# ServerSwitch: A Programmable and High Performance Platform for Data Center Networks

Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou<sup>+</sup>, Tong Yuan, Haitao Wu, Yongqiang Xiong, Rui Gao, Yongguang Zhang Microsoft Research Asia <sup>+</sup>Tsinghua University

## Motivations

- Lots of research and innovations in DCN
  - PortLand, DCell/BCube, CamCube, VL2, ...
  - Topology, routing, congestion control, network services, etc.
- Many DCN designs depart from current practices
  - BCube uses self-defined packet header for source routing
  - Portland performs LPM on destination MAC
  - Quantized Congestion Notification (QCN) requires the switches to send explicit congestion notification
- Need a platform to prototype existing and many future DCN designs

# Requirements

- Programmable and high-performance packet forwarding engine
  - Wire-speed packet forwarding for various packet sizes
  - Various packet forwarding schemes and formats
- New routing and signaling, flow/congestion control
  - ARP interception (PortLand), adaptive routing (BCube), congestion control (QCN)
- Support new DCN services by enabling in-network packet processing
  - Network cache service (CamCube), Switch-assisted reliable multicast (SideCar)

# **Existing Approaches**

- Existing switches/routers
  - Usually closed system, no programming interface
- OpenFlow
  - Mainly focus on control plane at present
  - Unclear how to support new congestion control mechanisms and in-network data processing
- Software routers
  - Performance not comparable to switching ASIC
- NetFPGA
  - Not commodity devices and difficult to program

# **Technology Trends**



#### Modern Switching Chip

- High switching capacity (640Gbps)
- Rich protocol support (Ethernet, IP, MPLS)
- TCAM for advanced packet filtering



#### **PCI-E Interconnect**

- High bandwidth (160Gbps)
- Low latency (<1us)



#### **Commodity Server**

- Multi-core
- Multi 10GE packet processing capability

NSDI 2011, Boston, USA

# **Design Goals**

- Programmable packet forwarding engine in silicon
  - Leverage the high capacity and programmability within modern switching chip for packet forwarding
- Low latency software processing for control plane and congestion control messages
  - Leverage the low latency PCI-E interface for latency sensitive schemes
- Software-based in-network packet processing
  - Leverage the rich programmability and high performance provided by modern server

# Architecture



- Hardware
  - Modern Switching chip
  - Multi-core CPU
  - PCI-E interconnect
- Software Stack
  - C APIs for switching chip management
  - Packet Processing in both Kernel and User Space

## Programmable Packet Forwarding Engine



- Destination-based forwarding, e.g., IP, Ethernet
- Tag-based forwarding, *e.g.*, MPLS
- Source Routing based forwarding, e.g., BCube

#### **TCAM Basic**



## **TCAM Based Source Routing**

#### **Incoming Packet**







# ServerSwitch API

- Switching chip management
  - User defined lookup key extraction
  - Forwarding table manipulation
  - Traffic statistics collection
- Examples:
  - SetUDLK(1, (B0-5))

  - ReadRegister(OUTPUT\_QUEUE\_BYTES\_PORT
    0)

#### Implementation



- Hardware
  - 4 GE external ports
  - x4 PCI-E to server
  - 2x10GE board-to-board interconnection
  - Cost: 400\$ in 80 pieces
  - Power consumption: 15.7W

- Software
  - Windows Server 2008 R2
  - Switching chip driver (2670 lines of C)
  - NIC driver (binary from Intel)
  - ServerSwitch driver (20719 lines of C)
  - User library (Based on Broadcom SDK)

# Example 1: BCube



- Self-defined packet header for BCube source routing
- Easy to program: Less than 200 LoC to program the switching chip

#### **BCube Experiment**



- ServerSwitch: wire-speed packet forwarding for 64B
- ServerSwitch: 15.6us forwarding latency, ~1/3 of software forwarding latency

#### Example 2: Quantized Congestion Notification



 Congestion notification generation requires very low latency

# **QCN** Experiment



Queue fluctuates around equilibrium point (Q\_EQ)

NSDI 2011, Boston, USA

# Limitations

- Only support modifications for standard protocols
  - Ethernet MACs, IP TTL, MPLS label
- Not suitable for low-latency, per-packet processing
  - XCP
- Limited number of ports and port speed
  - Cannot be directly used for fat-tree and VL2
  - 4 ServerSwitch cards form a 16-port ServerSwitch, still viable for prototyping fat-tree and VL2

# Summary

- ServerSwitch: integrating a high performance, limited programmable ASIC switching chip with a powerful, fully programmable server
  - Line-rate forwarding performance for various user-defined forwarding schemes
  - Support new signaling and congestion mechanisms
  - Enable in-network data processing
- Ongoing 10GE ServerSwitch

#### Thanks.



NSDI 2011, Boston, USA