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Abstract

In traditional file system implementations, the Least
Recently Used (LRU) block replacement scheme is
widely used to manage the buffer cache due to its sim-
plicity and adaptability. However, the LRU scheme
exhibits performance degradations because it does not
make use of reference regularities such as sequential
and looping references. In this paper, we present a
Unified Buffer Management (UBM) scheme that ex-
ploits these regularities and yet, is simple to deploy.
The UBM scheme automatically detects sequential and
looping references and stores the detected blocks in sep-
arate partitions of the buffer cache. These partitions are
managed by appropriate replacement schemes based on
their detected patterns. The allocation problem among
the divided partitions is also tackled with the use of the
notion of marginal gains. In both trace-driven simu-
lation experiments and experimental studies using an
actual implementation in the FreeBSD operating sys-
tem, the performance gains obtained through the use of
this scheme are substantial. The results show that the hit
ratios improve by as much as 57.7% (with an average of
29.2%) and the elapsed times are reduced by as much
as 67.2% (with an average of 28.7%) compared to the
LRU scheme for the workloads we used.
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1 Introduction

Efficient management of the buffer cache by using
an effective block replacement scheme is important for
improving file system performance when the size of the
buffer cache is limited. To this end, various block re-
placement schemes have been studied [1, 2, 3, 4, 5, 6].
Yet, the Least Recently Used (LRU) block replacement
scheme is still widely used due to its simplicity. While
simple, it adapts very well to the changes of the work-
load, and has been shown to be effective when recently
referenced blocks are likely to be re-referenced in the
near future [7]. A main drawback of the LRU scheme,
however, is that it cannot exploit regularities in block
accesses such as sequential and looping references and
thus, yields degraded performance [3, 8, 9]. In this pa-
per, we present a Unified Buffer Management (UBM)
scheme that exploits these regularities and yet, is sim-
ple to deploy. The performance gains are shown to be
substantial. Trace-driven simulation experiments show
that the hit ratios improve by as much as 57.7% (with
an average of 29.2%) compared to the LRU scheme for
the traces we considered. Experimental studies using an
actual implementation of this scheme in the FreeBSD
operating system show that the elapsed time is reduced
by as much as 67.2% (with an average of 28.7%) com-
pared to the LRU scheme for the applications we used.

1.1 Motivation

The graphs in Figure 1 show the motivation behind this
study. First, Figure 1(a) shows the space-time graph
of block references from three applications, namely,
cscope, cpp, and postgres (details of which will be
discussed in Section 4), executing concurrently. The



0

1000

2000

3000

4000

5000

6000

0 5000 10000 15000 20000 25000 30000

Lo
gi

ca
l B

lo
ck

 N
um

be
r

Virtual Time

Multi2(cscope+cpp+postgres) trace

(a) Block references

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

100 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

200 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

600 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

800 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

1000 cache blocks

(b) OPT block replacement scheme

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

100 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

200 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

600 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

800 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

1000 cache blocks

(c) LRU block replacement scheme

Figure 1: Caching behaviors of the OPT block replacement scheme and the LRU block replacement scheme.



x-axis is the virtual time which ticks at each block ref-
erence and the y-axis is the logical block number of the
block referenced at the given time. From this graph,
we can easily notice sequential and looping reference
regularities throughout their execution.

Now consider the graphs in Figures 1(b) and 1(c).
They show the Inter-Reference Gap (IRG) distributions
of blocks that hit in the buffer cache for the off-line
optimal (OPT) block replacement scheme and the LRU
block replacement scheme, respectively, as the cache
size increases from 100 blocks to 1000 blocks. The x-
axis is the IRG and the y-axis is the total hit count with
the given IRG.

Observe from the corresponding graphs of the two
figures the difference with which the two replacement
schemes behave. The main difference comes from how
looping references (that is, blocks that are accessed re-
peatedly with a regular reference interval, which we re-
fer to as the loop period) are treated. The OPT scheme
retains the blocks in the increasing order of loop peri-
ods as the cache size increases since the scheme chooses
a victim block according to the forward distance (i.e.,
difference between the time of the next reference in the
future and the current time). From Figure 1(b), we can
see that in the OPT scheme the hit counts of blocks
with IRG between 70 and 90 increase gradually as the
cache size increases. On the other hand, in the LRU
scheme there are no buffer hits at this range of IRGs
even when the buffer cache has 1000 blocks. This re-
sults from blocks at these IRGs being replaced either by
blocks that are sequentially referenced (and thus never
re-referenced) or by those with larger IRGs (and thus
are replaced before being re-referenced). Although pre-
dictable, the regularities of sequential and looping ref-
erences are not exploited by the LRU scheme, which
leads to significantly degraded performance.

From this observation, we devise a new buffer man-
agement scheme called the Unified Buffer Management
(UBM) scheme. The UBM scheme exploits regulari-
ties in reference patterns such as sequential and loop-
ing references. Evaluation of the UBM scheme using
both trace-driven simulations and an actual implementa-
tion in the FreeBSD operating system shows that 1) the
UBM scheme is very effective in detecting sequential
and looping references, 2) the UBM scheme manages
sequentially-referenced and looping-referenced blocks
similarly to the OPT scheme, and 3) the UBM scheme
shows substantial performance improvements.

1.2 The Remainder of the Paper

The remainder of this paper is organized as follows.
In the next section, we review related work. In Section
3, we explain the UBM scheme in detail. In Section 4,
we describe our experimental environments and com-
pare the performance of the UBM scheme with those
of previous schemes through trace-driven simulations.
In Section 5, an implementation of the UBM scheme in
the FreeBSD operating system is evaluated. Finally, we
provide conclusions and directions for future research
in Section 6.

2 Related Work

In this section, we place previous page/block replace-
ment schemes into the following three groups and in
turn, survey the schemes in each group.

� Replacement schemes based on frequency and/or
recency factors.

� Replacement schemes based on user-level hints.

� Replacement schemes making use of regularities
of references such as sequential references and
looping references.

The FBR (Frequency-based Replacement) scheme by
Robinson and Devarakonda [1], the LRU-K scheme by
O’Neil et al. [2], the IRG (Inter-Reference Gap) scheme
by Phalke and Gopinath [5], and the LRFU (Least Re-
cently/Frequently Used) scheme by Lee et al. [6] fall
into the first group. The FBR scheme chooses a vic-
tim block to be replaced based on the frequency factor
differing from the Least Frequently Used (LFU) mainly
in that it considers correlations among references. The
LRU-K scheme bases its replacement decision on the
blocks’ kth-to-last reference, while the IRG scheme’s
decision is based on the inter-reference gap factor. The
LRFU scheme considers both the recency and frequency
factors of blocks. These schemes, however, show lim-
ited performance improvements because they do not
consider regular references such as sequential and loop-
ing references.

Application-controlled file caching by Cao et al. [4]
and informed prefetching and caching by Patterson et
al. [10] are schemes based on user-level hints. These
schemes choose a victim block to be replaced based



on user-provided hints on application reference charac-
teristics, allowing different replacement policies to be
applied to different applications. However, to obtain
user-level hints, users need to accurately understand
the characteristics of block reference patterns of appli-
cations. This requires considerable effort from users
limiting the applicability.

The third group of schemes considers regularities of
references, and the 2Q scheme by Johnson and Shasha
[3], the SEQ scheme by Glass and Cao [8], and the
EELRU (Early Eviction LRU) scheme by Smaragdakis
et al. [9] fall into this group. The 2Q scheme quickly
removes from the buffer cache sequentially-referenced
blocks and looping-referenced blocks with long loop
periods. This is done by using a special buffer called
the A1in queue in which all missed blocks are initially
placed and from which the blocks are replaced in the
FIFO order after short residence. On the other hand,
the scheme holds looping-referenced blocks with short
loop periods in the main buffer cache by using a ghost
buffer called the A1out queue in which the addresses of
blocks replaced from the A1in queue are temporarily
placed to discriminate between frequently referenced
blocks and infrequently referenced ones. When a block
is re-referenced while its address is in the A1out queue,
it is promoted to the main buffer cache. The 2Q scheme,
however, has two drawbacks. One is that an additional
miss has to occur for a block to be promoted to the main
buffer cache from the A1out queue. The other is that
a careful tuning is required for two control parameters,
that is, the size of the A1in queue and the size of the
A1out queue, which may be sensitive to the types of
workload.

The SEQ scheme detects long sequences of page faults
and applies the Most Recently Used (MRU) scheme
to those pages. However, in determining the victim
page, it does not distinguish sequential and looping ref-
erences. The EELRU scheme confirms the existence
of looping references by examining aggregate recency
distributions of referenced pages and changes the page
eviction points using a simple on-line cost/benefit analy-
sis. The EELRU scheme, however, does not distinguish
between looping references with different loop periods.

3 The Unified Buffer Management
Scheme

The Unified Buffer Management (UBM) scheme is
composed of the following three main modules.

Detection This module automatically detects sequen-
tial and looping references. After the detection,
block references are classified into sequential,
looping, or other references.

Replacement This module applies different replace-
ment schemes to the blocks belonging to the three
reference patterns according to the properties of
each pattern.

Allocation This module allocates the limited buffer
cache space among the three partitions corre-
sponding to sequential, looping, and other refer-
ences.

In the following subsections, we give a detailed expla-
nation of each of these modules.

3.1 Detection of Sequential and Looping Ref-
erences

The UBM scheme automatically detects sequential,
looping, and other references according to the following
rules:

Sequential references that are consecutive block ref-
erences occurring only once.

Looping references that are sequential references oc-
curring repeatedly with a regular interval.

Other references that are detected neither as sequen-
tial nor as looping references.

Figure 2 shows the classification process of the UBM
scheme. Note that looping references are initially de-
tected as sequential until they are re-referenced.

For on-line detection of sequential and looping refer-
ences, information about references to blocks in each
file is maintained in an abstract form. The elements
needed are shown in Figure 3.

Information for each file is maintained as a 4-tuple
consisting of a file descriptor (fileID), a start block
number (start), an end block number (end), and a loop
period (period). A reference is categorized as a se-
quential reference after a given number of consecutive
references are made. For a sequential reference the loop
period is 1, while for a looping reference its value is
the actual loop period. In real systems, the loop pe-
riod fluctuates by various factors including the degree
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Figure 2: Classification process of the UBM scheme.

of multiprogrammingand scheduling. Hence, this value
is set as an exponential average of measured loop peri-
ods. Also, since a looping reference is initially detected
as a sequential reference, its blocks are managed just
like those belonging to a sequential reference until they
are re-referenced. This may make them miss the first
time they are re-referenced if there is not enough space
in the cache (cf. Section 4.7).

The resulting table keeps information for sequences
of consecutive block references that are detected up
to the current time and is updated whenever a block
reference occurs. In most UNIX file systems, sequences
of consecutive block references are detected by using
vnode numbers and consecutive block addresses.

Figure 4 shows an example of sequential and looping
references, and the data structure that is used to maintain
information for these references. In the figure, the file
with fileID 3 is a sequential reference as it has 1 as
its loop period. Files with fileID 1 and 2 are looping
references with loop periods of 80 and 40, respectively.

3.2 Block Replacement Schemes

The detection mechanism results in files being catego-
rized into three types, that is, sequential, looping, and
other references. The buffer cache is divided into three
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partitions to accommodate the three different types of
references. Management of the partitions must be done
according to the reference characteristics of blocks be-
longing to each partition.

For the partition that holds sequential references, it is a
simple matter. Sequentially-referencedblocks are never
re-referenced. Hence, the referenced blocks need not be
retained and therefore, the MRU replacement policy is
used.

For the partition that holds looping references, victim
blocks to be replaced are chosen based on their loop
periods because their re-reference probabilities depend
on these periods. To do so, we use a period-based
replacement scheme that replaces blocks in decreasing
order of loop periods, and the MRU block replacement
scheme among blocks with the same loop period.

Finally, within the partition that holds other references,
victim blocks to be replaced can be chosen based on
their recency, frequency, or a combination of the two
factors. Hence, we may use any of previously proposed
replacement schemes including the Least Recently Used
(LRU), the Least Frequently Used (LFU), the LRU-K,
and the Least Recently/Frequently Used (LRFU) as long
as they have a model that approximates the hit ratio for
a given buffer size to compute the marginal gain, which
will be explained in the next subsection. In this paper,
we assume the LRU replacement scheme.

3.3 Buffer Allocation Based on Marginal Gain

The buffer cache has now been divided into three par-
titions that are being managed separately. An important

problem that should be addressed then is how to allocate
the blocks in the cache among the three partitions. To
this end, we use the notion of marginal gains, which has
frequently been used in resource allocation strategies in
various computer systems areas [10, 11, 12, 13].

Marginal gain is defined as MG(n) � Hit(n) �
Hit(n � 1), which specifies the expected number of
extra buffer hits per unit time that would be obtained by
increasing the number of allocated buffers from (n-1)
to n, where Hit(n) is the expected number of buffer
hits per unit time using n buffers. In the following, we
explain how to predict the marginal gains of sequen-
tial, looping, and other references, as the buffer cache
is partitioned to accommodate each of these types of
references.

The expected number of buffer hits per unit time of se-
quential references when usingn buffers isHitseq(n) =
0, and thus, the expected marginal gain is always
MGseq(n) = 0.

For looping references, the expected number of buffer
hits per unit time and the expected marginal gain value
are calculated as follows.

First, for a looping reference, loopi, with loop length
li and loop period pi, the expected number of buffer hits
per unit time when using n buffers is Hitloopi(n) =
min[li; n]=pi. Thus, if n � li, the expected marginal
gain is MGloopi(n) = n=pi � (n � 1)=pi = 1=pi and
if n > li, MGloopi(n) = li=pi � li=pi = 0.

Now, assume that there are L looping references
floop1; :::; loopi; :::; loopLg, where the loops here are
arranged in the increasing order of loop periods. Let
imax be the maximum of i such thatm =

Pi

k=1 lk < n,
wheren is the number of buffers in the partition for loop-
ing references. If imax = L, then all loops can be held in
the buffer cache, and henceHitloop(n) =

PL

k=1 lk=pk,
and MGloop(n) = 0. Consider now, the more com-
plicated case where imax < L. The expected number
of buffer hits per unit time of these looping references
when using n buffers is Hitloop(n) =

Pimax

k=1 lk=pk +

min[limax+1; n�
Pimax

k=1 lk]=pimax+1. (Recall that we
are using the period-based replacement scheme to man-
age the partition for looping references. Hence, there
can be no loops within this partition that has loop period
longer than pimax+1.) Hence, the expected marginal
gain is MGloop(n) = 1=pimax+1.

Finally, for the partition that holds the other references
and which is managed by the LRU replacement scheme,
the expected number of buffer hits per unit time and the
expected marginal gain value can be calculated from the



buffer hit ratio using ghost buffers [11, 10] and/or the
Belady’s lifetime function [14]. Ghost buffers, some-
times called dataless buffers, are used to estimate the
number of buffer hits per unit time for cache sizes larger
than the current size when the cache is managed by
the LRU replacement scheme. A ghost buffer does not
contain any data blocks but maintains control informa-
tion needed to count cache hits. The prediction of the
buffer hit ratio using only ghost buffers is impractical
due to the overhead of measuring the hit counts of all
LRU stack positions individually. In the UBM scheme,
we use an approximation method suggested by Choi et
al. [13]. The proposed method utilizes the Belady’s
lifetime function, which is well-known to approximate
the buffer hit ratio of references that follow the LRU
model. Specifically, the hit ratio with n buffers is given
by Belady’s lifetime function as

hitother(n) = h1 + h2 + h3 + :::+ hn � 1� c � n�k

where c and k are control parameters. Specific c and
k values can be calculated on-line by using measured
buffer hit ratios at pre-set cache sizes. Ghost buffers are
used to determine the hit ratios at these pre-set cache
sizes. The overhead of using ghost buffers in this case is
minimal as accurate LRU stack positions of referenced
blocks need not be located. For example, to calculate the
values of the control parameters,c and k, buffer hit ratios
at a minimum of two cache sizes, say, p and q, where p 6=
q are required. Using these values and the equation of
the lifetime function,we can calculate the values of c and
k. Then, the expected number of buffer hits per unit time
is given by Hitother(n) = hitother(n)�

nother
ntotal

where
nother andntotal are the number of other references and
the number of total references, respectively, during the
observed period. Finally, the expected marginal gain is
simplyMGother(n) = Hitother(n)�Hitother(n�1).

Figure 5 shows typical curves of both buffer hits
per unit time and marginal gain values of sequential,
looping, and other references as the number of allo-
cated buffers increases. In the UBM scheme, since the
marginal gain of sequential references, MGseq(n), is
always zero, the buffer manager does not allocate more
than one buffer to the corresponding partition, except
when buffers are not fully utilized. That is, only when
there are free buffers at the initial stage of allocation,
more than one buffer may be allocated to this partition.
Thus, in general, buffer allocation is determined be-
tween the partitions that hold the looping-referenced
blocks and the other-referenced blocks. The UBM
scheme tries to maximize the expected number of to-
tal buffer hits by dynamically controlling the allocation
so that the marginal gain value of looping references,
MGloop(n), and the marginal gain value of other ref-

erences, MGother(C � n), where C is the cache size,
converge to the same value.

3.4 Interaction Among the Three Modules

Figure 6 shows the overall interactions between the
three modules of the UBM scheme. Whenever a block
reference occurs in the buffer cache, the detection mod-
ule updates and/or classifies the reference into one of
the sequential, looping, or other reference types (step
(1) in Figure 6). In this example, assume that a miss
has occurred and the reference is classified as an other
reference. As a miss has occurred the buffer allocation
module is called to get additional buffer space for the
referenced block (step (2)). The buffer allocation mod-
ule would normally compare the marginal gain values
of looping and other references and choose the one with
a smaller marginal gain value and send a replacement
request to the corresponding cache partition as shown
in step (3). However, if there is space allocated to a
sequential reference, such space is always deallocated
first. The cache management module of the selected
cache partition decides a victim block to be replaced
using its replacement scheme (step (4)) and deallocates
the buffer space of the victim block to the allocation
module (step (5)). The allocation module forwards this
space to the cache partition for other-referenced blocks
(step (6)). Finally, the referenced block is fetched from
disk into the buffer space (step (7)).

4 Performance Evaluation

In this section and the next,we discuss the performance
of the UBM scheme. This section concentrates on the
simulation study, while the next section focuses on the
implementation study.

In this section, the performance of the UBM scheme
is compared with those of the LRU, 2Q, SEQ, EELRU,
and OPT schemes through trace-driven simulations1.
We also compare the performance of the UBM scheme
with that of application-controlled file caching through
trace-driven simulations with the same multiple appli-
cation trace used in [4]. We did not compare the per-
formance of the UBM and those of schemes based on
recency and/or frequency factors such as FBR, LRU-K,

1Though the SEQ and EELRU schemes were originally
proposed as page replacement schemes, they can also be used
as block replacement schemes.
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Table 1: Characteristics of the traces used.

Trace Applications executed concurrently # of references # of unique blocks

Multi1 cscope, cpp 15858 2606
Multi2 cscope, cpp, postgres 26311 5684
Multi3 cpp, gnuplot, glimpse, postgres 30241 7453

and LRFU since the benefits from the two factors are
largely orthogonal and any of the latter schemes can be
used to manage other references in the UBM scheme.
We first describe the experimental setup and then present
the performance results.

4.1 Experimental Setup

Traces used in our simulations were obtained by con-
currently executing diverse applications on the FreeBSD
operating system running on an Intel Pentium PC. The
characteristics of the applications are described below.

cpp Cpp is the GNU C compiler pre-processor. The
total size of C sources used as input is roughly

11MB. During execution, observed block refer-
ences are sequential and other references.

cscope Cscope is an interactive C source examination
tool. The total size of C sources used as input is
roughly 9MB. It exhibits looping references with
an identical loop period and other references.

glimpse Glimpse is a text information retrieval util-
ity. The total size of text files used as input is
roughly 50MB. Its block reference characteristic
is diverse - it shows sequential references, looping
references with different loop periods, and other
references.

gnuplot Gnuplot is an interactive plotting program.
The size of raw data used as input is 8MB. Loop-
ing references with an identical loop period and
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Figure 7: Reference classification results (Trace: Multi2).

other references were observed during execution.

postgres Postgres is a relational database system from
the University of California at Berkeley. We used
join queries among four relations, namely, twot-
houstup, twentythoustup, hundredthoustup, and
twohundredthoustup, which were made from a
scaled-up Wisconsin benchmark. The sizes of
each relation are approximately 150KB, 1.5MB,
7.5MB, and 15MB. It exhibits sequential refer-
ences, looping references with different loop peri-
ods, and other references.

mpeg play Mpeg play is an MPEG player from the
University of California at Berkeley. The size
of the MPEG video file used as input is 5MB.
Sequential references dominate in this application.

We used three multiple application traces in our ex-
periments. They are denoted by Multi1, Multi2, and
Multi3, and their characteristics are shown in Table 1.

We built simulators for the LRU, 2Q, SEQ, EELRU,
and OPT schemes as well as the UBM scheme. Unlike
the UBM scheme that does not have any parameters that
need to be tuned, the 2Q, SEQ, and EELRU schemes
have one or more parameters whose settings may affect
the performance. For example, in the 2Q scheme the
parameters are the sizes of the A1in andA1out queues.

The parameters of the SEQ scheme are threshold val-
ues used to choose victim blocks among consecutively
missed blocks. Finally, for the EELRU scheme, the
early and late eviction points from which a block is re-
placed, have to be set. In our experiments, we used the
values suggested by the authors of each of the schemes.

4.2 Detection Results

Figure 7 shows the classifications resulting from the
detection module for the Multi2 trace. The x-axis
is the virtual time and the y-axis is the logical block
number. The figures are space-time graphs with Figure
7(a) showing block references for the whole trace and
Figure 7(b) showing how the detection module classified
the sequential, looping, and other references from the
original references. The results indicate that the UBM
scheme accurately classifies the three reference patterns.

4.3 IRG Distribution Comparison of the UBM
Scheme with the OPT Scheme

Figure 8 shows the caching behaviors of the OPT and
UBM schemes for the Multi2 trace. Compare these
results with those shown in Figures 1(b) and 1(c), which
use the same trace. Recall that these graphs show the



0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

100 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

200 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

600 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

800 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

1000 cache blocks
(a) OPT block replacement scheme

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

100 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

200 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

600 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

800 cache blocks

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140

H
it 

C
ou

nt
s

Inter-Reference Gap (IRG) (x50)

cscope+cpp+postgres trace

1000 cache blocks
(b) Unified buffer management scheme

Figure 8: Caching behaviors of the OPT and UBM schemes.

hit counts in the buffer cache using IRG distributions
of referenced blocks. We note that the UBM scheme is
very closely mimicking the behavior of the OPT scheme.

4.4 Performance Comparison of the UBM
Scheme with Other Schemes

Figure 9 shows the buffer hit ratios of the UBM scheme
and other replacement schemes as a function of cache
size with the block size set to 8KB. For most cases,
the UBM scheme shows the best performance. Further
analysis for each of the schemes is as follows.

The SEQ scheme shows fairly stable performance for
all cache sizes. The reason behind its good performance
is that it quickly replaces sequentially-referencedblocks
that miss in the buffer cache. However, since the scheme
does not consider looping references, it shows worse
performance than the UBM scheme.

The 2Q scheme shows better performance than the
LRU scheme for most cases because it quickly replaces
sequentially-referenced blocks and looping-referenced
blocks with long loop periods. However, when the
cache size is large (caches with 1800 or more blocks for
the Multi1 trace, 2800 or more blocks for the Multi2
trace, and 3600 or more blocks for the Multi3 trace),
the scheme shows worse performance than the LRU



scheme. There are two reasons behind this. First, since
the scheme replaces all newly referenced blocks after
holding it in the buffer cache for a short time, when-
ever these blocks are re-referenced, additional misses
occur. The ratio of these additional misses to total
misses increases as the cache size increases resulting
in a significant impact on the performance of the buffer
cache. Second, the scheme does not distinguish between
looping-referenced blocks with different loop periods.
The performance of the 2Q scheme does not gradu-
ally increase with the cache size, but rather surges be-
yond some cache size and then holds steady. Also the
2Q scheme exhibits rather anomalous behavior for the
Multi2 and Multi3 traces. When the cache sizes are
about 2200 blocks and 2800 blocks for Multi2 and
Multi3, respectively, the buffer hit ratio of the scheme
decreases as the cache size increases. A careful inspec-
tion of results reveals that when the cache size increases
the A1out queue size increases accordingly and this
results in a situation where blocks that should not be
promoted are promoted to the main buffer cache lead-
ing to such an anomaly.

The EELRU scheme shows similar or better perfor-
mance than the LRU scheme as the cache size increases.
However, since the scheme chooses a victim block to be
replaced based on aggregate recency distributions of ref-
erenced blocks, it does not replace quickly enough the
sequentially-referenced blocks and looping-referenced
blocks that have long loop periods. Further, like the
2Q scheme, it does not distinguish between looping-
referenced blocks with different loop periods. Hence, it
does not fair well compared to the UBM scheme.

The LRU scheme shows the worst performance for
most cases because it does not give any consideration to
the regularities of sequential and looping references.

Finally, the UBM scheme replaces sequentially-
referenced blocks quickly and holds the looping-
referenced blocks in increasing order of loop periods
based on the notion of marginal gains as the cache size
increases. Consequently, the UBM scheme improves
the buffer hit ratios by up to 57.7% (for the Multi1
trace with 1400 blocks) compared to the LRU scheme
with an average increase of 29.2%.

4.5 Results of Dynamic Buffer Allocation

Figure 10(a) shows the distribution of the buffers allo-
cated to the partitions that hold sequential, looping, and
other references as a function of (virtual) time when the
buffer cache size is 1000 blocks. Until time 2000, the
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Figure 9: Performance comparison of the UBM scheme
with other schemes.
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Figure 10: Results of dynamic buffer allocation (cache size: 1000 blocks, trace: Multi2).

buffer cache is not fully utilized. Hence, buffers are
allocated to any reference that requests it, resulting in
the partition that holds sequentially-referenced blocks
being allocated a considerable number of blocks. Af-
ter time 2000, all the buffers have been consumed, and
hence, the number of buffers allocated to the partition for
sequentially-referenced blocks decreases, while alloca-
tions to the partitions for looping and other references
start to increase. As a result, at around time 6000, only
one buffer is allocated to the partition for sequentially-
referenced blocks. From about time 10000, the alloca-
tions to the partitions for the looping and other refer-
ences converge to a steady-state value.

Figure 10(b) shows marginal gains as a function of al-
located buffers of looping and other references that are
calculated at time 20000 of Figure 10(a). Since there
are several looping references with different loop peri-
ods in the Multi2 trace, from the left figure, we can
see that the expected marginal gain values of the loop-
ing references, MGloop(n), decrease step-wise as the
number of allocated buffers, n, increases. The figure on
the right shows the expected marginal gain values of the
other references, MGother(n), that decrease gradually.
The UBM scheme dynamically controls the number of
allocated buffers to each partition so that the marginal

gain values of the two partitions converge to the same
value. At time 20000, the two marginal gain values con-
verge to 0.000222 and the number of allocated buffers
to the partitions for the looping and other references is
731 blocks and 268 blocks, respectively.

4.6 Performance Comparison of the UBM
Scheme with Application-controlled File
Caching

The application-controlled file caching (ACFC)
scheme [4] is a user-hint based approach to buffer cache
management, which is in contrast to the UBM scheme
that requires no such hints. To compare the performance
of these two schemes, we used the ULTRIX multiple ap-
plication (postgres+ cscope+linking the kernel) trace
in [4].

Figure 11 shows the buffer hit ratios of the
UBM scheme, two ACFC schemes, namely,
ACFC(HEURISTIC) and ACFC(RMIN), and the
LRU, 2Q, SEQ, EELRU, and OPT schemes when
the cache size increases from 4M to 16M. The
ACFC(HEURISTIC) scheme uses user-level hints for
each application, while the ACFC(RMIN) scheme uses
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Figure 11: Performance comparison of the UBM
scheme with the application-controlled file caching
scheme.

the optimal off-line strategy for each application. The
results for the two ACFC schemes were borrowed from
[4] while the results for all the other schemes were
obtained from simulations. The results show that the
hit ratios of the UBM scheme, which does not make
use of any external hints, are comparable to those of
the ACFC(RMIN) scheme and higher than those of the
ACFC(HEURISTIC) scheme.

4.7 Warm/Cold Caching Effects

All experiments so far were done with cold caches.
To evaluate the performance of the UBM scheme at
steady-state, we performed additional simulations with
warmed-up caches. In the experiments, we run initially
a long-run workload (sdet benchmark2) through the
buffer cache and after the cache was warmed up, we
run both the long-run workload and the target work-
load (cscope + cpp + postgres) concurrently. The
cache statistics were collected only after the cache was
warmed up.

Experimental results that show the warm/cold caching
effects of the UBM scheme are given in Figure 12 and
Table 2. The graphs of Figure 12 show that when the
cache size is small, the performance improvements by
the UBM scheme with warmed-up caches over the LRU
scheme are similar to those with cold caches. As the
cache size increases, however, the performance increase
by the UBM scheme with warmed-up caches is reduced

2Sdet is the SPEC SDET benchmark that simulates a mul-
tiprogramming environment.

when compared with the performance increase with cold
caches since sequential references are not allowed to be
cached at all. Specifically, when the cache is warmed
up, blocks belonging to sequential references are not
allowed to be cached. If those blocks are re-referenced
with a regular interval in the future (i.e., if they turn
into looping references), the UBM scheme has to reread
them from the disks. In cold caches, however, many
of them are reread from the cache partition that holds
sequentially-referenced blocks because when the cache
is cold, more than one block can be allocated to the
partition for the sequentially referenced blocks.

The resulting performance degradation, however, is
not significant as we can see from Table 2 that sum-
marizes the performance improvements by the UBM
scheme for both cold caches and warmed-up caches -
the difference in the average performance improvement
between cold caches and warmed-up caches is less than
1%. Although the overall performance degradation is
negligible, the additional misses may adversely affect
the performance perceived by the user due to increased
start-up time. As future work, we plan to explore an
allocation scheme where blocks are allocated even for
sequential references based on the probability that a se-
quential reference will turn into a looping reference.

5 Implementation of UBM in the FreeBSD
Operating System

The UBM scheme was integrated into the FreeBSD op-
erating system running on a 133MHz Intel Pentium PC
with 128MB RAM and a 1.6GB Quantum Fireball hard
disk. For the experiments, we used five real applications
(cpp, cscope, glimpse, postgres, and mpeg play) that
were explained in Section 4. We ran several combina-
tions of three or more of these applications concurrently
and measured the elapsed time of each application under
the UBM and SEQ schemes as well as under the built-in
LRU scheme when the cache sizes are 8MB, 12MB, and
16MB with the block size set to 8KB.

5.1 Performance Measurements

Figure 13 shows the elapsed time of each individual
application under the UBM, SEQ and LRU schemes. As
expected, the UBM scheme shows better performance
than the LRU scheme. In the figure, since the postgres
and cscope applications access large files repeatedly
with a regular interval, they show better improvement
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Figure 12: The cold/warm caching effects of the UBM
scheme in trace-driven simulations (Trace: cscope +
cpp+ postgres+ sdet).

in the elapsed time than other applications. On the
other hand, the mpeg play application does not show
as much improvement because it accesses a large video
file sequentially.

Overall, the UBM scheme reduces the elapsed time by
up to 67.2% (the elapsed time of the postgres applica-
tion for the cpp+postgres+cscope+mpeg play case
with 16MB cache size) compared to the LRU scheme
with an average improvement of 28.7%. We note that
improvements by the UBM scheme on the elapsed time
are comparable to those on the buffer hit ratios we ob-
served in the previous section.

There are two main benefits from using the UBM
scheme. The first is from detecting looping references,
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Figure 13: Performance of the UBM scheme integrated
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Table 2: Comparison of performance improvements of
the UBM scheme compared to th e LRU scheme (Trace:
cscope+ cpp+ postgres+ sdet).

Improvements Improvements
with cold caches with warmed-up caches

avg. 19.6% (max. 26.2%) avg. 18.9% (max. 22.6%)

managing them by a period-based replacement policy,
and allocating buffer space to them based on marginal
gains. The second is from giving preference to blocks
belonging to sequential references when a replacement
is needed. To quantify these benefits, we compared the
UBM scheme with the SEQ scheme. The results in Fig-
ure 13 show that there is still a substantial difference
in the elapsed time between the UBM scheme and the
SEQ scheme indicating that the benefit from carefully
handling looping references is significant.

5.2 Effects of Run-Time Overhead of the UBM
Scheme

To measure the run-time overhead of the UBM
scheme, we executed a CPU-bound application
(cpu bound) that executes an ADD instruction repeat-
edly, along with the other applications.

Figure 14 shows the run-time overhead of the UBM
scheme for two combinations of applications, namely,
cpu bound+cpp+postgres+cscope and cpu bound+
glimpse + cpp + postgres + cscope when the cache
size is 12MB. The elapsed time of the cpu bound appli-
cation increases slightly by around 5% when using the
UBM scheme compared with that when using the LRU
scheme. A major source of this overhead comes from
the operations to manipulate the ghost buffers and to
calculate the marginal gain values. Currently, we inte-
grated the UBM scheme into the FreeBSD in a straight-
forward manner without any optimization,and hence we
expect there is still much room for further optimizing
the performance.

The UBM scheme also has the space overhead of main-
taining ghost buffers in the kernel memory. The maxi-
mum size of the LRU stack to be maintained including
ghost buffers is limited by the total number of buffers
in the file system. Therefore, the space overhead due to
ghost buffers is proportional to the difference between
the total number of buffers in the system and the number
of allocated buffers for other references. In the current
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Figure 14: Run-time overhead of the UBM scheme.

implementation, each ghost buffer requires 13 bytes.

6 Conclusions and Future Work

This paper starts from the observation that the widely
used LRU replacement scheme does not make use of
regularities present in the reference patterns of applica-
tions, leading to degraded performance. The Unified
Buffer Management (UBM) scheme is proposed to re-
solve this problem. The UBM scheme automatically
detects sequential and looping references and stores the
detected blocks in separate partitions of the buffer cache.
These partitions are managed by appropriate replace-
ment schemes based on the properties of their detected
patterns. The allocation problem among the partitions
is also tackled with the use of the notion of marginal
gains.

To evaluate the performance of the UBM scheme, ex-
periments were conducted using both trace-driven sim-
ulations with multiple application traces and an imple-
mentation of the scheme in the FreeBSD operating sys-
tem. Both simulation and implementation results show
that 1) the UBM scheme accurately detects almost all the
sequential and looping references, 2) the UBM scheme
manages sequential and looping-referenced blocks sim-
ilarly to the OPT scheme, and 3) the UBM scheme
shows substantial performance improvements increas-
ing the buffer hit ratio by up to 57.7% (with an average
increase of 29.2%) and reducing, in an actual implemen-
tation in the FreeBSD operating system,the elapsed time
by up to 67.2% (with an average of 28.7%) compared
to the LRU scheme, for the workloads we considered.

As future research, we are attempting to apply to other



references the Least Recently/Frequently Used (LRFU)
scheme based on both recency and frequency factors
rather than the LRU scheme, which is based on the
recency factor only. Also, as automatic detection of
sequential and looping references is possible, we are
investigating the possibility of further enhancing per-
formance through prefetching techniques that exploit
these regularities as was attempted in [10] for informed
prefetching and caching. Finally, we plan to extend
the techniques presented in this paper to systems that
integrate virtual memory and file cache management.
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