
Finding a needle in Haystack:

Facebook’s photo storage

Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel



Photos @ Facebook

April 2009 Current

Total

15 billion photos

60 billion images

1.5 petabytes

65 billion photos

260 billion images

20 petabytes

Upload Rate
220 million photos / week

25 terabytes

1 billion photos / week

60 terabytes

Serving Rate 550,000 images / sec 1 million images / sec



NFS based Design

Browser

Web

Server

CDN

Photo Store

Server

Photo Store

Server

NAS NAS NAS

NFS

1 2

3

8

4

56

7



NFS based Design

 Typical website

– Small working set

– Infrequent access of old content

– ~99% CDN hit rate

 Facebook

– Large working set

– Frequent access of old content

– 80% CDN hit rate



NFS based Design

 Metadata bottleneck

– Each image stored as a file

– Large metadata size severely limits the metadata hit ratio

 Image read performance

~10 iops / image read (large directories – thousands of files)

~3 iops / image read (smaller directories – hundreds of files)

~2.5 iops / image read (file handle cache)



Haystack based Design

Browser

Web

Server

CDN

Haystack

Directory

Haystack Store

Haystack 

Cache



Haystack Store

Filesystem

Haystack

Storage

Haystack Photo Server

 Replaces Storage and Photo Server in NFS based Design



Haystack Store

 Storage

– 12x 1TB SATA, RAID6

 Filesystem

– Single ~10TB xfs filesystem

 Haystack

– Log structured, append only object store containing needles as 

object abstractions

– 100 haystacks per node each 100GB in size



Haystack Store – Haystack file Layout

Superblock

Needle 1

Needle 2

Needle 3

Header Magic Number

Cookie

Key

Alternate Key

Flags

Size

Data

Footer Magic Number

Data Checksum

Padding



Haystack Store – Haystack Index File Layout

Superblock

Needle 1 index record

Needle 2 index record

Needle 3 index record

Key

Alternate Key

Flags

Offset

Size



Haystack Store - Photo Server

 Accepts HTTP requests and translates them to corresponding Haystack 

operations

 Builds and maintains an incore index of all images in the Haystack

 32 bytes per photo (8 bytes per image vs. ~600 bytes per inode)

 ~5GB index / 10TB of images

64-bit photo key

1st scaled image 32-bit offset / 16-bit size

2nd scaled image 32-bit offset / 16-bit size

3rd scaled image 32-bit offset / 16-bit size

4th scaled image 32-bit offset / 16-bit size



 Read

– Lookup offset / size of the image in the incore index

– Read data (~1 iop)

 Multiwrite (Modify)

– Asynchronously append images one by one to the haystack file

– Flush haystack file

– Asynchronously append index records to the index file

– Flush index file if too many dirty index records

– Update incore index

Haystack Store Operations



 Delete

– Lookup offset of the image in the incore index

– Synchronously mark image as “DELETED” in the needle header

– Update incore index

 Compaction

– Infrequent online operation

– Create a copy of haystack skipping duplicates and deleted photos

Haystack Store Operations



Haystack based Design

Browser

Web

Server

CDN

Haystack

Directory

Haystack Store

Haystack 

Cache



 Logical to physical volume mapping

– 3 physical haystacks (on 3 nodes) per one logical volume

 URL generation

– http://<CDN>/<Cache>/<Node>/<Logical volume id, Image id>

 Load Balancing

– Writes across logical volumes

– Reads across physical haystacks

 Caching strategy

– External CDN or Local cache?

Haystack Directory



Haystack based Design - Photo Upload

Browser

Web

Server

CDN

2 3

51

Haystack

Directory

Haystack Store

Haystack 

Cache

4



Haystack based Design – Photo Download

Browser

Web

Server

CDN

2 3

41

8

6

Haystack

Directory

Haystack Store

Haystack 

Cache

5

10

7

9



Conclusion

 Haystack – simple and effective storage system

– Optimized for random reads (~1 I/O per object read)

– Cheap commodity storage

– 8,500 LOC (C++)

– 2 engineers 4 months from inception to initial deployment

 Future work

– Software RAID6

– Limit dependency on external CDN

– Index on flash



Q&A

 Thanks!


