Dominant Resource Fairness (DRF)
Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia
Benjamin Hindman, Andy Konwinski,
Scott Shenker, lon Stoica

University of California, Berkeley

alig@cs.berkeley.edu

What is fair sharing?

100906 1 A

* n users want to share a resource (e.g. CPU)

- SOIUtiOn: 50%
Allocate each 1/n of the shared resource

0%06- -

10096

* Generalized by max-min fairness
— Handles if a user wants less than its fair share

— E.g. user 1 wants no more than 20% >

O%6 4
 Generalized by weighted max-min fairness 10096 —=

— Give weights to users according to importance
— User 1 gets weight 1, user 2 weight 2 50%

alig@cs.berkeley.edu 0% 1

Properties of max-min fairness

e Share guarantee
— Each user can get at least 1/n of the resource
— But will get less if her demand is less

e Strategy-proof
— Users are not better off by asking for more than they need
— Users have no reason to lie

e Max-min fairness is the only “reasonable” mechanism
with these two properties

Why care about fairness?

e Desirable properties of max-min fairness
— Isolation policy:

A user gets her fair share irrespective of the demands of
other users

— Flexibility separates mechanism from policy:
Proportional sharing, priority, reservation,...

* Many schedulers use max-min fairness
— Datacenters: Hadoop’s fair sched, capacity, Quincy
— OS: rr, prop sharing, lottery, linux cfs, ...
— Networking: wfq, wf2q, sfq, drr, csfq, ...

Why is max-min fairness not enough?

e Job scheduling in datacenters is not only
about CPUs

— Jobs consume CPU, memory, disk, and I/O

* Does this pose any challenge?

Heterogeneous Resource Demands

Some tasks are o® Maps
CPU mtenswe UL) Reduces|-

Most task need ~ Some tasks are

"','—kl"':":i-"".
~ .,—:]! '
Q. Yo)9
L\ . , . ' - (_):
P B ' —t 1
h.® O HOR O~
il ol ¥ Tl T e ot
O @R O @S
e s =« :
L ar 1) |\ .__' B 1. 1
RSO o0 '
oY O :

Per task memory demand

2000-node Hadoop Cluster at Facebook (Oct 2010)

alig@cs.berkeley.edu

Problem

100% =

Single resource example 50/
— 1 resource: CPU E
— User 1 wants <1 CPU> per task
— User 2 wants <3 CPU> per task

Multi-resource example

— 2 resources: CPUs & mem
— User 1 wants <1 CPU, 4 GB> per task

— User 2 wants <3 CPU, 1 GB> per task
— What’s a fair allocation?

alig@cs.berkeley.edu 7

Problem definition

How to fairly share multiple resources when
users have heterogenous demands on them?

alig@cs.berkeley.edu

Talk Outline

 What properties do we want?

e How do we solve it (DRF)?
e How would an economist solve this?

e How well does this work in practice?

alig@cs.berkeley.edu

Model

e Users have tasks according to a demand vector
—e.g.<2,3, 1> user’s tasks need 2R, 3R,, 1 R,
— Not needed in practice, measure actual consumption

e Resources given in multiples of demand vectors

e Assume divisible resources

10

A Natural Policy

e Asset Fairness

— Equalize each user’s sum of resource shares

e (Cluster with 70 CPUs, 70 GB RAM
— U, needs <2 CPU, 2 GB RAM> per task
— U, needs <1 CPU, 2 GB RAM> per task

alig@cs.berkeley.edu

A Natural Policy

e Asset Fairness

— Equalize each user’s sum of resource shares

B User 1 [] User 2
™ 100%; -

-

Problem
User 1 has < 50% of both CPUs and RAM

Better off in a separate cluster with 50% of
\the resources

50%

. . (0]
e Asset fairness yields 0%:

— U,;: 15 tasks: (30 CPUs, 30 GBX>=60)

— U,: 20 tasks: 20 CPUs, 40 GB (>=60)

alig@cs.berkeley.edu

Share Guarantee

e Every user should get 1/n of at least one
resource

e |ntuition:

— “You shouldn’t be worse off than if you ran your
own cluster with 1/n of the resources”

alig@cs.berkeley.edu

13

Cheating the Scheduler

e Users willing to game the system to get more resources

e Real-life examples
— A cloud provider had quotas on map and reduce slots
Some users found out that the map-quota was low
— Users implemented maps in the reduce slots!

— A search company provided dedicated machines to users
that could ensure certain level of utilization (e.g. 80%)

— Users used busy-loops to inflate utllization

14

Strategy-proofness

* A user should not be able to increase her
allocation by lying about her demand vector

e |ntuition:

— Users are incentivized to provide truthful resource
requirements

alig@cs.berkeley.edu

15

Challenge

e Can we find a fair sharing policy that provides
— Strategy-proofness
— Share guarantee

 Max-min fairness for a single resource had
these properties

— Can we generalize max-min fairness to multiple
resources?

alig@cs.berkeley.edu

16

Talk Outline

 What properties do we want?

e How do we solve it (DRF)?

* How would an economist solve this?

e How well does this work in practice?

alig@cs.berkeley.edu 17

Dominant Resource Fairness

e A user’s dominant resource is the resource she
has the biggest share of

— Example:
Total resources: <10 CPU, 4 GB>
User 1’s allocation: <2 CPU, 1 GB>
Dominant resource is memory as 1/4 >2/10 (1/5)

e A user’sdominant share is the fraction of the
dominant resource she is allocated

— User 1’s dominant share is 25% (1/4)

18

Dominant Resource Fairness (2)

e Apply max-min fairness to dominant shares
e Equalize the dominant share of the users

— Example:
Total resources: <9 CPU, 18 GB>
User 1 demand: <1 CPU, 4 GB> dom res: mem
User 2 demand: <3 CPU, 1 GB> dom res: CPU

f
100%
’ T 126B| [user1

B User 2

CPU mem
(9 total) (18 total) 19

Online DRF Scheduler

Whenever there are available resources and tasks to run:

Schedule a task to the user with smallest dominant share

* Of(log n) time per decision using binary heaps

alig@cs.berkeley.edu 20

Talk Outline

 What properties do we want?

e How do we solve it (DRF)?

* How would an economist solve this?

e How well does this work in practice?

alig@cs.berkeley.edu 21

Why not use pricing?

 Approach
— Set prices for each good
— Let users buy what they want

* Problem

— How do we determine the right prices for different
goods?

22

How would an economist solve it?

e Let the market determine the prices

e Competitive Equilibrium from Equal Incomes
(CEEI)

— Give each user 1/n of every resource
— Let users trade in a perfectly competitive market

* Not strategy-proof!

alig@cs.berkeley.edu

23

DRF vs CEEI

e Userl:<1CPU, 4 GB> User 2:<3CPU, 1GB>
— DRF more fair, CEEl better utilization

Dominant Competitive
Resource Equilibrium from
Fairness _ "Equal Incomes

100% 4 100%

50% { i

0%

0% 1

alig@cs.berkeley.edu

24

DRF vs CEEI

e Userl:<1CPU, 4 GB> User 2:<3CPU, 1GB>
— DRF more fair, CEEl better utilization

Dominant Competitive Dominant Competitive
Resource Equilibrium from Resource Equilibrium from
_ Fairness _ "Equal Incomes _ Fairness _ - Equal Incomes
100% . 100% — 100% 100% e
: | 166% | user 1 : : 1 .
50% | © I 50% A HEELR [Juser2 % | %07
t oy [P 66% $: 1/
: :] 0 :
o Sl 2 colfl
0% L% | L o0 L : I L oo L¥

CPU mem CPU mem CPU mem CPU mem

e Userl:<1CPU, 4 GB> User 2:<3CPU, 2 GB>

— User 2 increased her share of both CPU and memory

alig@cs.berkeley.edu 25

Gaming Utilization-Optimal Schedulers

e Cluster with <100 CPU, 100 GB>
e 2 users, each demanding <1 CPU, 2 GB> per task

100%1

User 2

N

alig@cs.berkeley.edu

26

Gaming Utilization-Optimal Schedulers

e Cluster with <100 CPU, 100 GB> N
e 2 users, each demanding <1 CPU, 2 GB> per task

100%1 100% 1
i : User 2
50%1---"- : 50%
' :50%
0% - 0% , .
CPU mem CPU mem

e User 1 lies and demands <2 CPU, 2 GB>

\ o Utilization-Optimal scheduler prefers user 1

alig@cs.berkeley.edu

27

Example of DRF vs Asset vs CEEI

e Resources <1000 CPUs, 1000 GB>
e 2 users A: <2 CPU, 3 GB> and B: <5 CPU, 1 GB>

100%

50% -

0%

CPU Mem

a) DRF

100%

50% -

0%

CPU Mem

b) Asset Fairness

100%

0%

CPU Mem

c) CEEI

User A

- User B

28

Properties of Policies

Property Asset CEEI DRF
Share guarantee v
Strategy-proofness
Pareto efficiency

Envy-freeness

SN XK KX

Single resource fairness

NN XXX

Bottleneck res. fairness

NN XKXKX

AN

Population monotonicity

Resource monotonicity

Talk Outline

 What properties do we want?
e How do we solve it (DRF)?

* How would an economist solve this?

e How well does this work in practice?

alig@cs.berkeley.edu 30

Evaluation Methodology

 Micro-experiments on EC2

— Evaluate DRF’s dynamic behavior when demands change

— Compare DRF with current Hadoop scheduler

e Macro-benchmark through simulations

— Simulate Facebook trace with DRF and current Hadoop
scheduler

31

DRF inside Mesos on EC2

Dominant
shares are
equalized

08k o[== Job1cCPU

06\ T | = Job 1 Memory ||
0.4f et X User 1’s Shares
0.2 e T T e T T e
0.0 j j j
0 50 100 150 200
(a)
1.0 T)

=== Job 2 CPU
| = Job 2 Memory [

0 50 100 150 200
(b)

| |
0 50 100 150 200
Time (s5)
(c)

User 2’s Shares

Dominant Shares

DRF inside Mesos on EC2

Dominant resource
IS memory

User 1’s Shares

150 200

Dominant resource
is CPU

User 2’s Shares

== Job 2 CPU
| = Job 2 Memory [

150 200

Share guarantee:

. ..y= Job1l|
~70% dominant — Job2|]
share ' - Dominant Shares
D'DD SID 1IIZ'D 1I5[]' 200

Time (s)
(c)

DRF inside Mesos on EC2

Dominant resource
is CPU

Dominant resource
is CPU

Share guarantee:
~50% dominant
share

— Job 1 CPU

ser 1’s Shares

User 2’s Shares

== |ob 2 CPU

| = Job 2 Memory [

150

200

| |
100 150
Time (s)
(c)

Dominant Shares

How is fairness solved in datacenters today?

e Hadoop Fair Scheduler/capacity/Quincy
— Each machine consists of k slots (e.g. k=14)
— Run at most one task per slot
— Give jobs “equal” number of slots,
i.e., apply max-min fairness to slot-count

e This is what we compare against

35

Jobs finished

Jobs finished

Experiment: DRF vs Slots

Number of Type 1 Jobs Finished

35

33

30

100
80r
60f
40f
20f

0

DRF

4 slots

3 slots

17/

5 slots

Thrashing:

6 slots

Low utilization

DRF

4 slots

Type 1 jobs <2 CPU, 2 GB> Type 2 jobs <1 CPU, 0.5GB>

3 slots

Number of Type 2 Jobs Finished

91

5 slots

Thrashing

6 slots

Job completion

Job completion

time

time

Experiment: DRF vs Slots

Completion Time of Type 1 Jobs

200}
150! Thrashing
100}
65]2
50| ‘ \
0 DRF 3 slots 4 slots 5 slots 6 slots
Completlon Time of Type 2 Jobs
70} Low utilization
gg: hurts performance
40F 39 35
30 25
20}
10}
0 Di:{F 3 slots 4 slots 5 slots 6 slots

rashing

Type 1 job <2 CPU, 2 GB> Type 2 job <1 CPU, 0.5GB>

Completion Time Reduction
= N W A U1 O
O O O O O O O O

%

¢

Reduction in Job Completion Time

DRF vs slots
Simulation of 1-week Facebook traces

- 66% i
-3%
QO Q QO QO Q Q e
o) fxﬁg \:gj '\;LQ ‘&300 ‘&3(50 QQ‘\,
AN ,&QQ ,\;90 ,Lcj‘i') ,L¢)Q b)

Job Size (tasks)

alig@cs.berkeley.edu 38

Utilization of DRF vs slots

e Simulation of Facebook workload

—— DRF ||

: | . | — Slots|]
@ i i i i I

0'00 500 1000 1500 2000 2500
-
21.0
0 | A B A
= 82 """ .
> 0.4k b N b T ——
S 0.2l T T Nl j
& 0.0 : ; ; ; :
= 0 500 1000 1500 2000 2500

Time (s)

Conclusion

 DRF provides multiple-resource fairness in the
presence of heterogenous demand

— First generalization of max-min fairness to
multiple-resources

 DRF’s properties
— Share guarantee, at least 1/n of one resource
— Strategy-proofness, lying can only hurt you
— Performs better than current approaches

alig@cs.berkeley.edu

40

Conjecture

 DRF is the only “reasonable” policy that satisfies
— Strategy-proofness
— Share guarantee

41

Future Work

* How to pack tasks to get high utilization
e Use DRF as a OS scheduler

 DRF with placement constraints

42

How do we know the demand vectors?

e They can be measured

— Look at actual resource consumption of a user

 They can be provided the by user
— What is done today

* In both cases, strategy-proofness incentivizes user to
consume resources wisely

43

References

|Gree09] A. Greenberg, J. Hamilton, D. Maltz, P. Patel, "The
Cost of a Cloud: Research Problems in Data Center
Networks”, Sigcomm CCR 39:1, 2009

[Bert92] D. Bertsekas, R. Gallager, “Data Networks”,
Prentice Hall, 1992

[Varian74] H. Varian, “Equity, envy, and efficiency”, Journal
of Economic Theory 9(1):63-91, 1974

[Young94| H. Peyton Young, “Equity: in theory and
practise”, Princeton University, 1994

alig@cs.berkeley.edu 44

Appendix

* Auser U; has a bottleneck resource K;in an
allocation A iff R]- is saturated and all users

using R]- have a smaller (or equal) dominant
share than U,

e Max/min Theorem for DRF

— An allocation A is max/min fair iff every user has a
bottleneck resource

alig@cs.berkeley.edu 45

Appendix 2

e Recall max/min fairness from networking

— Maximize the bandwidth of the minimum flow
[Bert92]

* Progressive filling (PF) algorithm
1. Allocate € to every flow until some link saturated

2. Freeze allocation of all flows on saturated link
and goto 1

alig@cs.berkeley.edu

46

Appendix 3

e P1. Pareto Efficiency

e |t should not be possible to allocate more resources to any user
without hurting others

e P2. Single-resource fairness

e If thereis only one resource, it should be allocated according to
max/min fairness

e P3. Bottleneck fairness

e |f all users want most of one resource(s), that resource should
be shared according to max/min fairness

alig@cs.berkeley.edu

a7

Appendix C
Desirable Fairness Properties (3)

* Assume positive demands (D;;> 0 for all i and j)

e DRF will allocate same dominant share to all users

— As soon as PF saturates a resource, allocation frozen

alig@cs.berkeley.edu

48

Appendix C
Datacenter Properties (1)

P4, Population Monotonicity
— |f a user leaves and relinquishes her resources,
no other user’s allocation should get hurt
— Can happen each time a job finishes

e CEEIl violates population monotonicity

alig@cs.berkeley.edu

49

Appendix C
Datacenter Properties (2)

 DRF satisfies population monotonicity
— Assuming positive demands

— Intuitively DRF gives the same dominant share to
all users, so all users would be hurt contradicting
Pareto efficiency

alig@cs.berkeley.edu

50

Appendix C
The unreachable

e Resource Monotonicity (RM)

— If a resource is increased, no user’s allocation will
decrease

 Impossible to satisfy together with Share
Guarante and Pareto Efficiency

alig@cs.berkeley.edu

51

