
The 10 Commandments of
Release Engineering

Dinah McNutt
Google, Inc.

Overview

This talk is really about "Build & Release", not just
"Release"

Focus is on server-side software

The commandments are solutions to requirements

Ideas apply to software products for both internal and
external customers

Ideas presented are my own, not necessarily Google's

Background

Release processes are usually an afterthought

Most build systems do the minimum required to "get it done"

Release processes should be treated as products in their
own right

There is often a big disjoint between the developer writing
the code and the system admin who installs it

Build & Release Steps

 Check out the code from the source code repository

Compile and/or process the code

Package the results

Analyze the results of each step and report accordingly

Perform post-build tests based on the results of the analysis
step

Build & Release Process Features

Repeatable

Tracking of changes and the ability to understand what is in
a new version of the product or product component

An identification mechanism (e.g. build ID) that uniquely
identifies what is contained in a package or product

Implementation and enforcement of policy and procedures

Management of upgrades and patch releases

I - Thou shalt use a source code
control system.

Everything needed to build should be under source control

source code
build files
build tools

 Repeatability is a virtue.

Reproducible Build Environment

Operating System

Compilers

Build tools

II - Thou shalt use the right tool(s) for
the job.

Complex projects may require multiple build tools

Examples:

make for C and C++ - the dependency checking is crucial

ant for java

scripting languages (bash, python, etc.)

Unnecessary complexity is a sin.

III - Thou shalt write portable and low-
maintenance build files

Plan to support multiple architectures and OS versions

Use centralized Makefiles for definitions common to
Makefiles

Compiler options will change between architectures
Editing hundreds of files for a single change is no fun

Provide template files so developers can easily create new
build files

IV - Thou shalt use a build process that
is repeatable

And automated...
And unattended...
And repeatable...

 Identify your customers:
QA
Developers
Management
External customers

Leverage open source tools like Hudson and Cruise
Control

 Adopt a continuous build policy

V - Thou shalt use a unique build ID

Generated at build time

Should provide enough information so the build can be
uniquely identified and reproduced

 Examples:

Date
Repository revision
Release version

Should be easily obtainable

Included in packaging
Embedded in binaries

VI - Thou shalt use a package manager

Auditing

Installation/upgrade/removal

Package summary (who, what, when, etc.)

Manifest (ok, tar -tf gives you that.)

Can leverage installation/upgrade/removal capabilities

Built-in version tracking

tar is not a package manager...

VII - Thou shalt design an upgrade
process before releasing version 1.0
Packaging decisions can affect the ability to upgrade

VIII - Thou shalt provide a detailed log
of what thou hath done to my machine

Installing/Patching/Upgrading/Removing the software
should provide a detailed log of what is happening

Ideally there should be a "do nothing" option so I can see
what is going to happen first

IX - Thou shalt provide a complete
install/upgrade/patch/uninstall process

X - System Admin: Thou shalt apply
these laws to thyself

All of these commandments can be applied to system
customizations

