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Introduction

! Clock synchronization, who cares? 
๏ Network monitoring / Traffic analysis
๏ Telecommunications Industry; Finance; Gaming, ...
๏ Distributed `scheduling’:  timestamps instead of message passing 

! Status quo under Xen
๏ Based on ntpd, amplifies its flaws
๏ Fails under live VM migration

! We propose a new architecture
๏ Based on RADclock client synchronization solution
๏ Robust, accurate, scalable
๏ Enables dependent clock paradigm
๏ Seamless migration
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Key Idea

! Each physical host has a single clock which never migrates

! Only a (stateless) clock read function migrates
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! Hypervisor
๏ minimal kernel managing physical resources

! Para-virtualization
๏ Guest OS’s have access to hypervisor via hypercalls
๏ Fully-virtualized more complex, not addressed here

! Focus on Xen
๏ But approach has general applicability !
๏ Focus on Linux OS’s   ( 2.6.31.13 Xen pvops branch )
๏ Guest OS’s:

‣ Dom0:  privileged access to hardware devices
‣ DomU:  access managed by Dom0

๏ Use Hypervisor 4.0 mainly

Para-Virtualization and Xen
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! Clocks built on local hardware (oscillators ! counters)
๏ HPET, ACPI, TSC
๏ Counters imperfect, they drift  (temperature driven)
๏ Affected by OS

‣ ticking rate
‣ access latency

! TSC  (counts CPU cycles)
๏ Highest resolution and lowest latency - preferred! but..
๏ May be unreliable

‣ multi-core  ! multiple unsynchronised TSCs
‣ power management !  variable rate, including stopping !

! HPET
๏ Reliable, but
๏ Lower resolution, higher latency

Hardware Counters
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A hardware/software hybrid timer provided by the hypervisor

! Purpose
๏ Combine reliability of HPET with low latency of TSC
๏ Compensate for TSC unreliability
๏ Provides 1GHz 64-bit counter

! Performance of XCS versus HPET
๏ XCS performs well:  low latency and high stability
๏ HPET not that far behind, and a lot simpler

Xen Clocksource
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! Timekeeping and timestamping are distinct
! Raw timestamps and clock timestamps are distinct
! A scaled counter is not a good clock:  drift !
! Purpose of clock sync algo is to correct for drift
! Network based sync is convenient, exchange timing packets:

Clock Fundamentals
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! Two key problems
๏ Dealing with delay variability (complex, but possible)
๏ Path asymmetry (simple, but impossible)

Server

Host time

Network

d↑ d↓
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! NTP  (ntpd)
๏ Status Quo
๏ Feedback based

‣ Event timestamps are system clock stamps
‣ Feedback controller (PLL,FLL) tries to lock onto rate

๏ Intimate relationship with system clock (API, dynamics..)
๏ In Xen, ntpd uses Xen Clocksource

! RADclock  (Robust Absolute and Difference Clock)
๏ Algo developed in 2004, extensively tested
๏ Feedforward based

‣ Event timestamps are raw stamps
‣ Clock error estimates made and removed when clock read

๏ `System clock’ has no dynamics, just a function call
๏ Can use any raw counter: here use HPET, Xen Clocksource

Synchronisation Algorithms
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Experimental Methodology
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Wots the problem?  ntpd can perform well

! Ideal Setup
๏ Quality Stratum-1 time-server
๏ Client is on the same LAN, lightly loaded, barely any traffic
๏ Constrained and small polling period: 16 sec
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Or less well...

! Different configuration (ntpd recommended!)
๏ Multiple servers
๏ Relax constraint on polling period
๏ Still no load, no traffic, high quality servers
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When/Why?  Loss of stability a complex function of parameters ⇒ unreliable
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The Xen Context

! Three examples of inadequacy of ntpd based solution
1) Dependent ntpd clock
2) Independent ntpd clock
3) Migrating independent ntpd clock
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1) Dependent ntpd Clock

! The Solution
๏ Only Dom0 runs ntpd
๏ Periodically updates a `boot time’ variable in hypervisor
๏ DomU uses Xen Clocksource to interpolate

! The Result    (2.6.26 kernel)
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2) Independent ntpd Clock (current solution)

! The Solution
๏ All guests run entirely separate ntpd daemons
๏ Resource hungry

! The Result
๏ When all is well, works as before but with a bit more noise
๏ When works:  (parallel comparison on Dom0, stratum-1 on LAN)
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2) Independent ntpd Clock (current solution)

! The Solution
๏ All guests run entirely separate ntpd daemons
๏ Resource hungry

! The Result
๏ Increased noise makes instability more likely
๏ When fails: (DomU with some load, variable polling period, guest churn)
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3) Migrating Independent ntpd Clock

! The Solution
๏ Independent clock as before, migrates
๏ Starts talking to new system clock, new counter

! The Result
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Migration Shock!

More Soon
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RADclock Architecture

Principles

! Timestamping:
๏ raw counter reads, not clock reads 
๏ independent of the clock algorithm

! Synchronization Algorithm:
๏ based on raw timestamps and server timestamps (feedforward)
๏ estimates clock parameters and makes available
๏ concentrated in a single module  (in userland)

! Clock Reading
๏ combines a raw timestamp with retrieved clock parameters
๏ stateless
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More Concretely

! Timestamping
๏ read chosen counter, say HPET(t)

! Sync Algorithm maintains:
๏ Period:  a long term average (barely changes) ⇒ rate stability
๏ K:          sets origin to desired timescale (e.g. UTC)
๏ E:          estimate of error  ⇒ updates on each stamp exchange

! Clock Reading 
๏ Absolute clock:       Ca(t) = Period *HPET(t) + K - E(t)

‣ used for absolute, and differences above critical scale

๏ Difference clock:     Cd(t1,t2) = Period * ( HPET(t2) - HPET(t1) )
‣ used for time differences under some critical time scale
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Implementation

! Timestamping  `feedforward support’
๏ create cumulative and wide (64-bit) form of counter
๏ make accessible from both kernel and user context

‣ under Linux, modify Clocksource abstraction

! Sync Algorithm
๏ Make clock parameters available via a user thread

! Clock reading
๏ Read counter, retrieve clock data, compose
๏ Fixed-point code to enable clock to be read from kernel
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On Xen!

! Dependent Clock now very natural
๏ Dom0 maintains a RADclock daemon, talks to timeserver
๏ Makes Period, K, E  available through Xenstore filesystem
๏ Each DomU can just reads counter, retrieve clockdata, compose

! All Guest Clocks identically the same, but:
๏ Small delay (~1ms) in Xenstore update

‣ stale data possible but very unlikely
‣ small impact

๏ Latency to read counter higher on DomU 

! Support Needed
๏ Expose HPET to Clocksource in guest OSs
๏ Add hypercall to access platform timer (HPET here)
๏ Add read/right functions to access clockdata from Xenstore
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Feedforward paradigm a perfect match to para-virtualisation
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Independent RADclock on Xen

๏ Concurrent test on two DomU’s, separate NTP streams
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Migration On Xen!

! Clocks don’t migrate, only a clock reading function does!
๏ Each Dom0 has its own RADclock daemon
๏ DomU only ever calls a function, no state is migrated

! Caveats
๏ Local copy of clockdata used to limit syscalls - needs refreshing
๏ Host asymmetry will change, result in small clock jump

‣ asymmetry effects different for Dom0 (hence clock itself) and DomU 
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Feedforward paradigm a perfect match to migration
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Migration Comparison!
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! Setup
๏ Two machines, each Dom0 running a RADclock
๏ One DomU migrates with a 

๏ dependent RADclock
๏ independent ntpd
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Noise Overhead of Xen and Guests
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Noise Penalty Under C-States
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Algo Performance Under C-States
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Conclusion

! Feed-Forward approach has many advantages
๏ Difference clock defined 
๏ Absolute clock can be made much more robust
๏ Time can be replayed
๏ Simpler kernel support

! Good match to needs of para-virtualisation
๏ Enables clock dependent mode that works
๏ Allows seamless live migration

! RADclock project
๏ Aims to replace ntpd
๏ Client and Server code
๏ Packages for FreeBSD and Linux (Xen now supported)
๏ http://www.cubinlab.ee.unimelb.edu.au/radclock/
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