
Copyright(C)2007 NTT Open Source Software Center 1

Reinitialization of devices Reinitialization of devices
after a soft-rebootafter a soft-reboot

2007/2/12

NTT Open Source Software Center
Fernando Luis Vázquez Cao

Copyright(C)2007 NTT Open Source Software Center 2

Agenda

1. Kexec/kdump reboot

2. Device reinitialization

3. Tackling device reinitialization

4. Device configuration restore

11 kexec/kdump rebootkexec/kdump reboot

Copyright(C)2007 NTT Open Source Software Center 3

Copyright(C)2007 NTT Open Source Software Center 4

1.1. Standard boot process

hardware stage

working

power on

firmware stage

boot loader

kernel stage

machine shutdown

re
bo

ot

shutdown -r

device shutdown

HW reset

Copyright(C)2007 NTT Open Source Software Center 5

1.2. Kexec boot process

hardware stage

working

power on

firmware stage

boot loader

kernel stage

machine shutdown

kexec

working

kernel stage

fi r
st

 k
e r

n e
l

se
c o

n
d

k e
rn

el

device shutdown

HW reset

Copyright(C)2007 NTT Open Source Software Center 6

1.3. Kdump boot process

hardware stage

working

power on

firmware stage

boot loader

kernel stage

working

kernel stage

crash

 minimal machine shutdown

se
c o

n d
 k

e r
n

el

fir
st

 k
e r

ne
l

HW reset

22 device reinitializationdevice reinitialization

Copyright(C)2007 NTT Open Source Software Center 7

Copyright(C)2007 NTT Open Source Software Center 8

2.1. Device reinitialization issue

State of devices after a kdump boot is unknown

➢ The first kernel and what it knows is unreliable
✗ No device shutdown in the crashing kernel

➢ Firmware stage of the boot process is skipped
✗ Devices are not reset

Consequences

➢ Devices may be operational or in an unstable state

Kexec is also vulnerable when the first kernel's
shutdown functions do not do their job properly

Copyright(C)2007 NTT Open Source Software Center 9

2.2. Invalid assumptions

Drivers (implicitly) assume that the devices have
been reset and/or that some pre-initialization has
been performed during the firmware stage

➢ Drivers find devices in an unexpected state or receive
a message generated from the context of the previous
kernel
✗ This is an anomalous situation so the kernel panics

or raises an oops

33 tackling device tackling device
reinitializationreinitialization

Copyright(C)2007 NTT Open Source Software Center 10

Copyright(C)2007 NTT Open Source Software Center 11

3.1. Tackling device reinitialization

hardware stage

working

power on

firmware stage

boot loader

kernel stage

 minimal machine shutdown

working

?

crash

kernel stagefi r
st

 k
e r

n
el

s e
c o

n
d

k e
rn

el

 minimal machine shutdown

HW reset

Copyright(C)2007 NTT Open Source Software Center 12

3.2. Possible solutions

Create a black list of drivers that are known to
have problems (use a white list instead?)

Device/bus reset

Driver hardening to be able to initialize in
potentially unreliable environments

➢ Device configuration restore

Copyright(C)2007 NTT Open Source Software Center 13

3.3. Requirements

Notify the second kernel that it is booting in a
potentially unstable environment (use kernel
parameter reset_devices)

If needed, use the mechanisms offered by kexec
to pass information between the first and the
second kernel

Implement the necessary solutions keeping the
linux device model in mind

Copyright(C)2007 NTT Open Source Software Center 14

3.4. Device reset

Two possibilities

➢ Bus level reset (PCI, etc): need new bus_type
method?

➢ Per-device soft reset: call a device driver specific reset
function from the device driver probe?

Problems

➢ Individual device soft-reset
✗ Not all devices have this capability
✗ It is a time-consuming operation in some devices

➢ Bus level reset
✗ Reset functionality not supported by all buses

Copyright(C)2007 NTT Open Source Software Center 15

3.5. Driver hardening

Things that can be done to initialize a device in
an unreliable environment

➢ Add hacks to the initialization code

➢ Relax driver's consistency checks

➢ Put devices into a good known state before proceeding
with the standard initialization process (device
configuration restore)

44 device configuration device configuration
restorerestore

Copyright(C)2007 NTT Open Source Software Center 16

Copyright(C)2007 NTT Open Source Software Center 17

4.1. Device configuration restore

How do we know what the right configuration
is?

➢ Documentation available: follow the instructions

➢ No documentation available: need to find out a good
configuration

During a normal boot the firmware performs part
of the configuration and the driver does the rest

➢ Need an infrastructure in the second kernel doing the
job the firmware usually does for us during a regular
boot

Copyright(C)2007 NTT Open Source Software Center 18

4.2. Device configuration restoration

Save/restore device configuration

➢ Save the configuration as performed by the firmware
in the first kernel: add new save_early_state
method to bus_type, device_driver and
class structures?

➢ In the event of a crash notify and pass this information
to second kernel (basic infrastructure exists in kexec)

➢ Use this information to pre-configure devices
✗ This simulates the work done by the firmware
✗ Can we reuse the PM resume method? Use a new

one instead (preinit for example)?

➢ Proceed with the standard initialization

Copyright(C)2007 NTT Open Source Software Center 19

4.3. Tackling device reinitialization

hardware stage

working

power on

firmware stage

boot loader

kernel stage

 minimal machine shutdown
working

device reset/restore

crash

kernel stage

fi r
s t

 k
e r

n e
l

s e
c o

n
d

k e
rn

el

struct device_driver {

 int (*probe)(...);
 void (*remove)(...);
 void (*shutdown)(...);
 int (*suspend)(...);
 int (*resume)(...);
 int (*save_state)(...);
 int (*preinit)(...);
};

- reset_devices
- saved states

Copyright(C)2007 NTT Open Source Software Center 20

4.4. Kdump internals

1. crash detection:
kdump takes control of
the system

3. crash dump capture:
performed by the dump
capture kernel, which runs
from a reserved area

dump capture kernel

backup region
parameter segment

purgatory

crash_kexec

2. minimal machine
shutdown: stop CPUs,
APICs, etc

Reserved memory areaHost kernel text and data

crash

host kernel
1

dump

2

3

In-kernel machine shutdown

reserved area not
affected by a crash

Copyright(C)2007 NTT Open Source Software Center 21

la fin

Thanks for your attentionThanks for your attention

Contact:Contact: fernando@oss.ntt.co.jpfernando@oss.ntt.co.jp

mailto:fernando@oss.ntt.co.jp

