

Host

DAG
Card

PPS Sync. NTP flow UDP flow Timestamping

SW-GPS

DAG-GPS

External MonitorInternal Monitor

UDP Sender
& Receiver

Atomic
Clock

RADclock

RADclock

H
yp

er
vi

so
r

ntpd-NTP

ntpd-NTP

D
om

U
D

om
0

9

Wots the problem? ntpd can perform well

! Ideal Setup
๏ Quality Stratum-1 time-server
๏ Client is on the same LAN, lightly loaded, barely any traffic
๏ Constrained and small polling period: 16 sec

10

0 5 10 15 20

0

20

40

60

80

Time [day]

C
lo

ck
 e

rr
o
r

[µ
s]

ntpd

10

Or less well...

! Different configuration (ntpd recommended!)
๏ Multiple servers
๏ Relax constraint on polling period
๏ Still no load, no traffic, high quality servers

11

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

−1000

−500

0

500

1000 Single server 3 Co−Located Servers 3 Nearby Servers

Hours

C
lo

c
k

E
rr

o
r

[µ
s
]

ntpd−NTP

When/Why? Loss of stability a complex function of parameters ⇒ unreliable

11

The Xen Context

! Three examples of inadequacy of ntpd based solution
1) Dependent ntpd clock
2) Independent ntpd clock
3) Migrating independent ntpd clock

12
12

1) Dependent ntpd Clock

! The Solution
๏ Only Dom0 runs ntpd
๏ Periodically updates a `boot time’ variable in hypervisor
๏ DomU uses Xen Clocksource to interpolate

! The Result (2.6.26 kernel)

13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−4000

−2000

0

2000

4000

Time [Hours]

C
lo

ck
 e

rr
o
r

[µ
s]

ntpd dependent

13

2) Independent ntpd Clock (current solution)

! The Solution
๏ All guests run entirely separate ntpd daemons
๏ Resource hungry

! The Result
๏ When all is well, works as before but with a bit more noise
๏ When works: (parallel comparison on Dom0, stratum-1 on LAN)

14

0 5 10 15 20

0

20

40

60

80

Time [day]

C
lo

ck
 e

rr
o
r

[µ
s]

ntpd
RADclock

14

2) Independent ntpd Clock (current solution)

! The Solution
๏ All guests run entirely separate ntpd daemons
๏ Resource hungry

! The Result
๏ Increased noise makes instability more likely
๏ When fails: (DomU with some load, variable polling period, guest churn)

15

0 2 4 6 8 10 12 14 16
−5000

0

5000

C
lo

ck
 e

rr
o

r
[µ

s]

Time [Hours]

ntpd

15

3) Migrating Independent ntpd Clock

! The Solution
๏ Independent clock as before, migrates
๏ Starts talking to new system clock, new counter

! The Result

16

Migration Shock!

More Soon

16

RADclock Architecture

Principles

! Timestamping:
๏ raw counter reads, not clock reads
๏ independent of the clock algorithm

! Synchronization Algorithm:
๏ based on raw timestamps and server timestamps (feedforward)
๏ estimates clock parameters and makes available
๏ concentrated in a single module (in userland)

! Clock Reading
๏ combines a raw timestamp with retrieved clock parameters
๏ stateless

17
17

More Concretely

! Timestamping
๏ read chosen counter, say HPET(t)

! Sync Algorithm maintains:
๏ Period: a long term average (barely changes) ⇒ rate stability
๏ K: sets origin to desired timescale (e.g. UTC)
๏ E: estimate of error ⇒ updates on each stamp exchange

! Clock Reading
๏ Absolute clock: Ca(t) = Period *HPET(t) + K - E(t)

‣ used for absolute, and differences above critical scale

๏ Difference clock: Cd(t1,t2) = Period * (HPET(t2) - HPET(t1))
‣ used for time differences under some critical time scale

18
18

Implementation

! Timestamping `feedforward support’
๏ create cumulative and wide (64-bit) form of counter
๏ make accessible from both kernel and user context

‣ under Linux, modify Clocksource abstraction

! Sync Algorithm
๏ Make clock parameters available via a user thread

! Clock reading
๏ Read counter, retrieve clock data, compose
๏ Fixed-point code to enable clock to be read from kernel

19
19

On Xen!

! Dependent Clock now very natural
๏ Dom0 maintains a RADclock daemon, talks to timeserver
๏ Makes Period, K, E available through Xenstore filesystem
๏ Each DomU can just reads counter, retrieve clockdata, compose

! All Guest Clocks identically the same, but:
๏ Small delay (~1ms) in Xenstore update

‣ stale data possible but very unlikely
‣ small impact

๏ Latency to read counter higher on DomU

! Support Needed
๏ Expose HPET to Clocksource in guest OSs
๏ Add hypercall to access platform timer (HPET here)
๏ Add read/right functions to access clockdata from Xenstore

20

Feedforward paradigm a perfect match to para-virtualisation

20

Independent RADclock on Xen

๏ Concurrent test on two DomU’s, separate NTP streams

21

−10 0 10
0

1

2

3

x 10
−3

RADclock error [µs]

HPET

Med: −2.5

IQR: 9.3

0 50 100 150 200 250 300 350
−20

−10

0

10

20

R
A

D
cl

o
ck

 E
rr

o
r

[µ
s]

Time [mn]

Xen Clocksource
HPET

−10 0 10
0

1

2

3

x 10
−3

RADclock error [µs]

XEN

Med: 3.4

IQR: 9.5

21

Migration On Xen!

! Clocks don’t migrate, only a clock reading function does!
๏ Each Dom0 has its own RADclock daemon
๏ DomU only ever calls a function, no state is migrated

! Caveats
๏ Local copy of clockdata used to limit syscalls - needs refreshing
๏ Host asymmetry will change, result in small clock jump

‣ asymmetry effects different for Dom0 (hence clock itself) and DomU

22

Feedforward paradigm a perfect match to migration

22

Migration Comparison!

23

0 1 2 3 4 5
−50

0

50

100

150

200

250

Time [Hours]

C
lo

ck
 e

rr
o
r

[µ
s]

Dom0 − Tastiger
Dom0 − Kultarr
Migrated Guest RADclock
Migrated Guest ntpd

! Setup
๏ Two machines, each Dom0 running a RADclock
๏ One DomU migrates with a

๏ dependent RADclock
๏ independent ntpd

23

Noise Overhead of Xen and Guests

24

Native Dom0 1 guest 2 guests 3 guests 4 guests

30

40

50

60

70

R
T

T
 H

o
st

 [
µ

s]

1 guest 2 guests 3 guests 4 guests

100

150

200

R
T

T
 H

o
st

 [
µ

s]

DomU #1
DomU #2
DomU #3
DomU #4

24

Noise Penalty Under C-States

25

C0 C1 C2 C3

50

60

70

80

90

100

110
R

T
T

 H
o
st

 [
µ

s]

Xen Clocksource
HPET Hypervisor

25

Algo Performance Under C-States

26

C0 C1 C2 C3

−20

−15

−10

−5

0

5

10

15

20

R
A

D
cl

o
ck

 E
rr

o
r:

 E
−

m
e

d
ia

n
(E

)
[µ

s]

RADclock Xen
RADclock HPET

26

Conclusion

! Feed-Forward approach has many advantages
๏ Difference clock defined
๏ Absolute clock can be made much more robust
๏ Time can be replayed
๏ Simpler kernel support

! Good match to needs of para-virtualisation
๏ Enables clock dependent mode that works
๏ Allows seamless live migration

! RADclock project
๏ Aims to replace ntpd
๏ Client and Server code
๏ Packages for FreeBSD and Linux (Xen now supported)
๏ http://www.cubinlab.ee.unimelb.edu.au/radclock/

27
27

