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What is fair sharing?

100906 1 A

* n users want to share a resource (e.g. CPU)

- SOIUtiOn: 50%
Allocate each 1/n of the shared resource
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* Generalized by max-min fairness
— Handles if a user wants less than its fair share

— E.g. user 1 wants no more than 20% >

O%6 4
 Generalized by weighted max-min fairness 10096 —=

— Give weights to users according to importance
— User 1 gets weight 1, user 2 weight 2 50%
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Properties of max-min fairness

e Share guarantee
— Each user can get at least 1/n of the resource
— But will get less if her demand is less

e Strategy-proof
— Users are not better off by asking for more than they need
— Users have no reason to lie

e Max-min fairness is the only “reasonable” mechanism
with these two properties



Why care about fairness?

e Desirable properties of max-min fairness
— Isolation policy:

A user gets her fair share irrespective of the demands of
other users

— Flexibility separates mechanism from policy:
Proportional sharing, priority, reservation,...

* Many schedulers use max-min fairness
— Datacenters: Hadoop’s fair sched, capacity, Quincy
— OS: rr, prop sharing, lottery, linux cfs, ...
— Networking: wfq, wf2q, sfq, drr, csfq, ...



Why is max-min fairness not enough?

e Job scheduling in datacenters is not only
about CPUs

— Jobs consume CPU, memory, disk, and I/O

* Does this pose any challenge?



Heterogeneous Resource Demands
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Per task memory demand

2000-node Hadoop Cluster at Facebook (Oct 2010)
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Problem

100% =

Single resource example 50/
— 1 resource: CPU E
— User 1 wants <1 CPU> per task
— User 2 wants <3 CPU> per task

Multi-resource example

— 2 resources: CPUs & mem
— User 1 wants <1 CPU, 4 GB> per task

— User 2 wants <3 CPU, 1 GB> per task
— What’s a fair allocation?
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Problem definition

How to fairly share multiple resources when
users have heterogenous demands on them?
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Talk Outline

 What properties do we want?

e How do we solve it (DRF)?
e How would an economist solve this?

e How well does this work in practice?
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Model

e Users have tasks according to a demand vector
—e.g.<2,3, 1> user’s tasks need 2R, 3R,, 1 R,
— Not needed in practice, measure actual consumption

e Resources given in multiples of demand vectors

e Assume divisible resources
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A Natural Policy

e Asset Fairness

— Equalize each user’s sum of resource shares

e (Cluster with 70 CPUs, 70 GB RAM
— U, needs <2 CPU, 2 GB RAM> per task
— U, needs <1 CPU, 2 GB RAM> per task
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A Natural Policy

e Asset Fairness

— Equalize each user’s sum of resource shares

B User 1 [ ] User 2
™ 100%; -

-

Problem
User 1 has < 50% of both CPUs and RAM

Better off in a separate cluster with 50% of
\the resources

50%

. . (0]
e Asset fairness yields 0%:

— U,;: 15 tasks: (30 CPUs, 30 GBX>=60)

— U,: 20 tasks: 20 CPUs, 40 GB (>=60)
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Share Guarantee

e Every user should get 1/n of at least one
resource

e |ntuition:

— “You shouldn’t be worse off than if you ran your
own cluster with 1/n of the resources”
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Cheating the Scheduler

e Users willing to game the system to get more resources

e Real-life examples
— A cloud provider had quotas on map and reduce slots
Some users found out that the map-quota was low
— Users implemented maps in the reduce slots!

— A search company provided dedicated machines to users
that could ensure certain level of utilization (e.g. 80%)

— Users used busy-loops to inflate utllization
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Strategy-proofness

* A user should not be able to increase her
allocation by lying about her demand vector

e |ntuition:

— Users are incentivized to provide truthful resource
requirements
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Challenge

e Can we find a fair sharing policy that provides
— Strategy-proofness
— Share guarantee

 Max-min fairness for a single resource had
these properties

— Can we generalize max-min fairness to multiple
resources?
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Talk Outline

 What properties do we want?

e How do we solve it (DRF)?

* How would an economist solve this?

e How well does this work in practice?
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Dominant Resource Fairness

e A user’s dominant resource is the resource she
has the biggest share of

— Example:
Total resources: <10 CPU, 4 GB>
User 1’s allocation: <2 CPU, 1 GB>
Dominant resource is memory as 1/4 >2/10 (1/5)

e A user’sdominant share is the fraction of the
dominant resource she is allocated

— User 1’s dominant share is 25% (1/4)
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Dominant Resource Fairness (2)

e Apply max-min fairness to dominant shares
e Equalize the dominant share of the users

— Example:
Total resources: <9 CPU, 18 GB>
User 1 demand: <1 CPU, 4 GB> dom res: mem
User 2 demand: <3 CPU, 1 GB> dom res: CPU

f
100%
’ T 126B| [ user1

B User 2

CPU mem
(9 total) (18 total) 19



Online DRF Scheduler

Whenever there are available resources and tasks to run:

Schedule a task to the user with smallest dominant share

* Of(log n) time per decision using binary heaps
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Talk Outline

 What properties do we want?

e How do we solve it (DRF)?

* How would an economist solve this?

e How well does this work in practice?
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Why not use pricing?

 Approach
— Set prices for each good
— Let users buy what they want

* Problem

— How do we determine the right prices for different
goods?
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How would an economist solve it?

e Let the market determine the prices

e Competitive Equilibrium from Equal Incomes
(CEEI)

— Give each user 1/n of every resource
— Let users trade in a perfectly competitive market

* Not strategy-proof!
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DRF vs CEEI

e Userl:<1CPU, 4 GB> User 2:<3CPU, 1GB>
— DRF more fair, CEEl better utilization

Dominant Competitive
Resource Equilibrium from
Fairness _ "Equal Incomes

100% 4 100%

50% { i

0%

0% 1

alig@cs.berkeley.edu

24



DRF vs CEEI

e Userl:<1CPU, 4 GB> User 2:<3CPU, 1GB>
— DRF more fair, CEEl better utilization

Dominant Competitive Dominant Competitive
Resource Equilibrium from Resource Equilibrium from
_ Fairness _ "Equal Incomes _ Fairness _ - Equal Incomes
100% . 100% — 100% 100% e
: | 166% | user 1 : : 1 .
50% | © I 50% A HEELR [Juser2 % | %07
t oy [ P 66% $ : 1/
: : ] 0 :
o Sl 2 colfl
0% L% | L o0 L : I L oo L¥

CPU mem CPU mem CPU mem CPU mem

e Userl:<1CPU, 4 GB> User 2:<3CPU, 2 GB>

— User 2 increased her share of both CPU and memory
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Gaming Utilization-Optimal Schedulers

e Cluster with <100 CPU, 100 GB>
e 2 users, each demanding <1 CPU, 2 GB> per task

100%1

User 2

N
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Gaming Utilization-Optimal Schedulers

e Cluster with <100 CPU, 100 GB> N
e 2 users, each demanding <1 CPU, 2 GB> per task

100%1 100% 1
i : User 2
50%1---"- : 50%
' :50%
0% - 0% , .
CPU mem CPU mem

e User 1 lies and demands <2 CPU, 2 GB>

\ o Utilization-Optimal scheduler prefers user 1
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Example of DRF vs Asset vs CEEI

e Resources <1000 CPUs, 1000 GB>
e 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>

100%

50% -

0%

CPU Mem

a) DRF

100%

50% -

0%

CPU Mem

b) Asset Fairness

100%

0%

CPU Mem

c) CEEI

User A

- User B
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Properties of Policies

Property Asset CEEI DRF
Share guarantee v
Strategy-proofness
Pareto efficiency

Envy-freeness

SN XK KX

Single resource fairness

NN XXX

Bottleneck res. fairness

NN XKXKX

AN

Population monotonicity

Resource monotonicity




Talk Outline

 What properties do we want?
e How do we solve it (DRF)?

* How would an economist solve this?

e How well does this work in practice?
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Evaluation Methodology

 Micro-experiments on EC2

— Evaluate DRF’s dynamic behavior when demands change

— Compare DRF with current Hadoop scheduler

e Macro-benchmark through simulations

— Simulate Facebook trace with DRF and current Hadoop
scheduler
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DRF inside Mesos on EC2

Dominant
shares are
equalized
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DRF inside Mesos on EC2

Dominant resource
IS memory

User 1’s Shares

150 200

Dominant resource
is CPU

User 2’s Shares
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DRF inside Mesos on EC2

Dominant resource
is CPU
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How is fairness solved in datacenters today?

e Hadoop Fair Scheduler/capacity/Quincy
— Each machine consists of k slots (e.g. k=14)
— Run at most one task per slot
— Give jobs “equal” number of slots,
i.e., apply max-min fairness to slot-count

e This is what we compare against
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Jobs finished

Jobs finished

Experiment: DRF vs Slots

Number of Type 1 Jobs Finished

35
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Job completion

Job completion

time

time

Experiment: DRF vs Slots

Completion Time of Type 1 Jobs
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Completion Time Reduction
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Reduction in Job Completion Time

DRF vs slots
Simulation of 1-week Facebook traces
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Utilization of DRF vs slots

e Simulation of Facebook workload
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Conclusion

 DRF provides multiple-resource fairness in the
presence of heterogenous demand

— First generalization of max-min fairness to
multiple-resources

 DRF’s properties
— Share guarantee, at least 1/n of one resource
— Strategy-proofness, lying can only hurt you
— Performs better than current approaches
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Conjecture

 DRF is the only “reasonable” policy that satisfies
— Strategy-proofness
— Share guarantee
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Future Work

* How to pack tasks to get high utilization
e Use DRF as a OS scheduler

 DRF with placement constraints
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How do we know the demand vectors?

e They can be measured

— Look at actual resource consumption of a user

 They can be provided the by user
— What is done today

* In both cases, strategy-proofness incentivizes user to
consume resources wisely
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Appendix

* Auser U; has a bottleneck resource K;in an
allocation A iff R]- is saturated and all users

using R]- have a smaller (or equal) dominant
share than U,

e Max/min Theorem for DRF

— An allocation A is max/min fair iff every user has a
bottleneck resource
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Appendix 2

e Recall max/min fairness from networking

— Maximize the bandwidth of the minimum flow
[Bert92]

* Progressive filling (PF) algorithm
1. Allocate € to every flow until some link saturated

2. Freeze allocation of all flows on saturated link
and goto 1
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Appendix 3

e P1. Pareto Efficiency

e |t should not be possible to allocate more resources to any user
without hurting others

e P2. Single-resource fairness

e If thereis only one resource, it should be allocated according to
max/min fairness

e P3. Bottleneck fairness

e |f all users want most of one resource(s), that resource should
be shared according to max/min fairness
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Appendix C
Desirable Fairness Properties (3)

* Assume positive demands (D;;> 0 for all i and j)

e DRF will allocate same dominant share to all users

— As soon as PF saturates a resource, allocation frozen
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Appendix C
Datacenter Properties (1)

P4, Population Monotonicity
— |f a user leaves and relinquishes her resources,
no other user’s allocation should get hurt
— Can happen each time a job finishes

e CEEIl violates population monotonicity
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Appendix C
Datacenter Properties (2)

 DRF satisfies population monotonicity
— Assuming positive demands

— Intuitively DRF gives the same dominant share to
all users, so all users would be hurt contradicting
Pareto efficiency
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Appendix C
The unreachable

e Resource Monotonicity (RM)

— If a resource is increased, no user’s allocation will
decrease

 Impossible to satisfy together with Share
Guarante and Pareto Efficiency
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