
Dewdrop: An Energy-Aware Runtime for Computational RFID

Michael Buettner∗, Ben Greenstein† and David Wetherall∗†

University of Washington∗and Intel Labs Seattle†

Abstract

Computational RFID (CRFID) tags embed sensing and
computation into the physical world. The operation of
the tags is limited by the RF energy that can be harvested
from a nearby power source. We present a CRFID run-
time,Dewdrop, that makes effective use of the harvested
energy. Dewdrop treats iterative tasks as a scheduling
problem to balance task demands with available energy,
both of which vary over time. It adapts the start time
of the next task iteration to consistently run well over a
range of distances between tags and a power source, for
different numbers of tags in the vicinity, and for light
and heavy tasks. We have implementedDewdropon top
of the WISP CRFID tag. Our experiments show that,
compared to normal WISP operation,Dewdropdoubles
the operating range for heavy tasks and significantly in-
creases the task rate for tags receiving the least energy,
all without decreasing the rate in other situations. Using
offline testing, we find thatDewdropruns tasks at better
than 90% of the best rate possible.

1 Introduction

Computational RFID (CRFID) tags are an emerging
technology in which sensing and computational abilities
are added to traditional RFID tags. Passive UHF RFID
tags run and transmit an identifier using energy gathered
from the transmissions of nearby RFID readers; they are
very small and have no battery or long-term energy store.
This ability makes them widely useful in commercial set-
tings to, for example, automate interactions with pass-
ports and drivers licenses, identify animals, and track re-
tail goods in manufacturing and supply chains. The ad-
dition of sensing and computation with CRFIDs enables
a broader range of sensing applications, including cold-
chain monitoring, access control, embedded monitoring
of bridges and planes, gestural interfaces, activity recog-
nition, and non-intrusive physiological monitoring [2].
These and other applications depend on very small, long-
lived nodes that can be deeply embedded into the physi-
cal environment in ways that go beyond sensor nodes and
approach the original vision of “smart dust” [28].

The research agenda associated with CRFIDs is now
becoming defined as the community uses prototype tags
to experiment with applications [3, 6, 9]. A fundamental
problem for these devices is the efficient use of energy.

Energy is the scarce resource that limits the amount of
computation that can be performed because it must be
harvested at low rates from signals transmitted by readers
meters away. Further, to remain physically small and to
power-up quickly, CRFIDs have miniscule energy stores
compared to sensor network nodes. For example, the en-
ergy store of the WISP [24] prototype tag iseight or-
ders of magnitude smaller than the battery of the popu-
lar Telos sensor mote[18]. This means that CRFIDs will
typically exhaust and recharge their energy stores many
times a second. In turn, it means that runtimes for sensor
networks are of little use for CRFIDs. Sensor node run-
times seek to keep long-term expenditures below long-
term harvesting or to maximize node lifetimes measured
in days [14]. In contrast, CRFID runtimes must take a
short-term view to match lifetimes measured in millisec-
onds.

The problem we tackle in this paper is how CRFID
tags can make efficient use of the available energy. The
naive RFID power model on which CRFIDs are based
is for the tag to turn on and run whenever it is powered
by the reader. This approach works for traditional RFID
tags because tag functionality is very simple (a state ma-
chine with memory) and can be run in the worst case
at the limit of the energy harvesting range. However,
CRFID tasks consume greater energy with more compli-
cated tasks that use sensors and computation. By adopt-
ing the model of running whenever there is power, cur-
rent CRFID designs reduce the range at which a CRFID
tag functions and limit the kinds of tasks that can be run.
Prior work has looked at tuning the CRFID hardware
constants (e.g., capacitor sizes) to better match available
energy to a specific task [8]. Instead, our approach is
to view the need to match harvested energy to task con-
sumption as a scheduling problem. We wake the tag out
of deep sleep only when it is likely to execute a task ef-
ficiently. This enables devices to run a range of tasks
efficiently without requiring hardware modications.

We present the design and evaluation ofDewdrop, an
energy-aware runtime for CRFID tags. We have imple-
mentedDewdropon the Intel WISP tag, and have exper-
imented by powering the tags using a commodity Impinj
UHF RFID reader for a range of distances, number of
competing tags, and light and heavy CRFID tasks. By
waking tags at the right times, we find that we can run
tasks where they previously could not run, and about as
often as possible given the energy that the RF environ-
ment provides. Prior to our work, the WISP had an oper-

1



ating range sufficient for point demonstrations. With our
runtime, it is possible to use a single RFID reader to track
CRFID tags on everyday objects in a room with enough
responsiveness for activity inference.

While Dewdrop is conceptually simple, we found a
practical design difficult to achieve for several reasons.
First, the energy needed to run a task and the input RF
power both vary greatly over time due to factors such
as non-deterministic protocols and reader frequency hop-
ping. This hampers predictions of when to start the next
task execution. Second, our intuition about energy stor-
age as a simple reservoir proved wrong because a fixed
amount of energy is more or less expensive to store de-
pending on when it is gathered, and the rate at which
it is consumed depends on when it is spent. This leads
us to track other forms of waste. Finally, it is costly to
gather the basic information needed to make scheduling
decisions because CRFIDs are so energy impoverished.
This required opportunistic measurement strategies and
careful implementation.

We make three contributions. First, we formulate the
task scheduling problem for CRFID tags with limited en-
ergy storage. Second, we present the design of a runtime
that enables CRFID tags to adapt their behavior to best
match task energy requirements to available energy over
the factors that most affect efficiency. Third, we show by
experimentation with the WISP tag and an Impinj RFID
reader that our design is much more effective than prior
techniques for real energy costs and RF conditions.Dew-
drop doubles the operating range for heavyweight tasks
as compared to the WISP hardware that runs tasks when-
ever there is power, and keeps overhead low to match
the performance for lightweight tasks to which the WISP
hardware is well suited.

The rest of this paper is organized as follows. We
start with background in Section 2 and then define the
task scheduling problem for CRFIDs in Section 3. We
present the design ofDewdropand its implementation in
Sections 4 and 5. Our experimental evaluation is in Sec-
tion 6. We follow with related work in Section 7 and
conclude in Section 8.

2 Background

We begin with relevant background on computational
RFID because it is an emerging research area.

CRFID tags and the WISP.CRFID tags combine RFID
technology for energy harvesting and backscatter com-
munication with computation and sensing. The proto-
type CRFID tag that we use is the Intel Wireless Identi-
fication and Sensing Platform (WISP) [24]. Other pro-
totype CRFID tags exist [21, 30], but the WISP is the
most widely used because it is available to the academic

Figure 1: Gen 2 tag, Intel WISP, Telos mote.

community.1

Figure 1 shows the WISP in comparison to a Gen 2
UHF RFID tag and a Telos mote. Like an RFID tag, it is
small, thin, and battery-free. It runs only when powered
by energy harvested from an EPC Gen 2 RFID reader
and communicates with the reader using a low-energy
form of signaling called backscatter. The current WISP
can harvest sufficient power to operate at up to 4m. As
advances in processor and sensor technology continue to
reduce power consumption, the range of WISP tags will
increase accordingly.

Like a very low-end mote, the WISP is fully pro-
grammable, capable of running small programs, and
equipped with sensors. The WISP runs programs written
in C on an ultra-low power 16-bit MSP430 microcon-
troller and has 8K of flash memory, a 3D accelerometer,
and temperature and light sensors.

However, unlike an RFID tag, the WISP consumes
considerably more power when computing, communicat-
ing and sensing than can normally be harvested from the
reader signal. Consequently, the WISP must duty cycle
between a low-power sleep mode, in which the energy
needed to run is gathered into a short-term energy buffer,
and an active mode in which stored energy is consumed.

We expect future CRFID tags to be more capable
than the WISP, but to remain very-low end devices,
even compared to sensor nodes. As the power efficiency
of the devices improves slowly over time, so too will
the sensing and processing demands that are placed on
them; thus, the disparity between harvestable power and
operating power will remain.

CRFID Applications. CRFID tags and readers are en-
ablers for ubiquitous computing applications that benefit

1Seewisp.wikispaces.com for open-source WISP software
and hardware designs. WISPs are in use at more than 30 universities.

2



from instrumentation on or as part of objects in the phys-
ical world. For example, the WISP has been used to pro-
totype applications for gesture-based access control [6],
cold chain monitoring [29], and activity recognition for
eldercare [3].

We delve into the last scenario to give one example of
a workload thatDewdropis intended to support. The au-
tomatic recognition of the activities of elderly people can
improve quality of life by helping elders remain in their
own homes for longer with inexpensive care. It does this
by tracking key indicators of well-being such as medi-
cation adherence, mobility and exercise, food and water
intake, changes in routine, and safety [17]. The use of
CRFIDs for activity recognition can deliver a solution
that is inexpensive and non-intrusive. CRFIDs with ac-
celerometers can be affixed to objects in an elder’s home,
and data gathered from the tags can be used to determine
activity. This has advantages over existing solutions as
it requires neither monitoring by cameras, which can in-
vade privacy, nor on-body sensors, which can be incon-
venient for elders. Additionally, this type of deployment
would be difficult using motes because of their size and
cost.

In earlier work, we prototyped such a system by tag-
ging objects an elderly person normally interacts with—
her medicine cabinet, tea kettle, teacup, toothbrush,
etc.—with CRFIDs with onboard accelerometers [3].
RFID readers were placed out of sight in the ceiling.
Each CRFID repeatedly sampled its accelerometer and
transmitted its value to the readers. The readers detected
tags that moved by looking for changes in those values,
for instance, when a CRFID-tagged medicine bottle is
picked up. Activities such aspreparing a mealandtak-
ing medicinewere then inferred from sequences of object
use.

We built our earlier system using WISPs and found
that the system worked, albeit with a smaller coverage
region and lower response rates than we expected. This
meant that we needed to deploy multiple readers per
room, and even then some tags responded infrequently,
which degraded activity inference. After some investiga-
tion, we determined that the WISPs were wasting much
of the available energy. That discovery led to our work
onDewdrop.

3 Problem

Our goal is to run programs on CRFID tags in a way that
makes the best use of the available energy, which in turn
extends operational range and increases responsiveness.
In this section, we formulate this goal as a scheduling
problem and describe the key challenges.

Figure 2: Example message exchange of a reader identi-
fying a tag.

3.1 Task Model

In our setting, a reader powers one or more nearby tags
and requests that they perform tasks. Tags may come
and go from the range of a given reader as the RF envi-
ronment changes or the tag or reader moves. In keeping
with other CRFID and RFID applications, we assume
that each CRFID tag repeatedly executes a single fixed
operation as often as possible (e.g., reporting a sample),
but from time to time may be retasked to perform a differ-
ent operation (e.g., switch from sampling the accelerom-
eter to measuring the light level). Additionally, tags in
the deployment may be executing different tasks. As a
tag considers only one type of task at a time, scheduling
the order and execution of multiple tasks on a single tag
is both unnecessary and out of scope.

We define atask to mean a short program that is run
to completion without pause. While it may be possi-
ble to break some tasks into phases, the timing require-
ments of the tag hardware, the RFID protocol, and ap-
plication requirements make it impractical to interrupt
many tasks once they start. Due to the operating con-
straints of a tag, tasks are fairly inflexible and have lim-
ited functionality. They can support modest processing,
e.g., for lightweight encryption, but generally consist of
sensing and reporting operations. Even with this limited
task diversity, tasks have very different power require-
ments. For example, measuring the light level consumes
much less power than activating and sampling the ac-
celerometer. We experiment with examples at the lower
and higher ends of this spectrum later in the paper.

We assume that CRFID tags will be powered by a
standard Gen 2 RFID reader, at least in the near future.
This is likely, as it allows CRFID tags to take advan-
tage of deployed and commodity infrastructure. Tasks
often return a result to the reader. Contention between
the transmissions of multiple tags is managed by the EPC
Gen 2 MAC protocol [7] that is based on Framed Slot-
ted Aloha [25]. To gather tag IDs, the reader transmits
a Querycommand that indicates the number of slots in
the frame. Tags then randomly choose a slot in which to
reply, and transmit a 16-bit random number in their slot.

3



The readerACKsthis random number and the tag replies
with a 96-bit identifier. An example of this exchange is
shown in Figure 2, where no tag chooses the first two
slots, and one tag responds in the third slot. Tags that
collide in a slot are notACKed and respond again after
the nextQuery. The reader iteratively modifies the frame
size to best match the number of tags that are present.
Sensor and other data is transferred on top of this pro-
tocol, either by overloading the identifier bits or using
further commands that read and write tag memory. New
MAC protocols specially designed for CRFIDs are also
of interest, but we leave them to future work.

3.2 Task Scheduling Goal

Given that tags repetitively execute a task whenever pos-
sible and the reader power is not controlled by the tags,
maximizing energy efficiency is equivalent to maximiz-
ing the rate at which tasks successfully complete. We
use task completion rate, in terms of how many task it-
erations succeed over a given time period, as a metric to
evaluate the performance ofDewdropin the steady state.
Since energy falls off with distance (at least as quickly as
distance squared), we expect the completion rate to fall
with distance. But, it should not fall more quickly than
the available energy.

CRFID tags like the WISP collect the energy har-
vested from RF signals into a capacitor that matches
the fluctuating input power to the steady output power
needed to run the tag. Energy is harvested whenever a
nearby reader is transmitting an RF signal. Like an RFID
tag, the WISP hardware begins task execution whenever
a fixed, hardware-defined power level that is sufficient
to activate the tag is reached. Once a task iteration has
started, it may either run to completion or fail if the CR-
FID tag runs out of energy first. We use this fixed, hard-
ware approach as a baseline for comparison in our eval-
uation.

Dewdropreplaces the fixed, hardware approach with
an adaptive software strategy. There is only one decision
that a tag can make to improve energy efficiency: to defer
the start of a task it could otherwise begin, sleeping until
the energy store becomes more full. This is useful be-
cause the larger store of energy increases the chance that
the task will run to completion. However, it is waste-
ful in terms of time and energy if the task would have
succeeded anyway. The runtime’s job is to decide when
to run and when to sleep depending on the task and RF
environment.

3.3 Challenge: Varying Task Needs

A good runtime will not start a task unless there is
(likely) sufficient energy to complete it, as failing a

task consumes energy without doing useful work. Yet
whether a task will succeed is difficult to predict because
task energy requirements vary greatly due to two main
factors.

Different size tasks.The energy consumption of differ-
ent tasks can vary widely depending on the sensors they
use, the computation they perform, and their communi-
cation patterns. In our experiments, we consider a light
task that simply takes an accelerometer reading, and a
much heavier task that additionally uses the RFID com-
munication protocol to send the accelerometer data to the
reader by embedding it in the tag identifier. We refer to
these as the SENSEand SENSETX tasks, respectively.

Non-deterministic tasks. Tasks may be non-
deterministic, which causes their energy requirements to
vary from execution to execution. An important source
of non-determinism is the RFID MAC protocol. The
number of messages that a tag must process to commu-
nicate with the reader depends on both the number of
other tags present and the collisions that happen to oc-
cur. As a consequence of the way the protocol works, a
tag that chooses to take part in a communication round
must complete the transaction; it cannot sleep or it will
lose synchronization with the reader. Other sources of
non-determinism may come from sensor data itself, the
timing of reader queries (which a tag cannot control or
predict) or random numbers used in security protocols.

3.4 Challenge: Platform Inefficiencies

The variation in task energy requirements suggest that a
better strategy might be to overestimate the task needs.
For example, a tag could harvest energy until its buffer
is completely full before executing a task. In this way, it
would run with “a full tank” to avoid preventable failures
and top off between tasks. Unfortunately, storing excess
energy is wasteful due to platform characteristics.

Sublinear charging. CRFIDs use capacitors for energy
storage as they are well suited to energy harvesting de-
vices [12]. They charge quickly, recharge indefinitely,
are small and inexpensive, and are non-toxic. How-
ever, capacitors store energy faster when they are close to
empty than when nearly fully charged. This nonlinearity
is fundamental to the way capacitors work. As the ca-
pacitor voltage, which increases with increasing charge,
approaches the voltage supplied by the energy harvesting
circuitry, the charging current decreases to zero. Thus, to
increase the task rate, it makes sense to operate with a
lightly charged capacitor.

Superlinear discharge. Regulating circuitry must ad-
just the supplied (input or stored) voltage to the operat-
ing voltage. Differences in voltage levels inevitably lead
to some voltage-dependent conversion losses. For exam-

4



ple, the WISP uses a linear regulator that sheds the volt-
age difference by dissipating heat, which wastes energy.
Other techniques are possible but come with their own
tradeoffs (e.g., switching regulators are more efficient but
have greater leakage, don’t work when the input voltage
is near the target voltage, and are inefficient when they
start up2). To minimize energy wasted while discharg-
ing, the tag again should operate with its capacitor at a
minimal charge.

The exact inefficiencies will vary with the CRFID, but
we believe that all real platforms will have these kinds of
nonlinearities. The implication is that a quantum of en-
ergy may cost (or be worth) a different amount depend-
ing on when it is gathered (or spent), with excess energy
being more wasteful.

3.5 Challenge: Varying Input Power

Even assuming that the tag runtime could accurately esti-
mate tasks costs, it is difficult to know how long to sleep
to store sufficient energy because the rate at which a tag
harvests energy changes over time.

Widely varying input powers. RF power received at a
tag decreases at least as fast as the square of its distance
from the reader. In practice, this means that the available
energy varies by more than an order of magnitude over
useful ranges. Hardwiring tags to operate at the low end
of the power scale wastes a significant opportunity at the
high end of the scale, and restricting tags to operate at
the high end of the scale limits operational range. Ad-
ditionally, CRFIDs harvest energy even when the task is
being executed. When the tag is close to a reader less
energy will be drained from the energy store than when
further from the reader. Consequently, when close to the
reader, less energy needs to be stored before execution
can begin.

Frequency selective fading.RFID systems operate in
the 900MHz ISM band, so the reader must frequency
hop every 400ms to obey FCC regulations. Multipath ef-
fects result in different frequencies being attenuated dif-
ferently. This means that the received power at tags can
vary widely over short time scales.

4 Design

We now develop the design of our energy-aware runtime,
Dewdrop. The main scheduling decision is when to start
the next task iteration. Starting too soon wastes energy
when the tag runs out of power and the task fails. Start-
ing too late collects excess energy, which is inefficient
to both store and use. Our approach is to minimize both

2This and other parts and design tradeoffs make the linear regulator
the best choice for the WISP.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Distance (m)
1 1.5 2 2.5 3 3.5 4

D
ro

p 
in

 V
ol

ta
ge

Figure 3: Voltage drop forSENSETX (upper black items)
and SENSE(lower blue items).

forms of waste. As we develop our design, we present
microbenchmarks using the WISP to show the impor-
tance of the different factors we identified as challenges.

4.1 Design Goals

From our problem formulation, the overarching goal of
Dewdropis to convert all available energy into completed
task iterations. This goal is equivalent to two sub-goals
that help to enable new applications:

Increased range. We want our runtime to execute a
task at greater distances from the reader than the base-
line WISP hardware. Each task should work from next
to the reader out to the distance at which the tag can no
longer harvest enough energy for the task.

Improved responsiveness.At all distances, we want to
increase responsiveness compared to the baseline WISP
hardware. We never want to noticeably decrease respon-
siveness.

Both goals are met by maximizing the task completion
rate for a given task and distance from the reader. In
practice, achieving them implies that we must meet two
other goals:

Low overhead. The implementation ofDewdropmust
be extremely lightweight. Operations such as checking
the level of the energy store or calculating sleep periods
consume scarce energy. Even a modest amount of over-
head can easily negate the benefits of scheduling tasks.

Adaptation. Tags must operate well across a range of
deployment scenarios. For example, they may be config-
ured to run either heavy or lightweight tasks, and they
must run their task efficiently both when near and far
from a reader. Our performance sub-goals are stated
across these factors, soDewdropmust adapt to the en-
vironment at runtime.

5



4.2 Variation in Task Costs

To predict when to start a task,Dewdropmust estimate
how much energy the task will need over and above the
energy that will be harvested by the tag while it runs the
task. This depends on the factors we previously identi-
fied: the task itself, other tags competing for the medium,
the distance from the reader and the frequency on which
the reader is transmitting, and the amount of energy al-
ready in the capacitor. All of these factors are fundamen-
tal. However, they may differ in magnitude with implica-
tions for system design. For example, if the energy needs
depend mostly on the type of task, then each task could
be profiled offline to characterize its fixed energy need.

To understand how much these factors matter in
practice, we ran an experiment with the SENSE and
SENSETX tasks running on a WISP. For the WISP, the
energy consumption of a task can be measured by the
drop in the voltage of the capacitor that acts as a short-
term energy buffer3. Figure 3 shows this voltage drop as
a function of distance for the two tasks. Box plots show
the distributions over at least 300 task executions at each
distance.

The SENSEtask is deterministic. However, we see that
the voltage drop is significantly larger when the tag is far
from the reader than when it is close to the reader; it
more than triples. This is because the input power from
the reader varies by more than an order of magnitude. A
second effect is that the variance is larger when the task
is run close to the reader because the input power supple-
ments stored energy and varies with the reader transmit
frequency. At 1m this variance is approximately 0.3V
compared to 0.1V at 4m.

Looking at the SENSETX task, the drop in voltage is
almost three times larger than for SENSE. At 4m, the
WISP cannot store sufficient energy to execute the task4.
The variation is also higher at all distances because this
task is non-deterministic. Its energy consumption de-
pends on randomization in the Gen 2 MAC protocol, and
the variation would be even greater if there were multiple
WISPs (which we study as part of our evaluation).

These results imply thatDewdropshould adapt to both
the task and the environment in which the tag is operat-
ing. Any fixed energy target at which to start a task will
be either too low, causing the tag to fail at a distance
when it could still run, or too high, causing the tag to run
tasks more infrequently than it is capable of sustaining.
A second implication is that it is likely not feasible to
accurately estimate the energy needs of a particular task
execution due to inherent variation. Instead,Dewdrop

3The energy stored in a capacitor is calculated as1

2
CV 2, where C

is the capacitance and V is the measured voltage.
4To even run the task over a range of distances we needed to modify

the baseline WISP behavior.

0 200 400 600 800 1000
0

1

2

3

4

5

6

Time (ms)

V
ol

ta
ge

 

 

1 m
2 m
4 m

Figure 4: WISP capacitor voltage over time

must adapt an estimate of energy needs that captures the
effects of the distribution.

4.3 Minimizing Wasted Energy

Sources of waste.Energy is wasted when the CRFID tag
starts too early and fails to complete the task, or waits
too long and inefficiently collects excess energy. How
much energy is wasted in these cases depends on how
CRFID tags convert reader energy into harvested energy
and consume this energy.

To gain some insight, we performed a simple exper-
iment by charging a WISP without running any task.
Figure 4 shows the voltage of the WISP capacitor as it
charges at different distances. (The RF source powers on
at approximately 200 ms.) This is the expected behavior.
A capacitor’s charging rate decreases by a factor ofe ev-
eryRC seconds, whereR andC are the resistance and
capacitance of theRC circuit ande is the base of nat-
ural logarithms, and asymptotically approaches zero as
the capacitor charges to the voltage of the power source.

This charging behavior has two implications. First, it
shows the effects of distance. Far from the reader, the
low received power limits the maximum energy that can
be stored. At 4m the capacitor approaches only 2.75V,
while at 1m it rises quickly to 5.8V (at which point an
over-voltage protection circuit kicks in). This means
that heavy tasks will not run as far from the reader as
lightweight tasks no matter how long the tag sleeps.

The second implication is that, even for a fixed input
power, it is inefficient to charge to a higher voltage than
necessary. Because the rate at which energy accumulates
in a capacitor decreases exponentially as it charges, stor-
ing excess energy wastestime. There is a penalty for
charging too high and leaving spare energy in the capac-
itor. In a sense, that leftover energy was “cheaper” to
store. This effect is magnified by the linear regulator of
the WISP, which consumes more power when there is a
higher charge on the capacitor.

To capture these factors,Dewdropestimates waste in

6



terms of time. This directly accounts for the energy con-
sumed by a task, even if it fails, and also for how long it
took to store that energy. While the details will differ, all
platforms are likely to have nonlinearities with respect
to storing and consuming energy that make it useful to
measure waste in terms of time. For instance, capaci-
tors are the natural choice for short-term energy storage,
and all CRFIDs that use capacitors will have this kind of
inefficiency.

Balancing sources of waste.Intuitively, starting tasks
later, at a higher energy level, will decrease the time
wasted due to tasks failing but increase the time wasted
due to excess charging. Our goal is to minimize the total
wasted time due to both causes. Since the energy cost of
executing a task cannot be estimated precisely,Dewdrop
aims to reduce the expected wasted time in the follow-
ing manner. LetP (fail|Vs) be the probability that the
task will fail given a starting voltage levelVs. The run-
time’s job is to choose aVs in the range[V0, Vmax] that
minimizes the wasted time:

twasted(Vs) = P (fail|Vs)tunder

+ (1− P (fail|Vs))tover

wheretunder is the time to charge back toVs after a fail-
ure andtover is the time spent overcharging, i.e., the time
spent charging beyond the energy level that would have
been sufficient. Note that this implies that some rate of
failures may be desirable as charging high enough to as-
sure success incurs a penalty that accumulates on every
execution.

A naive approach to finding theVs that minimizes
wasted time would be to try every value ofVs. This is
impractical, as the tag would need to examine a suffi-
ciently long series of task execution attempts at eachVs

to determine which had the best performance. Further-
more, this search would need to be repeated periodically
as the RF environment and other factors change.

To avoid this search, we use our intuition that the two
kinds of wasted time tradeoff against each other to find an
approximate solution. LetPf be the current task failure
rate at a fixed starting voltageVs andTunder = Pf ∗
tunder andTover = (1−Pf )∗tover . If Tover >> Tunder,
then the runtime is too conservative; it could have chosen
a lowerVs. If Tunder >> Tover then it is being too
aggressive;Vs is too low and tasks are failing too often.

Dewdrop uses the heuristic that balancing the two
sources of waste tends to minimize overall wasted time;
this at least finds a reasonable operating point by ensur-
ing that neither factor is a major source of inefficiency.
Additionally, tracking and comparing the two sources
of wasted time requires minimal computation which is
key for any viable solution. The balance point can be
found by slowly updatingVs to tradeTunder against

Tover. To do this,Dewdropmaintains separate estimates
of Tunder andTover that are updated with an exponen-
tially weighted moving average (with parameterα) each
time a task executes depending on its success or failure.
The two estimates are then compared, and the energy
level Vs is adjusted byβ in the direction that will bal-
ance the averages. That is, it is increased if more time is
being wasted on failures than on charging too high.

More precisely, letVe be the voltage at the end of run-
ning a task, andV0 be the voltage at which the tag ceases
to operate, andǫ be a small voltage. A task succeeds if
and only ifVe ≥ V0 + ǫ. Dewdropcomputes estimates
and uses them to adjust the target energy level,Vs as fol-
lows:

Tover =

{

(1− α)Tover + αtover , if Ve ≥ V0 + ǫ

(1− α)Tover, if Ve < V0 + ǫ

Tunder =

{

(1− α)Tunder, if Ve ≥ V0 + ǫ

(1− α)Tunder + αtunder , if Ve < V0 + ǫ

Vs =

{

Vs − β, if Tover > Tunder

Vs + β, if Tunder > Tover

Of course, there are degenerate cases where this
heuristic will fail, e.g., tasks that exhibit bimodal energy
consumption where some executions consume a lot of
energy and some executions consume very little. But,
based on applications we have seen in the literature, our
approach is a good fit and has the benefit of being both
simple and efficient.

4.4 Charging to a Target Energy Level

Given a target energy level, the CRFID runtime must ar-
range for the task to begin execution when stored energy
reaches that target. The baseline WISP uses hardware
support in the form of a voltage supervisor to start exe-
cution when the capacitor voltage reaches a fixed level of
2V. Unfortunately, there are no designs for variable volt-
age supervisors that can be used in CRFIDs to the best of
our knowledge.

Instead,Dewdropuses a software polling approach to
determine when the target energy level has been reached
and execution should begin. It sleeps while energy is
being harvested, and occasionally wakes up to sample
the capacitor voltage using an analog to digital converter
(ADC). This is a general strategy that can be used on
most platforms regardless of how the target energy level
is determined.

However, polling is difficult to achieve at low cost be-
cause charge times can vary over orders of magnitude

7



and waking up and sampling the capacitor consumes pre-
cious energy. In our experiments with the WISP, we
found that reaching a given threshold can take less than
10ms or 100s of ms depending on the input power. This
variation, combined with the non-trival cost of waking
up to take a sample, means that polling at any fixed inter-
val is problematic. If the tag is close to the reader, a long
interval means that the tag will store excess energy and
miss opportunities to execute tasks. Conversely, if the
tag is far from the reader, it will accumulate energy very
gradually and pay a disproportionately greater overhead
if the interval is short.

To gather energy over a large range of input pow-
ers and target voltages,Dewdropuses an exponentially
adapted polling interval. Specifically, letVr be the volt-
age a tag has gained since it last woke up, andt be the
current sleep interval. Then,

tnext =











2t, if Vs − V > 2Vr

t/2, if Vs − V < Vr/2

t, otherwise.

This mechanism is very lightweight because it only
involves shift operations to scale the polling interval, not
multiply, divide, or floating point operations (which are
not likely to be available in hardware). In our evaluation
we find it to be responsive, sleeping for short amounts
of time at high input power, and to have low overhead,
gathering energy out to low input power levels.

5 Implementation

The WISP firmware is written in a mix of C and assem-
bly, for timing sensitive operations. The code can be
broken down into two main components: theDewdrop
runtime and task support. TheDewdropruntime code
must execute quickly and infrequently to reduce over-
head. Task support includes the Gen 2 RFID communi-
cation protocol, which requires tags to respond to reader
commands quickly, generally within 10s of microsec-
onds. This section describes our implementation of a
functioning prototype as it relates to these challenges.

5.1 WISP Hardware

The WISP draws approximately 600µA when the CPU
is in active mode and 1.5µA when in a state-preserving
sleep mode. By default, the WISP wakes up at a fixed
power level; a voltage supervisor waits for sufficient
power to operate (defined by its capacitor reaching 2V)
and then triggers a hardware interrupt to wake the de-
vice. We use the termHwFixedto refer to this hardware
method of waking up at a fixed voltage.Dewdropdis-

ables this mechanism and instead uses a timer interrupt
to wake the device.

The WISP stores energy in a 10µF capacitor and the
voltage of the capacitor can be sampled via its analog to
digital converter.5 If the voltage of the capacitor drops
below 1.5V, the WISP will black out and lose all state.
We found that the time to fully charge the capacitor var-
ied from 10s to 100s of milliseconds, depending on dis-
tance. Discharging a full capacitor to below 1.5V in the
absence of a reader signal takes 10s of ms when active,
but more than 8s when in sleep mode. Thus, the WISP
can carry state across relatively long periods of reader
inactivity by sleeping.

5.2 Dewdrop

Low power wake-up. Dewdropputs the WISP into a
deep sleep state for a specified period to gather energy,
and the CPU is woken up by the timer interrupt. The
process is repeated until the target wake-up voltage,Vs,
is reached. This approximates the behavior of a hard-
ware voltage supervisor, which wakes a device when a
specified voltage is reached, but allows us to varyVs. A
potential drawback to this approach is an increased cur-
rent draw due to keeping the crystal oscillator active to
drive the timer, but in practice this increase is acceptably
small (2µA vs 1.5µA with the crystal off).

Low cost voltage sampling.Dewdropchecks the capac-
itor voltage to see if enough energy has been stored to
warrant starting a task, and goes back to sleep if not. The
energy overhead of this polling approach is determined
by the polling interval and how long the WISP must be
awake for each sample. The per sample cost is directly
proportional to how long the WISP must stay in active
mode. Sampling the capacitor voltage should take 90µs
according to the MSP430 data sheet instructions for us-
ing the ADC. However, we found that ADC values stabi-
lized much faster—20µs including setup time—with suf-
ficient accuracy (10mV). This shorter awake time drasti-
cally reduced the cost of voltage sampling.

Calculating the energy storage rate. Dewdrop also
tracks how quickly energy is being stored, as it uses this
information to adapt the sleep period and to calculate
how much time is wasted overcharging. Our adaptive
sleep function generally results in a series of sleep peri-
ods, where the WISP wakes up and checks its voltage,
adjusts the sleep period, and returns to sleep. When a
task completes,Ve − Vo tells us how much energy is
leftover. We use the last period’s charging rate and the
average charging rate over all periods to estimate how
much time was wasted overcharging. When a task fails,

5A 10µF capacitor is a reasonable trade-off between charge time (a
smaller capacitor charges faster) and charge capacity.

8



Vs − Vo tells us how much energy was wasted. We use
the average charging rate to calculate the time wasted un-
dercharging.

5.3 Task Support

Order of operations. The computation and sensing
components of tasks must take place before or after com-
municating with the reader; the deadlines imposed by the
Gen 2 protocol are too tight to interleave task processing
and message handling. Therefore, in the SENSETX task,
for example, the WISP samples the sensor immediately
after waking up and then begins decoding reader com-
mands and waiting for the next Query.

Detecting task failures. To avoid blacking out and los-
ing state, the WISP needs to detect when task failures are
imminent and then quickly enter sleep mode. In other
words, if the voltage drops belowVo + ǫ (see Section 4),
the task must be aborted. In future hardware revisions of
the WISP, we would like to trigger an interrupt when a
minimumvoltage threshold is reached. In the meantime,
we approximate this behavior by manually inserting calls
to the voltage sampling function in the task code. We
found that anǫ of 0.15V was sufficient to protect against
blackout. That is, if any voltage sample measures below
1.65V, the WISP will sleep and record a task failure.

Sampling the voltage during the communication phase
proved difficult, but it was necessary because message
processing is a major factor in energy consumption. The
Gen 2 message timing constraints are such that the WISP
does not have time to take a sample between messages
without losing synchronization with the reader, even with
a sampling time of only 20µs. However, we found that
we could carefully schedule a voltage sample during the
preamble of every reader command, so long as the in-
spection of the sample was deferred until after the com-
mand was decoded. As the WISP must be in active mode
to accurately track the preamble, this approach amortizes
the cost of keeping the CPU active for decoding. This
strategy makes it possible for us to closely track the volt-
age of the capacitor at every reader command with es-
sentially zero overhead.

Randomness. The Gen 2 MAC protocol requires that
tags choose slots randomly. As a source of randomness,
we sample the voltage in the capacitor once immedi-
ately when the WISP first powers up, and use this value
as a seed for a pseudo-random number generator. The
variance in this voltage sample, due to input power and
noise in the ADC, gives us sufficient randomness. Alter-
natively, we could have used SRAM state as a random
source, with similar efficiency [11].

5.4 Monitoring Support

Monitoring WISP state and operation for debugging and
experimentation is difficult. Traditional methods for de-
bugging embedded systems, such as a JTAG connection,
would supply power to the WISP and change its behav-
ior. Instead, we use a custom monitoring board we devel-
oped for debugging WISPs [19]. The board communi-
cates with a PC via USB, attaches to the debug and other
output pins of the WISP, but does not add to or consume
energy harvested by the WISP. The monitor board can
also sample the voltage in the WISP’s capacitor. For our
study, we instrument the WISP to toggle debug pins at
key points in its operation, and the monitor board records
what event happened and immediately samples the WISP
capacitor to determine its voltage. This results in a trace
of WISP operations from which we can determine task
costs, and response rates even for tasks that do not com-
municate with the reader.

6 Evaluation

In this section, we evaluateDewdropexperimentally. We
show that our approach of balancing sources of waste
generally achieves 90% of the best possible response rate
for the SENSETX and SENSE tasks and across a wide
range of RF environments.Dewdrop improves perfor-
mance over the default WISP runtime, providing appli-
cations a benefit in terms of both improved coverage and
higher response rates.

6.1 Experimental Setup

Our experiments were conducted using an Impinj Speed-
way RFID reader that continuously transmits energy and
commands. This is the normal reader behavior. For ex-
periments involving a single tag, the WISP was placed on
a poster board 1m from the reader antenna and the out-
put power was variably attenuated from 30dBm (1 Watt),
the maximum allowed for “Gen 2” readers, to 18dBm.
This method increases repeatability by limiting the mul-
tipath effects that would occur if we moved the WISPs.
We present results in terms of an equivalent distance that
is calculated using free-space propagation, as we find
them to be more intuitive than results in terms of transmit
power.

In all experiments, we ranDewdropand the default
WISP hardware, which we callHwFixed, that starts tasks
at a fixed energy level of 2.0V.HwFixedprovides a base-
line for comparison. When possible, we also report re-
sults forOracleas the best result found from an exhaus-
tive offline search of starting energy levels (at which the
WISP wakes-up and starts a task) using 0.03V steps. We

9



1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

Distance (m)

T
as

k 
R

at
e 

(p
er

 s
ec

on
d)

 

 

Sense (Dewdrop)
Sense (HwFixed)
SenseTx (Dewdrop)
SenseTx (HwFixed)

Figure 5: Response rates when usingDewdropand the
HwFixedruntimes.

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Distance (m)

N
or

m
al

iz
ed

 T
as

k 
R

at
e

 

 

Sense (Dewdrop)
Sense (HwFixed)
SenseTx (Dewdrop)
SenseTx (HwFixed)

Figure 6: Response rates forDewdrop and HwFixed
compared to an oracle.

report results for both the SENSE and SENSETX tasks
described in Section 4.2.

To evaluate our approach in a realistic deployment,
complete with multipath effects, we deployed 11 WISPs
with accelerometers on a 1.2m x .75m table of a model
apartment at Intel Labs Seattle. This deployment is sim-
ilar to that seen in [3], though we only consider a single
workspace instead of the complete apartment. An RFID
reader was installed in the ceiling and equipped with
one antenna approximately 2m above the table point-
ing downwards. We configured the reader to run the
SENSETX task to gather samples continuously for one
minute. We performed three separate trials for each con-
figuration to allow for variability from both the RF envi-
ronment and communication protocol.

6.2 Using Energy More Effectively

Dewdrop performance. We first assess how wellDew-
dropperforms compared toHwFixedfor a single WISP.

Figure 5 compares the response rate of SENSE and
SENSETX when using the two runtimes.We find that
the performance ofDewdropconsistently matches or ex-
ceeds that ofHwFixed. For the light SENSEtask, the per-
formance ofDewdropclosely matches that ofHwFixed

1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

 

 

Wake−up Voltage

N
or

m
al

iz
ed

 T
as

k 
R

at
e

Sense (1.5 m)
Sense (3 m)
SenseTx (1.5 m)
SenseTx (3 m)

Figure 7: Response rates for both tasks at 1.5 and 3m.
X’s indicate the operating point found by forDewdrop.

2 2.2 2.4 2.6 2.8 3 3.2
0

0.2

0.4

0.6

0.8

1

Wake−up Voltage

N
or

m
al

iz
ed

 V
al

ue

 

 

Response Rate
Charge Waste
Fail Waste

Figure 8: Response rate and wasted time for SENSEand
SENSETX at 3m.

and actually performs better at 1m. This is because, at
close range, the received power supplements stored en-
ergy enough to allow an energy level 0.2V belowHw-
Fixed’s fixed value.

In the case of the heavier SENSETX task,Dewdrop’s
response rate decreases smoothly as reader power falls
to 3.5m.HwFixedfails to execute the task beyond 1.5m.
Dewdropadapts to the higher energy requirements of this
task, and stores more energy before beginning execution,
whereasHwFixeddoes not. This improvement more than
doubles the operating range of the tag.

To find an upper bound on how wellDewdropcould
work, we compare to theOracle results. Gathering this
test data takes hours and is thus not a candidate for a
practical CRFID runtime. Figure 6 again shows the re-
sponse rates for the two tasks when usingHwFixedand
Dewdrop, but the rates are normalized by the best rates
found using theOracle. We find thatDewdropgenerally
achieves better than 90% of the maximum rate seen by
Oraclefor both tasks.Interestingly,Oraclealways beat
HwFixed. This means that the fixed 2 V energy level was
never the best choice.

Evaluating Dewdrop’s choices. To understand why
Dewdropperforms well, we looked at the starting energy

10



1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

Distance (m)

C
ha

rg
e 

T
im

e 
(m

s)

 

 

Dewdrop
HwFixed
Fixed Period, 10 ms
Fixed Period, 100 ms

Figure 9: Charging time from 1.5V to 2V.

levels it selects.Dewdropmust choose starting energy
levels that are close to the best level found by theOracle
if it is to be efficient. To show that this is a non-trivial
task, Figure 7 shows examples of response rate versus
energy level curves. The figure is based on data from the
Oraclefor both tasks at 1.5 and 3m.

We see that the best starting energy level varies widely
for different tasks and at different distances. For SENSE,
the best energy level is 1.9V at 1.5m, when input power
close to the reader supplements stored power, and 2.1V
at 3m. Similarly, for SENSETX the best level varies from
2.5 to 3V over the same distance. These results empha-
size that no fixed threshold will work either for all tasks
or for all distances. For example, the best energy level
for SENSETX at 3m is 3V. This level achieves only 50%
of the maximum response rate for SENSE at the same
distance. It is even worse if the best level for SENSE at
3m is chosen, as SENSETX cannot execute the task even
once at 3m with an energy level of 2.1V.

The figure also shows the operating points found by
Dewdropmarked withXs. We see that our runtime finds
points very close to the best energy level despite the dif-
ferences between response curves.Across all of our data
the energy levels found byDewdropwere within 0.1V of
the best level found byOracle.

To see howDewdropselects a good starting energy
level, we looked at how it minimizes wasted time. We
calculated the average wasted time per task due to fail-
ing and due to charging too high. Figure 8 shows this
data, along with response rate, for an illustrative case of
SENSE and SENSETX at 3m. The data are normalized
by their maximum values. We see that as the starting
energy level increases, the average wasted time due to
failing generally decreases. (The waste is low at low
wake-up thresholds despite tasks failing a greater frac-
tion of attempts. This is because waste is computed in
terms of time spent charging, and at low wake-up thresh-
olds, very little time is spent charging.) Beyond 2.6V,
waste from failed tasks decreases, as the task fails less
often. Conversely, the wasted time from overcharging

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.005 0.01 0.02 0.04 0.08
Step Size (V)

T
as

k 
R

at
e

Figure 10: Effect of step size (β) on response rate for
SENSETX at 3.5m.

increases with the starting energy level because the en-
ergy is stored less efficiently at higher voltages.

Dewdrop seeks the intersection of the two waste
curves, and uses the corresponding energy level. This
appears to be a good strategy as the maximum response
rate in the figure occurs near the intersection. Moreover,
since the rates plateau around the maximum,Dewdrop
can miss its mark by a fairly wide margin (±0.1V), with-
out affecting performance significantly. Though the fig-
ure shows only a single example,we found the energy
level that equalized the two sources of waste generally
achieved better than 95% of the maximum rate for both
tasks at all distances.

Evaluating Dewdrop’s costs.
This section investigates two possible inefficiencies

in Dewdrop: the cost of our timer-based adaptive sleep
scheme, and the effect of our choice of step size for main-
taining the starting energy level. We show that both are
efficient, which is in keeping with our runtime perform-
ing almost as well as theOracle.

To be effective, our runtime must not appreciably in-
crease charging time. Figure 9 shows the median charg-
ing time from 1.5V to 2V forDewdrop’s adaptive sleep
mechanism, the hardware wake-up ofHwFixed, and
two strawman versions of our software controlled sleep
mechanism that use fixed sleep periods.

We find that, at all distances, our adaptive scheme
achieves a charge time within 5% of the charge time of
the hardware mechanism.Moreover, as expected, its per-
formance is good over a wider range of distances than
schemes that do not adapt their sleep periods. For ex-
ample, the fixed period of 100ms does well at 4m (1.3%
longer thanHwFixed), but performs poorly at close range
(600% longer thanHwFixedat 1m). Likewise, fixing the
period at 10ms works well at close range, but incurs sig-
nificant overhead farther away (32% at 4m).

The second potential source of inefficiency in our sys-
tem comes from our choice of step size (β) when seeking
the best starting energy level. InDewdrop, upward pres-

11



24252627282930
0

20

40

60

80

100

Transmit Power (dBm)

P
er

ce
nt

 o
f T

ag
s

 

 Dewdrop > 1
Dewdrop > 5
HwFixed > 1
HwFixed > 5

Figure 11: Percent of tags that have an average response
rate above 1/s and 5/s using the two runtimes.

sure on the level is only exerted after it drops fairly low
and tasks begin to fail; after failures, the starting energy
level rises until the cost of overcharging outweighs the
cost of failing. A smallβ increases the time it takes to
adapt to environmental changes, while a largerβ can re-
sult in large oscillations around the ideal wake-up thresh-
old.

Figure 10 shows the effect of different step sizes on
task rate for SENSETX at 3.5m. The average task rate per
second is calculated over a 10 second sliding window. As
step size increases, the task rates generally decrease and
vary more widely. A larger step size means thatDewdrop
increases/decreases its starting energy level too quickly,
resulting in significant over/undercharging. The reverse
then happens and the voltage is reduced by too much and
more tasks fail. We found that a step size of 0.01V gave
a good balance between damping oscillations in energy
level and quickly adapting to environmental changes.

6.3 Multiple Tag Evaluation

Next, we evaluateDewdrop in a realistic deployment
consisting of multiple tags. To support CRFID appli-
cations such as activity recognition, our runtime should
both increase the coverage region of the reader (e.g., so
that distant devices respond) and also increase the re-
sponse rates of the devices (e.g., so that object motion
can more accurately be tracked). We consider both of
these metrics for the 11 WISPs deployed in the model
apartment.

Coverage.The coverage goal is to have as many devices
as possible responding at a useful rate. Based on prior
experience, we define two useful rates: a rate of 1/s, as
is useful for low-rate object use detection; and a rate of
5/s, as is useful for higher-rate gestural recognition. To
characterize the coverage of the deployment, the transmit
power of the reader is reduced gradually to determine
the “headroom” (in dBm) tags have for a given level of

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Task Rate (per second)

C
D

F

 

 

Dewdrop, 30 dBm
HwFixed, 30 dBm
Dewdrop, 24 dBm
HwFixed, 24 dBm

Figure 12: CDF of response rates for the two runtimes as
power is reduced.

performance.6

We find thatDewdrophas much better coverage than
HwFixedbecause it enables tags to operate when much
less incoming power is available.Figure 11 shows the
percentage of tags with average response rates above 1/s
and 5/s when using the two runtimes. At 30dBm, all tags
with Dewdroprespond at least once per second as com-
pared to 64% withHwFixed. Coverage is better even
when tags withDewdropreceive one third the power of
tags withHwFixed(viz., 67% forDewdropat 25dBm vs
64% for HwFixedat 30dBm). Moreover, at a four-fold
reduction in power (24dBm), 42% respond withDew-
dropwhile none respond withHwFixed.

For a response rate of more than 5/s, the two runtimes
perform equally well at 30dBm. This is becauseHw-
Fixed works well when a tag receives good power from
the reader. However,HwFixed’s coverage decays much
more quickly with power than doesDewdrop’s coverage,
e.g., at 27dBmDewdrophas three times the coverage of
HwFixed.

Response Rates.Figure 12 shows the distribution of the
response rates of the tags when the reader is transmitting
at 30 and 24dBm. The rates are computed over one sec-
ond windows for both runtimes.We find thatDewdrop
consistently achieves higher rates, especially for the tags
receiving less energy;30% of the data points are zero
for HwFixed versus 5% forDewdrop. Dewdrop’s abil-
ity to achieve useful rates is even more apparent when
the reader transmits at 24dBm and tags are receiving one
fourth as much power.Dewdropobtains response rates
greater than once per second 30% of the time, as com-
pared to 2% withHwFixed. At 30dBm, Dewdropand
HwFixedachieve nearly the same rates for those tags that
receive the most energy; 25% of the data points are above
9/s, and median rates are 5/s and 3/s respectively.

6This “attenuation thresholding” technique [10], has been shown to
be more appropriate for characterizing RFID deployments than varying
distance due to the high sensitivity of RFID to multipath.

12



5 10 15 20 25
0

2

4

6

8

10

12

Number of Tags

T
as

k 
R

at
e 

(p
er

 s
ec

on
d)

 

 

Dewdrop
HwFixed

Figure 13: Response rate for the two runtimes as tag pop-
ulation size increases.

When more tags are present, the energy cost of com-
municating with the reader increases. This is because the
reader increases the number of slots it uses to limit the
likelihood of tag collisions, so CRFID tags must process
more messages before transmitting to the reader.

Figure 13 gives the performance for a single tag when
the reader transmits at 30dBm as additional tags are
added to the deployment. The performance ofHwFixed
rapidly decreases with the number of tags. This is be-
cause the number of slots is increasing, and a tag cannot
remain powered when it chooses a later slot. In contrast,
Dewdrop simply increases its starting energy level to
accommodate the additional communication overhead.
With one tag, it wakes up around 2.5V whereas with 25
tags it wakes up closer to 3V. The result is thatDewdrop
provides nearly three times the response rate asHwFixed
when 25 tags are present.

7 Related Work

There has been significant work on building energy har-
vesting systems for sensor networks [27, 12, 1]. This
work considers solar cells, but some conclusions ap-
ply equally to CRFIDs, e.g., [12] finds that capacitors
should be used as the primary buffer to tolerate rapid
charge/discharge cycles. In [26, 13, 15], the schedul-
ing problem for energy harvesting devices is considered.
The scheduling problem for these systems differs signifi-
cantly from CRIFDs as they manage tasks and harvested
power on the order of days, attempt to extend lifetime to
months, and have no penalty for storing excess energy.
In contrast, Dewdrop must store sufficient energy for a
single task execution, and tolerate input power variations
on the order of milliseconds in a context where every op-
eration consumes precious energy.

Power management for CRFIDs has generally fallen
into two categories; supplying additional energy and
maintaining state information across power losses. Al-
ternative methods of powering devices have been ex-

plored [16], with [5, 23] proposing solar cells and TV
transmitters for CRFIDs. These approaches provide 10’s
of µW of supplemental power, an order of magnitude be-
low the requirements of current CRIFDs, so energy still
must be used efficiently.

In [20], the authors use offline profiling to estimate
when state should be saved on the WISP, or transmitted
to the reader [22], due to impending depletion of the en-
ergy store. We found that simply entering low power
sleep mode is an effective way to maintain state, and
it avoids the cost of writing to flash or transmitting to
the reader in scenarios where the reader does not power
off for long periods of time. In [8] the authors use of-
fline modeling to help determine the appropriate capaci-
tor size for a device designed to execute a particular task.
While hardware modifications are necessary for tasks
with dramatically different energy requirements,Dew-
drop enables a wider range of tasks to be executed ef-
ficiently for any given energy store.

The WISP has been used to demonstrate power inten-
sive applications that would benefit from our approach.
RC5 cryptographic primitives were implemented in [4],
and both cryptography and sensors have been used to in-
crease the security of implantable medical devices [9],
and credit cards [6]. For these applications, the energy
requirements were far beyond what could be provided at
range, and the studies were done using the WISP at close
range. Dewdrop aims to enable such applications to op-
erate more effectively at greater range.

8 Conclusion

We presented a runtime for CRFID tags that makes ef-
ficient use of the scarce available energy. Our runtime,
Dewdrop, adapts a tag’s duty cycle to match the har-
vested power to the sensing and computation cost of
tasks. To do this, it estimates the time wasted by over-
charging and by underestimating task needs, and uses the
result to choose how much energy to buffer before start-
ing a task. Using an implementation built on the WISP
tag and a commodity RFID reader, we showed thatDew-
drop runs tasks where prior techniques could not, and
runs them at better than 90% of the best rate found by
offline testing across a range of input powers, competing
tags, and light and heavy tasks.Dewdrop’s adaptation
effectively doubled the distance at which a tag executes
tasks, which enables practical deployments. In an instru-
mented living space, all tags responded at useful rate to a
single reader in the ceiling as compared to only 64% with
fixed buffering. At over twice the distance (one quarter
the transmission power), 42% of the tags still responded
with Dewdropwhile none responded with fixed buffer-
ing. We believe these performance levels bring us close
to realizing a wide range of realistic CRFID applications.

13



9 Acknowledgments

We thank the anonymous reviewers and our shepherd, Ja-
son Flinn, for their helpful feedback. We would also like
to acknowledge the invaluable assistance of Josh Smith
and Alanson Sample in helping us understand the design
and operation of the WISP. This work was supported in
part by NSF award #1016487.

References

[1] D. Brunelli, L. Benini, C. Moser, and L. Thiele. An efficient solar
energy harvester for wireless sensor nodes. InDATE, 2008.

[2] M. Buettner et al. Revisiting smart dust with RFID sensornet-
works. InHotNets, 2008.

[3] M. Buettner et al. Recognizing daily activities with RFID-based
sensors. InUbicomp, 2009.

[4] H. J. Chae et al. Maximalist cryptography and computation on
the WISP UHF RFID tag. InRFID Security, 2007.

[5] S. S. Clark et al. Towards autonomously-powered CRFIDs.In
HotPower, 2009.

[6] A. Czeskis et al. RFIDs and secret handshakes: Defend-
ing against ghost-and-leech attacks and unauthorized reads with
context-aware communications. InCCS, 2008.

[7] EPCglobal. EPC radio-frequency identity protocols class-1
generation-2 UHF RFID protocol for communications at 860
mhz-960 mhz version 1.0.9. 2005.

[8] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the limits
of effective micro-energy harvesting on mobile CRFID sensors.
In MobiSys, 2010.

[9] D. Halperin et al. Pacemakers and implantable cardiac defibril-
lators: Software radio attacks and zero-power defenses. InIEEE
Symposium on Security and Privacy, 2008.

[10] S. Hodges et al. Assessing and optimizing the range of UHF
RFID to enable real-world pervasive computing applications. In
Pervasive Computing. Springer-Verlag, 2007.

[11] D. E. Holcomb et al. Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. InRFID Security,
2007.

[12] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally
powered sensor networks. InIPSN, 2005.

[13] A. Kansal et al. Power management in energy harvesting sensor
networks. InACM Transactions on Embedded Computing Sys-
tems, 2006.

[14] A. Mainwaring et al. Wireless sensor networks for habitat moni-
toring. InWSNA, 2002.

[15] C. Moser, D. Brunelli, L. Thiele, and L. Benini. Real-time
scheduling for energy harvesting sensor nodes.Real-Time Sys-
tems., 2007.

[16] J. A. Paradiso and T. Starner. Energy scavenging for mobile and
wireless electronics.IEEE Pervasive Computing, 2005.

[17] M. Philipose et al. Inferring activities from interactions with ob-
jects. IEEE Pervasive Computing, 2004.

[18] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling Ultra-
Low Power Wireless Research. InIPSN/SPOTS, 2005.

[19] R. Prasad, M. Buettner, B. Greenstein, and D. Wetherall. Wisp
monitoring and debugging. InWirelessly Powered Sensor Net-
works and Computational RFID (to appear). Springer, 2011.

[20] B. Ransford et al. Getting things done on computationalRFIDs
with energy-aware checkpointing and voltage-aware scheduling.
In HotPower, 2008.

[21] M. Reynolds and S. Thomas. The blue devil wisp: Expanding
the frontiers of the passive RFID physical layer.WISP Summit
Workshop, 2009.

[22] M. Salajegheh et al. CCCP: Secure remote storage for computa-
tional RFIDs. InUSENIX Security, 2009.

[23] A. Sample et al. Experimental results with two wirelesspower
transfer systems. InIEEE Radio and Wireless Symposium, 2009.

[24] A. P. Sample et al. Design of an rfid-based battery-free pro-
grammable sensing platform. InIEEE Transactions on Instru-
mentation and Measurement, 2008.

[25] F. Schoute. Dynamic frame length aloha.IEEE Transaction on
Communications, 1983.

[26] J. Sorber et al. Eon: A Language and Runtime System for Per-
petual Systems. InSENSYS, 2007.

[27] J. Taneja, J. Jeong, and D. Culler. Design, modeling, and capacity
planning for micro-solar power sensor networks. InIPSN, 2008.

[28] B. Warneke, M. Last, B. Liebowitz, and K. S. Pister. Smart dust:
Communicating with a cubic-millimeter computer.Computer,
2001.

[29] D. Yeager, P. Powledge, R. Prasad, D. Wetherall, and J. Smith.
Wirelessly-charged UHF tags for sensor data collection. InIEEE
RFID, 2008.

[30] D. Yeager, F. Zhang, A. Zarrasvand, and B. Otis. A 9.2a gen 2
compatible UHF RFID sensing tag with -12dbm sensitivity and
1.25vrms input-referred noise floor.ISSCC, 2010.

14


