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Abstract

The Akamai platform is a network of over 73,000 servers
supporting numerous web infrastructure services includ-
ing the distribution of static and dynamic HTTP con-
tent, delivery of live and on-demand streaming media,
high-availability storage, accelerated web applications,
and intelligent routing. The maintenance of such a net-
work requires significant monitoring infrastructure to en-
able detailed understanding of its state at all times. For
that purpose, Akamai has developed and usesQuery, a
distributed monitoring system in which all Akamai ma-
chines participate. Query collects data at the edges of
the Internet and aggregates it at several hundred places
to be used to answer SQL queries about the state of the
Akamai network. We explain the design of Query, out-
line some of its critical features, discuss who some of
its users are and what Query allows them to do, and ex-
plain how Query scales to meet demand as the Akamai
network grows.

1 Introduction

Akamai’s edge network is a distributed computing plat-
form with over 73,000 servers in 70 countries in about
1,000 autonomous systems, which on any given day may
handle upwards of 20% of Internet traffic. Akamai pro-
vides multiple services including the delivery of static
and dynamic HTTP content and live and on-demand me-
dia streams, reliable storage, Web and IP application
acceleration, and DNS services; see [15] for a recent
overview. Each Akamai server runs multiple applica-
tions, constructed out of multiple components, and po-
tentially participates in providing more than one of these
services. Thus, Akamai’s edge platform consists of over
1 million distributed software components.

The Akamai network supports customer businesses
that run twenty-four hours a day, seven days a week. In
many cases outages of even a short period of time can

cause substantial business impact. The need for reliable
real-time monitoring of the state of our network, there-
fore, is critical.

Query is a near real-time monitoring system, devel-
oped in-house, that monitors the Akamai network to pro-
vide up-to-date information about its state. It is used by
automated applications to detect problems and measure
performance over time, by software engineers to ensure
their systems are behaving properly in the field, by oper-
ations staff to troubleshoot problems and ensure that the
network is properly configured, and by services that pro-
vide data to customers. Information from Query is pro-
vided through a SQL interface, allowing users a familiar,
precise way of specifying the information they need.

The Akamai network is divided into several thousand
clustersall over the world at the edges of the Internet. It
is in those clusters that Query begins collecting data. Ev-
ery Akamai machine runs Query, and any software com-
ponent on any machine can send data to the local Query
instance to be published into database tables. Some sub-
set of the machines in each cluster are designated as
Cluster Proxieswho also have the job of collecting all the
data from their respective clusters. Each Cluster Proxy
takes all the tables it receives from machines in its clus-
ter and combines them into larger tables.

Query is partly distributed and partly centralized. The
collection of data in thousands of clusters all over the
world is fully distributed, but that data need to be aggre-
gated to allow the issuing of SQL queries about the en-
tire Akamai network. A set of a few hundred machines,
calledTop-Level Aggregators (TLAs)collects data from
the cluster proxies and combines data from all the clus-
ters into larger tables. Because it takes all the resources
available to most TLAs just to talk to all those clusters
and combine their data, TLAs don’t have enough pro-
cessing time left to also answer queries. Therefore they
send their aggregated tables toSQL parsersthat actually
receive queries and compute their answers.

Several types of users make requests to Query. Hu-



man users, including software engineers and operations
staff, issue queries to understand the state of the Aka-
mai network. This is particularly important for detect-
ing and responding to problems quickly. This monitoring
and diagnosing is facilitated by the fact that Query pro-
vides aggregated data in the form of tables that can be
accessed using a familiar SQL interface. This interface
enables users to easily combine data from multiple real-
time data sources, as well as statically generated config-
uration data, without the need to log in to individual ma-
chines. For example, by issuing a query such as the one
below, a user can see processes on machines with role
“dns” that are using more than 75% of system memory
for their RSS:

SELECT sys.ip ip, procname, rss, pid
FROM sys, processes
WHERE sys.ip = processes.ip

AND (rss*100)/sys.memtotal > 75
AND sys.ip in

(SELECT ip
FROM machinerole
WHERE role=’dns’);

Numerous automated applications issue queries as
well. For example, Akamai’s alert system is an impor-
tant tool for detecting problems and fixing them before
they affect customers. It issues queries to detect each
of several thousand conditions that indicate problems,
then alerts staff in the Network Operations Control Cen-
ter whenever those conditions are present.

A third group of users is customer-facing applications.
For example, EdgeControl [3], the Akamai customer por-
tal, provides graphs of usage to each customer. The data
presented fall under two categories. The most reliable us-
age data are collected from detailed logs on the machines
and displayed precisely. Query, however, can report re-
sults faster than the logs can be processed, but with less
than perfect reliability. We display to customers the most
recent data based on results from Query, and the most ac-
curate data based on log analysis. Similarly, graphs such
as the ones that are available to the general public on
the Akamai website [22] depend on data collected from
Query. We will discuss how each of the groups men-
tioned above uses Query and the benefits each gains from
it.

The rest of this paper is structured as follows: Sec-
tion 2 talks about the goals of Query’s design. Section 3
talks about the architecture of Query that achieves these
goals. Section 4 explains several of Query’s features that
are most important to users, and Section 5 details who
some of those users are and how they use Query. In Sec-
tion 6, we present techniques that have allowed Query
to scale as the company has grown far beyond its size

when Query was first written. Along with those tech-
niques we use a number of other techniques to manage
Query and make sure that it is provisioned and config-
ured as needed, detailed in Section 7. In any large de-
ployed network, failures are bound to occur, so we ex-
plain how Query handles them in Section 8. Finally, we
compare query against related systems in Section 9, be-
fore concluding in Section 10.

2 Design Goals

Query is designed with a number of goals in mind. Occa-
sionally, those goals conflict, providing us with difficult
tradeoffs. We describe those goals and some resulting
tradeoffs.

2.1 Goals

• Reliability: Query should always be available to
answer requests.

• Scalability: Query should continue to stand as the
load doubles several times over.

• Data latency: When data are published at the
edge, they should appear in the answers to queries
promptly.

• Query latency: When a user issues a query, an an-
swer should come back quickly.

• Completeness:All published data should be avail-
able. Query results should be based only on com-
plete tables.

• Consistency:When data are published, they should
eventually be available everywhere. Requests
served by distinct machines should have similar an-
swers.

• Synchronization: All data available on a machine
should be up-to-date as of about the same time, so
that all tables from that machine reflect the state at
one moment as closely as possible.

• Fault tolerance: When a machine fails or a connec-
tion goes down, the system should still be available
to serve requests.

• Fault quarantining: A fault in one place should
stay in that place instead of spreading.

2.2 Tradeoffs

Some of the aforementioned goals sometimes conflict.
Here we describe some of the more interesting tradeoffs
we face in the design of Query.
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2.2.1 Data Latency and Completeness

To have complete data, Query must wait for every ma-
chine to send its contributions to every table before
putting each table together. To have low data latency,
Query must put its tables together quickly, waiting for as
few things as possible. We achieve a balance between
the two by providing a relaxed notion of best effort com-
pleteness, which will be discussed in Section 4.2.

2.2.2 Fault Tolerance and Completeness

Fault tolerance requires Query to move on and work
around machines that fail. Completeness requires it to
find a way to obtain their data. We strike a balance be-
tween the two with the same relaxed notion of complete-
ness we describe in Section 4.2.

2.2.3 Fault Tolerance and Quarantining

A desire for fault tolerance suggests that when a machine
fails, we should move requests to it to another machine.
A desire for limiting the scope of faults suggests that,
because a request could consume a large number of re-
sources and take down a machine, we should not move
requests that fail to another machine. We achieve a bal-
ance by having sets of a few equivalent machines called
aggregator setsamong which requests can move. A bad
request may take down two or three machines in one ag-
gregator set, but it will not take down the hundreds of
aggregators system-wide or any machines that serve cus-
tomer data. We are also very careful with aggregator sets
used for critical data so that they do not get requests that
consume more resources than they can afford. We de-
scribe aggregator sets in more detail in Section 3.5.

3 Architecture

We explain the architecture of Query by tracing the path
data take from the time they are published to the time
users see them affect the answers to queries.

3.1 Query at the Edge

Every machine on the Akamai platform runs an instance
of Query. That instance listens for communications from
processes on the same machine. Any process may open
a connection to Query, after which point it is required
to send Query a list of tables it wants to publish. Query
does not start collecting these tables immediately, how-
ever. Some of them are very rarely used, and collecting
them all preemptively would be a waste of resources. In-
stead, each Query instance maintains a list of tables that
have been requested from it and requests from each pro-
cess on the machine only those tables it needs.

Every once in a while (once a minute or two, depend-
ing on the machine configuration), every process is obli-
gated to send Query a copy of all tables that process has
claimed to be publishing that Query has requested. At
the same frequency, but offset by several seconds, Query
combines the tables being published by all processes on
that machine. We call the set of tables a machine com-
bines together ageneration. The reason for the offset is
so that the other processes have time to publish the data
before Query consumes them. When Query prepares its
generation, all the data were collected within a relatively
short time span (several seconds), so the data provided
by any individual edge machine come close to reflecting
its state at one moment.

Figure 1: Query on an edge machine. Three processes,
P1, P2, andP3, are shown publishing into Query, as is
one example table.

There are several interfaces to Query used to publish
on the edge machines. The most basic is a program-
matic C interface that handles all the communication
with Query. Wrappers around that interface exist in sev-
eral other languages. Users also have the option of writ-
ing a file containing the values in their table in a text-
based format. A daemon on the machines reads those
files periodically and publishes their contents into Query.
Finally, a separate software component enables Query to
collect data published by SNMP-enabled devices, such
as routers or filers.

A picture of an edge machine is shown in Figure 1.
A single Query process and three publishing processes
are shown, as is one row of an example table. That row
describes information about one mount point on the ma-
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Figure 2: Query in a cluster. Two edge machines and a Cluster Proxy are publishing tables, which the Cluster Proxy
aggregates. One example table is shown.

chine. In reality, that table has multiple rows per edge
machine. Also, there are really several times as many
publishing processes and hundreds of different tables
available on each machine.

3.2 Cluster Proxies

The collection of data by Query is hierarchical. The Aka-
mai network is divided into clusters all over the world,
each located within a single data center. Within each
cluster, some number of machines are designatedClus-
ter Proxiesand have the job of collecting data from all
machines in the cluster. Each cluster is small, having at
most a few dozen machines, so data collection does not
incur a high overhead.

Each Cluster Proxy collects requests from the next
level down the hierarchy and requests tables from each
machine in its cluster. Every time any Query process
collects a generation, it sends each Cluster Proxy a copy
of all tables the Cluster Proxy is requesting. Any time
Query sends a generation of tables from one machine to
another, it sends it in an efficient encoded format to save
bandwidth. Offset by several seconds from that process,
the Cluster Proxies collect their own generations contain-
ing all the data from their entire respective Clusters.

The Cluster Proxies also serve as edge machines, so
they also publish their own data, which they combine
with the data from other machines in the cluster when
making their generations.

A picture of Query in a cluster is shown in Figure 2.
Only two edge machines, a cluster proxy, and one table
are shown. In practice, a cluster would have up to dozens
of machines, several cluster proxies, and hundreds of ta-
bles. The rows from all the edge machines are combined
at the Cluster Proxy.

3.3 Aggregators

The next level in the hierarchy is theTop-Level Aggre-
gators (TLAs). Each TLA has a complete view of the
network, because it talks to a Cluster Proxy in each clus-
ter. The job of a TLA is to collect generations from the
Cluster Proxies, aggregate together global generations of
all the tables from everywhere, and provide those global
generations to other machines that will use them to an-
swer SQL queries. We don’t have the TLAs answer
queries because it takes all the resources they have just
to aggregate the generations.

TLAs collect generations of data from all Cluster
Proxies in much the same fashion that Cluster Proxies do
from machines in their clusters. TLAs collect their gen-
erations once every one or two minutes. Because we are
interested in data about all Akamai machines, including
TLAs, each TLA also publishes into Query. It collects
its own information and sends it to all other interested
TLAs. Each generation a TLA makes can include, in ad-
dition to data from the Cluster Proxies, data from itself
and other TLAs.
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3.4 SQL Parsers

A SQL parseris a machine that receives generations of
tables from a TLA, receives the text of SQL queries from
clients, computes the answers to the queries, and sends
back the results. If a SQL parser has all the tables it needs
to answer a query, it does so immediately. Otherwise, it
sends a request to the TLA and waits for the TLA to send
back a generation that contains those tables. To provide
results with data collected at about the same time, all the
tables used to answer a query are required to be from a
single generation.

Just as Cluster Proxies and TLAs publish into Query,
so do SQL parsers. When TLAs collect their generations,
they can also include data from SQL parsers.

A picture of the Query system is shown in Figure 3.
The cloud represents all the thousands of clusters talking
to the TLA. The TLA shown is currently providing tables
to two SQL parsers. There is a user at a terminal issuing a
query against the table published in Figure 1 and Figure 2
to figure out which machines on the network have less
than 3% of space available on some mount point. There
are actually hundreds of TLAs and SQL parsers, but only
one TLA and two SQL parsers are shown.

3.5 Aggregator Sets

Not all queries are interested in data from the whole net-
work, so not all TLAs talk to the whole network. For
example, some queries’ sole purpose is to monitor the
health of the TLAs and SQL parsers. Those queries can
get sent to machines that contain only data from the ma-
chines they are interested in. Each TLA can be config-
ured to talk to only a subset of the network, and each
SQL parser can be configured to talk to only a certain
set of TLAs. We call the subset a TLA talks to itsspan.
Because a SQL parser can get exactly the same data its
TLAs can get, the span of a SQL parser is the same as
the span of its TLAs.

Different users have different needs. For some users,
latency is critical, and they need to issue queries to ma-
chines that are lightly loaded so that they never have to
wait for a machine to collect a large generation before
it can compute the answers. Other users need to join
so much data that the issuing of their queries alone will
make a machine heavily loaded.

We handle these disparate needs by dividing clients
who issue queries into groups and giving each group
some set of aggregators. We call the group to which a
TLA or SQL parser is assigned that machine’sdomain.

Any time a set of TLAs or SQL parsers share a span
and domain, the machines of each type in that set are
performing the same job and are interchangeable. We
call such a set of TLAs and SQL parsers sharing a span

Figure 3: The Query system. The cloud is the whole
Akamai network. Also shown are a TLA, the two SQL
parsers getting tables from it, and a user at a terminal
issuing a query.

and domain anaggregator set.

3.6 Combined TLA-SQLs

Some aggregator sets are under light enough load that
one machine can actually do all the work of a TLA and
all the work of a SQL parser for that set. We configure
those sets to do just that, to reduce our machine count
and our costs. We call a machine doing the work of a
TLA and a SQL parser aTLA/SQL.

3.7 Overall Network Distribution

Currently, Akamai has several hundred TLAs, SQL
parsers, and TLA/SQLs divided into several dozen ag-
gregator sets. Each aggregator set has at least three tuples
of TLAs and SQLs for fault tolerance, and often many
more, depending on its load.
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4 Features

In this section we elucidate several of Query’s features
and explain how they empower its users.

4.1 Near Real-Time View

Query makes a new generation at each machine every
minute or two, so the data at the edges of the network are
at most two minutes old. Seconds go by between the col-
lection of those generations and the aggregation of gen-
erations at the Cluster Proxies. Seconds more pass before
aggregation begins at a TLA, a process which takes tens
of seconds on the TLAs with the heaviest load. Encoding
a generation to send to a SQL parser and decoding it at
the SQL parser each take tens of seconds. Consequently,
data at the SQL parsers can be a few minutes old.

Compared to the amount of time it may take for a hu-
man to diagnose and respond to a problem, a few minutes
is not much. However, because Query’s work is the first
step in detecting and understanding a problem, a minute
of time spent before data get into the results of queries
represents a minute delay in the rest of the response pro-
cess. Therefore, even though the latency of data is fairly
low, continuing to lower it remains a priority.

Query’s reliability is not perfect (see Section 8). Con-
sequently, data in Query cannot be relied upon for certain
things. Nevertheless, it is one of our fastest means of
getting information, and sometimes we need fresh data,
even if they are imperfect. In such situations, we use
Query.

4.2 Synchronization

All data collected from a machine are collected within
the span of several seconds. Although a TLA may have
data collected potentially minutes apart from two differ-
ent edge machines, its data from any one machine were
published at about the same time. This condition is weak
enough that we can achieve it without much overhead,
but strong enough to provide some valuable abilities to
the company.

The low variance in age of data from a given machine
means we don’t miss multiple related conditions, or the
correlations among them. For example, suppose some
rare event lead to the consumption of a large amount of
memory. When one datum is present, the other will be as
well, allowing us to detect such correlations.

4.3 Historical View

Query is used not just to understand the state of the net-
work now, but also how it has changed. Query can be

used to record prior data to get a view of past partial
states of the Akamai network.

We have two means of doing this. The first is Aka-
mai’s historical reporting system, which will be de-
scribed in Section 5. This system stores the results of
queries for a long time and displays them in graphs, giv-
ing us a visual representation of how data in Query have
changed. The second is Query History, a feature whereby
aggregators can be configured to store old generations’
copies of certain tables, load them, and answer queries
based on them.

The ability to get a historical view has tremendous
power. It allows us to see how usage patterns have
changed over time, predicting future growth in usage
based on past trends. It allows us to correlate changes
in multiple parameters, so that we can know how much
CPU is consumed by additional end user requests, how
much memory, how much bandwidth, etc. If we detect a
problem after it has existed for a while (say due to a soft-
ware bug causing occasional spikes in the usage of some
resource), we can figure out when that condition started
to exist, helping us narrow down the cause.

4.4 Static Tables

Some tables don’t change often and have contents that
should be dictated by the structure of the network or
some sort of unchanging information. There is no rea-
son to spend resources to aggregate such tables through
the normal Query system at the cluster level. Instead,
we store tables in text files on the disks of TLAs, and we
store index files describing where those files reside. Each
TLA reads its static data off of its disk, adds it to the data
it has from the Cluster Proxies, and re-reads the data any
time they change.

Below is an example of a query that joins normally
published data with static data. It looks at three tables:
(1) load info, which has information about all requests
Akamai is currently handling; (2) regiondata, which de-
scribes data about the geographical regions our machines
are in; and (3) continentdata, which describes informa-
tion about the seven continents. The query computes how
many hits we’re serving on each continent per second.

SELECT c.continent name,
SUM(l.hits) hits

FROM load info l,
region data r,
continent data c

WHERE l.georegion=r.id AND
r.continent=c.continent

GROUP BY c.continent name
ORDER BY hits DESC;
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c.continent name hits
---------------- ---------

North America 4,620,551
Europe 3,392,102

South America 655,175
Asia 552,258

Africa 106,781
Oceania 39,905

Antarctica 135

A query similar to this one is used to generate one of
the graphs Akamai displays on its web site [4]. The num-
bers of hits and even the ordering of continents change
throughout a typical day. That data, for example, were
collected at about 3:15 PM Eastern Standard Time, when
one would expect most of the Americas and Europe to be
awake, but most of Asia and Australia to be asleep.

5 Applications

We now explain several of the key uses of Query and how
they empower operations staff at Akamai.

5.1 Alert System

Akamai’s alert system is the primary tool for detecting
problematic conditions on the Akamai network. Engi-
neers and operations staff can easily develop and activate
alerts by writing SQL statements which are submitted to
the Query system at regular intervals. For example, con-
sider this simplified SQL statement to detect disks with
less than 3% of their disk space left free:

SELECT
machineip ip key,
mountp mnt key,
bavail*bsize free space,
(100*bavail)/blocks pct

FROM
filesystem a

WHERE
blocks > 0 and
(100*bavail)/blocks < 3;

ip key mnt key free space pct
------------ ---- ----------- --
10.123.123.1 /var 150,179,840 2
10.123.123.7 /var 72,216,576 1

The SQL statement along with many other config-
urable settings form analert definition. Each row re-
turned by the SQL statement constitutes a problematic
condition, or analert instance. Each time the alert query
is run, the result is compared to the previous result. Any

new rows are considered new instances of the alert. As
soon as an alert instance is detected, the alert is said to
fire. If any rows from the previous iteration are no longer
present, the alert is said toclear.

Akamai has found it important to tune when alerts fire
and clear. For example, when writing a ”High CPU us-
age” alert for a critical server, we may want to fire an
alert when CPU is over 98% usage. A single spike to
98% isn’t interesting but if we check every 2 minutes
and the CPU is still greater than 98% after 15 iterations,
then there is clearly a more chronic condition worthy of
investigation. On the other hand, when writing a ”Disk
showing SCSI errors” alert, we would want to ensure the
alert stays active even if the underlying disk errors do not
repeat. This gives time for the operations staff to react to
the alert and investigate the condition further.

As a result, three commonly used alert definition set-
tings deal with these timing parameters:

• Frequency of SQL execution (typically one minute).

• Number of iterations the data are present before an
alert fires.

• Amount of time the data must be absent before an
alert clears.

When an alert fires, the alert system can be configured
to do one of two things. It can alert staff in the 24/7 Net-
work Operations Control Center (NOCC), which is done
for urgent matters, or it can send an e-mail to engineering
or operations staff for later follow-up. In the former case,
the NOCC staff can take appropriate action using a cus-
tom user interface shown in Figure 4. The user interface
combines the alert details with corresponding procedure,
network access and ticketing. In many cases, alert proce-
dure steps include analysis using further Query data. The
NOCC can routinely handle over 10,000 new alert in-
stances in a single day with this approach, coming from
over 73,000 machines. (That figure includes problems
on partner networks, and problems that the Akamai map-
ping system can automatically route around.)

At present, there are several thousand queries that run
to detect alert conditions, with multiple thousands run-
ning every minute. The alert SQL queries are typically
much longer than the example queries above, sometimes
with pages of complicated SQL logic. Using techniques
such as the ones we describe in Section 6, we have al-
lowed a few tens of TLAs and SQL parsers to handle all
of this load.

The alert system and Query provide several advan-
tages for incident detection and response. If an opera-
tions staff member begins to suspect a problem and wants
to create a query to detect it, that person can create a
query in a matter of minutes, start testing it immediately
to make sure it produces the desired results and doesn’t
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Figure 4: Alert-handling interface.

consume too many resources, and begin collecting re-
sults very quickly. Query also allows us to detect a prob-
lematic condition, then examine a large amount of in-
formation about it, all using one tool. Even if we did
not anticipate needing some specific information before
a problem is detected, we can write new queries and issue
them at any time to help diagnose a problem.

The need to run the alert system using Query imposes
several key constraints on Query’s design that relate to
the tradeoffs described in Section 2. Reliability, com-
pleteness, and low data latency are critical for the alert
system. When the alert system issues a query, the an-
swer needs to come back reliably, quickly enough, and
be computed with data that are fresh and comprehensive
enough to detect the problem promptly and respond to
it before it affects our service to customers. The alert
system also needs Query to be scalable. The ability to
issue alerts to detect a wide variety of problems is quite
useful. When the network grows in size and is handling
more traffic, we need to continue to be able to answer
all of the existing alert queries, as well as new ones that
become necessary.

5.2 Historical Reporting System

Another tool for analyzing and diagnosing the Akamai
network is the historical reporting system, which col-
lects and stores data from Query over time and graphs
the results. The reporting system is Akamai’s primary
tool for observing how the network has changed over
time. While we use the alert system to detect issues that
need immediate attention, we use the reporting system to
proactively analyze network behavior with the intention
of preventing issues before they occur.

Much like the alert system, the reporting system stores

several thousand queries written by developers and oper-
ations staff. Each query is issued every few minutes and
the results are shown on graphs. The system provides
various ways of displaying data to assist in visualizing
and understanding the parameters of the network.

The resolution of the reporting system, which issues
each query once every several minutes, is insufficient to
detect problems and respond to them in real-time. It is
sufficient, however, to help understand problematic con-
ditions over the span of several hours. For example, a
bug in Query itself once caused it to consume too much
CPU. Due to the difference in scale between the Akamai
network and the test network, this bug was not realiz-
able in the test environment. After deploying the new
software with the bug to a small number of machines,
the alert system detected the increase in CPU load on
some machines. Before deploying the software to more
machines, we investigated the problem. The reporting
system showed spikes in the CPU utilization of Query
on certain machines, and seeing the frequency of CPU
spikes helped in diagnosing the bug.

5.3 Customer Access

Several Akamai services that provide data to customers
use Query to collect that data. Most customer interac-
tion with those systems is through a web-based interface,
EdgeControl [3], which is the Akamai customer portal.

The alert system can issue alert queries on customers’
behalf, notifying a customer if one of that customer’s
alerts fires. That notification may be done via e-mail,
a web service call, or through an SNMP MIB that runs
on the customer’s site (which allows customer alerts to
be integrated with local monitoring clients like Open-
view [10], and Tivoli [11]).
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Figure 5: Customer access to traffic data via EdgeControl. The highlighted estimated data come from Query.

In addition to providing certain alerts to customers, we
provide each customer with graphs of various data, such
as how much traffic we have served for that customer
over time. Figure 5 shows an example of such a graph.
Query does not achieve perfect completeness. The first
several hours of data are based on processing logs of all
traffic we have served. However, we want to display us-
age graphs to our customers more quickly than we can
process all the logs. Therefore we show customers log
data until the latest time they are available, then show
what we call estimated data for the most recent time pe-
riod. That estimated data come from Query.

Several requirements arise from the fact that the data
are customer-visible. The machines collecting the data
have to be reliable, to have uninterrupted data display.
In order for our displayed estimates to be as accurate
as possible, the data need to be as complete as possi-
ble. Data must also be consistent across Query to avoid
graph discrepancies. This is because a query may be is-
sued to one SQL parser at a particular time and then is-
sued to another SQL parser several minutes later. Addi-
tionally, data latency and query latency must be low, be-
cause we want to display near real-time data to customers
quickly, providing them with current estimates. Finally,
several of the queries whose results are displayed to cus-
tomers are expensive and grow rapidly, joining multiple
tables. Several of these tables grow as the number of ma-
chines in the Akamai network and the number of Akamai
customers grow. Thus, Query must be scalable, to con-
tinue to handle the load from collecting the data for those
graphs. Failure to provide features such as the ones out-
lined above would be unacceptable to customers.

5.4 Incident Response

An incident is an urgent occurrence that adversely af-
fects customers, or may adversely affect them if left
unchecked. Query is a vital tool for incident response at
Akamai. As previously explained, it underlies the alert
system and the reporting system, two important tools for
incident response. Often, incidents begin when the alert
system detects a high severity problem. If the problem is
related to any of the thousands of graphs collected in the
reporting system, that is another tool for understanding
the problem.

In addition to being used by these tools that help
with incident response, responders often issue SQL state-
ments directly to Query. Much of the time, some in-
formation published into Query can help illuminate the
problem and possible solutions. This use of Query,
again, emphasizes certain goals for Query’s design. Data
latency and query latency are both vitally important: in
an incident, we need to end problems before they impact
customers, or minimize their impact, and every minute
counts. Scalability is also important, because we don’t
know what tables will be needed until the incident takes
place. The system may need to get any data from any or
all of Akamai’s machines, and the amount of data col-
lected is far larger than any one machine can hold. The
ability to divide data up among many machines, provid-
ing scalability, is vital to handling incidents. Our tech-
niques for achieving such scalability are addressed in
Section 6.

6 Scalability

In this section, we discuss the reasons Query has high
needs for scalability and how we deal with those needs.
We will address three ways of achieving scalability:
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caching at each machine only the tables that machine
needs; partitioning the network so that each machine
needs only a subset of the data; and adding SQL parsers.

6.1 Causes of Growth

The volume of data and queries a TLA or SQL parser
must be able to handle depends on several factors: the
number of machines on the network publishing into
Query, the number of customers about whom data are
published, the volume of traffic on the network to be
monitored, the number of services on each machine pub-
lishing data, and the number of ideas for things to moni-
tor that people have come up with, among others. All of
these factors grow monotonically with time.

As time goes by, Akamai signs more customers. As
the Internet grows, our customers have more customers,
so Akamai must serve more end users, leading to more
traffic. To handle this additional load, we must deploy
more servers. Managing rapid growth is one of the major
challenges in the design and operation of Query.

6.2 Caching Policies

We try to cache tables around the SQL parsers and TLAs
such that (1) each machine always has many of the tables
it will need soon, and (2) machines have few tables they
won’t need soon. This is necessary because the volume
of data available in Query is far larger than any single
Query machine can hold: tens of gigabytes, a generation
of which would take minutes to decode. That’s why SQL
parsers request tables from TLAs, which in turn request
them from Cluster Proxies, which request them from the
machines in their clusters.

Each machineprewarmstables. This means that it
fetches those tables whether it needs them or not. That
dramatically reduces query latency, because if the tables
a query needs are already resident on the SQL parser,
it doesn’t need to spend minutes fetching them from the
clusters through the TLAs. We can configure each aggre-
gator set to prewarm its own distinct set of tables. That
set can be thought of as our guess for which tables the ag-
gregator will need. For example, we know what queries
the alert system needs to issue for alerts. That means ag-
gregators devoted to the alert system will need a specific
known set of tables, so we prewarm that set.

Of course, tables exhibit temporal locality of refer-
ence: if a user issues a query using a table, that table
is likely to be used again in the near future. If a table that
isn’t prewarmed is used, it continues to be requested in
all generations for some period of time afterwards, and
that timer is reset every time the table is used again.

A second type of caching is views. We cache the re-
sults of every view we compute for use in future queries,

invalidating that cache every time we switch to using a
new generation of tables. There are about 1000 view
queries defined, many of which describe common sub-
queries. Storing their results reduces query latency and
improves scaling in the number of queries by avoiding re-
peated computations. It also reduces the memory load on
the SQL parsers, because the intermediate state for com-
puting the answers to queries can be reduced by comput-
ing them fewer times.

Another technique for improving scalability isdiff up-
dates. Instead of sending a full copy of each encoded
table to each TLA, the Cluster Proxies send only a diff
– that is, a description of how the tables in that cluster
have changed. The first time a Cluster Proxy sends data
to a particular TLA, it sends a full generation, but subse-
quently, it sends only the diff. This makes TLAs decode
tables more quickly, and saves about half the bandwidth
Query would otherwise need to consume.

6.3 Partitioning

Partitioning the Query system can provide scalability.
We have three ways of doing this: we can partition the
network, we can partition the users, and we can partition
the tables each individual user needs.

6.3.1 Network Partitioning

Talking to 73,000 machines takes a lot of resources from
each TLA, but not all issuers of queries are interested in
data from the whole network. Therefore we designate
certain subsets of the Akamai network to be the span of
each machine, as described in Section 3.5. For example,
aggregators whose purpose is to monitor the Query sys-
tem itself need span only the few hundred aggregators,
not all 73,000 or more Akamai machines. Aggregators
with small spans suffer far fewer demands on their mem-
ory, bandwidth, and CPU than machines that span all of
Akamai.

6.3.2 User Partitioning

We don’t want users going to randomly chosen aggre-
gators to issue queries. Some applications, like the alert
system, are critical, and must send queries to machines
we know will have the resources to handle them. Some
users run test queries to see how they perform, and while
they are being written, they may mistakenly use exces-
sive amounts of machine resources. This leads to as-
signing each aggregator set to a user or set of users, as
described in 3.5.

After assigning a span and domain for each aggregator
set, we can figure out what tables it is likely to need and
make sure each machine in the set can decode, aggregate,
and store all the tables it needs.
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Because each machine in an aggregator set prewarms
the same tables, no aggregator set can have more tables
than one machine can handle. If a user is so demand-
ing as to need more tables than a machine can handle,
that user needs multiple aggregator sets. Users can is-
sue queries to whichever of multiple aggregator sets they
need, but operations staff responsible for Query need the
ability to change where queries are sent without having
to change the software of the components issuing the
queries. We place each aggregator set behind a hostname
and have users issue their queries to an arbitrary machine
that hostname resolves to. Operations staff for Query can
then change the machines a hostname resolves to, to add
or remove aggregators from a set.

6.3.3 Table Partitioning

Partitioning tables among aggregators also helps with
scalability. Suppose an aggregator set has four machines,
A, B, C, and D, and the tables it prewarms grow too
large for one machine to handle. We can partition that
aggregator set into two subsets, sayA, B andC, D. On
each subset, we prewarm half the tables the original set
had. We point the same hostname at all four machines,
but if A gets a query for which it doesn’t have the tables
andC, D do have them,A can send, in place of an an-
swer, a message redirecting the query toC, D. The pro-
grammatic interface to Query then automatically goes to
C or D to get its answer. In practice, the partitioning
can’t be perfectly even and some overlap between the ta-
bles onA, B and the tables onC, D must exist to still
answer every query users want to issue. To date, in all
cases where we have tried to partition an aggregator set
in this fashion, no machine has needed more than 55% of
the data of the original set.

6.3.4 Aggregator Sets and Fate-Sharing

Different users have different needs, but sometimes their
needs are similar enough that they can be grouped to-
gether using a single aggregator set. There are a number
of benefits, risks, and costs to doing so.

The main benefit is saving machines. Instead of many
aggregator sets, we must deploy only one. The main risk
is that two users on the same aggregator set share fate. If
one user causes a failure, all of them will feel it.

The lesson here is that the most critical users should be
isolated, and other users should be placed in groups with
shared expectations about reliability and failure. If two
non-critical applications that may potentially bring down
an aggregator set have to share it, no problems will occur:
both applications are non-critical and are designed with
aggregator failures in mind.

6.4 Adding SQL Parsers

Akamai provides global traffic management and en-
hanced DNS services [2], mapping a hostname to several
IP addresses and balancing the load among them. Be-
cause Query’s users issue their requests to hostnames,
rather than specific IP addresses, we can allocate the
queries approximately evenly among all the IP addresses
sharing a hostname. We create a hostname for each ag-
gregator set’s SQL parsers (or combined TLA/SQLs) and
have our users issue queries to those. If we need to add
more machines to handle more queries, we can do so
transparently to the user. Twice as many machines can
handle twice as many queries.

There are two caveats. First, we cannot simply add
SQL parsers, because each TLA won’t have the re-
sources to send hundreds of megabytes of encoded ta-
bles (gigabytes of decoded tables) to that many other
machines during an one or two-minute interval between
generations. If we add too many SQL parsers, we must
also add TLAs. Second, we must combine this approach
with partitioning and wise caching policies. Each SQL
parser must decode a generation of tables every time
one arrives. Without partitioning and intelligent caching,
as the network grows, eventually the SQL parsers will
spend most or all of their time decoding generations.

7 Management Lessons

Managing a complex system like Query has taught us
several lessons that may be of use to administrators of
other systems. We need to be able to fix a variety of
problems in Query that arise during operation. Some of
these problems are due a user needing more tables than
one aggregator set can handle. Some are due to a user
needing to issue more expensive queries than their ag-
gregators can handle, due to their requirements in either
CPU or memory. Some are from the need for new fea-
tures. Some are from software bugs. We now explain
some of the lessons we have learned about these issues.

7.1 Management options

When a difficult use case arises, either due to new needs
or due to organic growth, we have several options:

• Find a less expensive means of achieving the same
goal.

• Reconfigure the network.

• Deploy additional hardware.

• Perform additional operational work to handle the
use case.

11



• Develop the Query software to be more efficient
about that use case.

• Go without, telling the user that the difficult use
case cannot be accommodated.

The first option, finding a less expensive solution, is al-
ways the first thing we try, as it clearly saves the company
the most money. Unfortunately, it isn’t always possible,
and the interesting tradeoffs are among the remaining op-
tions.

7.2 Configuration Options

For urgent problems, reconfiguring the network is usu-
ally the best option if it is a possibility. We can de-
ploy configuration files to the entire network quickly to
change what the machines are doing. For example, if a
set of queries are taking up a lot of CPU on some set of
SQL parsers, but they contain a common subquery, we
can push a configuration file that creates a new view to
reduce the number of times we need to compute it.

This example shows an important lesson: make rapid
changes in behavior easy any time it is safe to do
so. Some aspects of a machine’s behavior, such as the
software version, are difficult to change safely without
restarting. Others, such as the views, are easy to change
safely without restarting. In early versions of Query, all
of these changes required a software install. Now, many
just require our configuration management system [19]
to copy new configuration files to the machines, which
makes us much more reactive.

7.3 Adding Hardware

We can deploy new hardware to fix some problems. If a
SQL statement is too expensive for the machines trying
to run it, we can always put up additional SQL parsers to
send it to. Deploying new machines takes less work than
developing new software and can be done much more
quickly. If we can’t accommodate a request by configu-
ration options or finding a more efficient way to achieve
the user’s goal, this is by far our most common solution.

7.4 Operational Intervention

Sometimes, a problem can be fixed by operations per-
sonnel manually. For example, we found a slow mem-
ory leak in Query that affected one set of aggregators
such that their resources were essentially all consumed
after about a month of continuous operation. We came
up with a temporary solution to use until the next regu-
larly scheduled release: manually restart the machines in
the set every few weeks.

The lesson we’ve learned from trying this solution is
that it’s good for the short term only. It’s expensive, be-
cause it requires a human in the loop. It’s time consum-
ing and stressful for operations personnel. It doesn’t ac-
tually fix the problem; it’s just a way of living with it.
We try to use this approach as rarely as possible and to
depend upon it only for short periods of time.

7.5 Software Development

Software development is a longer-term activity than
pushing a configuration file or deploying new machines.
To deploy new software, we must develop it, run it
through Quality Assurance, and install it in several
phases, allowing time between phases to make sure the
part of the network that was installed initially is working
properly.

The advantage to developing software to fix a problem
or add a feature is that once it’s done, the problem is fixed
or the feature is available everywhere forever. No one has
to do any work to maintain it, and there is no additional
hardware cost.

One lesson we have learned about when to develop
new software to solve a problem is that it’s best to use
it after the other solutions, because it’s slower, cheaper,
and more permanent. A few years ago, there was a bug
that caused SQL parsers to be unable to get new data
and to continue answering queries with old data. We ini-
tially solved this problem with operational work, adding
an alert to the alert system to detect the condition and
asking the Network Operations Control Center to restart
machines when the alert fired. That was a temporary so-
lution that lasted for a few months until we could fix the
bug.

8 Handling Faults

With over 73,000 machines publishing into Query and
several hundred running infrastructure for Query (TLAs,
SQL parsers, and TLA/SQLs), some number of them are
down at any time. Sometimes pairs of them can’t reach
one another. Sometimes TCP sockets between machines
fail due to congestion. Sometimes machines have too
many resources consumed and can’t keep up with all the
communication they’re supposed to do. This section is
about how we handle faults.

There are several goals regarding handling faults, in-
cluding:

• Easy detection:Problems should be found quickly
and easily.

• Fault tolerance: When a fault occurs, Query
should work around it.
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• Quarantining faults: The scope of a fault should
be kept narrow, limiting the number of machines
that go down.

8.1 Error Detection

Query is unusual among Akamai systems in that a lot
of the other systems can count on Query to detect their
faults. If something goes wrong with Query itself, we
have an obvious bootstrapping problem.

If something goes wrong with a subset of the Query
processes on the network, we can detect it because mul-
tiple aggregator sets span all the TLAs, SQL parsers, and
TLA/SQLs. If any of those aggregator sets are func-
tioning properly, we can detect problems. Additionally,
we can detect problems that cause queries to fail rather
quickly, because the absence of an answer coming back
registers as an error in, for example, the alert system.

There remain two cases: incorrect results coming back
that cause false positives for alerts, and incorrect results
that cause false negatives. False positives are easy to
deal with: when an error has been detected but the peo-
ple looking into it can’t figure out the root cause, they
know to also bring in experts on Query to debug simul-
taneously. This shows another lesson we have learned:
don’t forget that your monitoring tools may be the prob-
lem when you’ve detected an error.

False negatives are trickier. Occasionally, an alert will
not fire. Usually, we find this is due to a bug in the alert
SQL, not a bug in Query. The only way to deal with that
is for alert writers to test carefully before and after their
alerts are deployed. If there were a mass-scale incident
of Query failing to publish data, we would also detect
that case, because of a number of alerts that check for
the presence of data, not their absence. For example, if
data from half the network were to disappear, the alert
for Query having data from too few machines would fire
almost immediately.

8.2 Fault Tolerance and Quarantining

When deciding how to achieve fault tolerance and quar-
antine faults, we must keep in mind the tradeoffs of Sec-
tion 2.2. There is a tension between the two goals. Toler-
ating faults requires moving load away from a machine
that fails, so that its outstanding requests may still be
serviced. Quarantining faults requires that loadnot be
moved away from a machine that fails, because the load
may have caused the failure.

Aggregator sets help us limit the scope of failures
while achieving fault tolerance. The SQL parsers of each
set have a single hostname pointing to all of them. If a
SQL parser fails, the programmatic interface to Query
automatically redirects the query to another machine in

the set. A Query that consumes enough resources to take
down a machine could thus take down the whole set. This
can happen occasionally due to an ad hoc query being
written by a human, but only on non-critical aggregator
sets used for development. If an aggregator set is used by
humans writing ad hoc queries, we only send queries to
it from applications that are allowed to fail to get answers
sometimes.

If a TLA goes down, any SQL parsers talking to it
continue providing answers to queries with old data un-
til they can get tables from another TLA in the same
aggregator set. This typically takes a few minutes (not
much more than a normal interval between generations).
This allows the same balance between tolerating faults
and quarantining them as for SQL parsers failing.

If a TLA loses its connection to a cluster, similarly,
SQL parsers switch away from it. Each TLA advertises
how many clusters it can see and SQL parsers take that
information into account when selecting TLAs. Initially,
each SQL parser chooses a TLA arbitrarily. Suppose
SQL parserS chose TLAT 1. If T 1 loses visibility to
some clusters, some other TLA,T 2, may gain the abil-
ity to see some percentage more clusters thanT 1 can.S
will then switch to usingT 2 instead ofT 1. If there are
multiple suchT 2, S will switch to an arbitrary one.

Usually, if there are connectivity problems, one TLA
will fail to see some set of clusters, but the other TLAs
will be able to see it. In other words, there will be multi-
ple possible choices for aT 2 to switch to. That prevents
the switching algorithm from placing extreme load on
any one TLA.

We want SQL parsers to prefer TLAs that are geo-
graphically close to them. Using configuration files we
can tell each SQL parser to give a bonus to some set of
TLAs when deciding which one to use. That helps make
the mapping from SQL parsers to TLAs more static and
prefer close by machines, while also helping each SQL
parser have as complete a view of the network as possi-
ble.

TLAs are normally required to have a full view of the
network before they can collect a generation. Each clus-
ter must have reported tables within a certain time inter-
val. If a cluster has failed to do so, the TLA drops the
cluster’s tables and advertises one fewer cluster, so that
SQL parsers can switch away from it as needed.

9 Related Work

In this section we review related work in the area
of large-scale network monitoring that has appeared
throughout Query’s lifetime of approximately 12 years.

Several system administration tools such as Na-
gios [14], Microsoft SCOM [21], Hewlett-Packard
OpenView [10], IBM Tivoli [11], and Sun Management
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Center [20] exist for monitoring network services and
machine resources, often using SNMP. Akamai accom-
plishes network monitoring by feeding data collected and
aggregated by Query into applications such as the ones
discussed in Section 5. Query allows users to specify
complex monitoring tasks using a SQL-like interface. In
addition to providing a familiar interface, Query’s fo-
cus is on scaling its monitoring capabilities to tens of
thousands of machines, while still providing near real-
time updates. Via a software component that acts as
an SNMP gateway, Query is able to collect data pub-
lished by SNMP-enabled devices, as was described in
Section 3.1. Similarly, Query is also able to export data
as an SNMP MIB, as was described in Section 5.3.

One common approach to network management for
security purposes is Security Event Managers (SEMs).
An SEM logs all events it expects will be interesting to
system administrators. When a problem is detected, the
SEM provides a means of reading the logs from each ma-
chine and presenting them to the administrators. By pub-
lishing such data into Query, Akamai has all of that infor-
mation in one place that is easy to monitor constantly by
human users and automated applications. Additionally,
queries can be issued right away, minimizing the setup
time for detecting conditions of interest.

Processing large volumes of continuously updated
data in real-time has also been the focus of sev-
eral academic and industrial research projects in the
area of stream processing systems. Telegraph [6],
STREAM [13], and Aurora/Medusa [7] were the first
generation of such systems, with a focus on providing a
SQL-like interface to query continuously updated data.
The next generation of such systems focused on dis-
tributed implementations, to increase both the scalability
and the fault-tolerance of low-latency, high-throughput
stream processing applications. Borealis [1] has focused
on challenges related to implementing a stream process-
ing system in a distributed fashion, with particular em-
phasis in load shedding and fault-tolerance. Synergy [18]
has focused on composing distributed stream processing
applications, while paying attention to their end-to-end
Quality of Service requirements. Among industrial re-
search efforts in the area of distributed stream process-
ing, IBM’s System S [23] has focused on a variety of
stream processing applications with highly variable rates,
utilizing a large number of stream processing nodes. Ad-
ditionally, AT&T’s Gigascope [8] has focused on moni-
toring network traffic at extremely high-volumes. Simi-
lar to the systems above, one of Query’s main challenges
comes from the large data volumes that need to be pro-
cessed near real-time. Query addresses this challenge via
the clustered architecture outlined in Section 3 and the
techniques described in Section 6.

Research efforts have also focused on the challenges

faced by large-scale network monitoring systems, both
due to data volume and network size, as well as due
to network and machine failures. SDIMS [24] has at-
tacked the scalability challenges by using Distributed
Hash Tables to create scalable aggregation trees. It has
also utilized lazy and on-demand reaggregation to ad-
just to network and node reconfigurations. PRISM [12]
has proposed imprecision to provide consistency guaran-
tees with reduced monitoring overhead and despite fail-
ures. Specifically, arithmetic imprecision was proposed
to bound numeric inaccuracy, temporal imprecision to
bound update delays, and network imprecision to bound
uncertainty due to network and node failures. Query
faces similar tradeoffs, as was described in sections 2
and 8.

Distributed event services can also be used for net-
work monitoring. Research projects in this area, such
as Siena [5] and ECho [9], have focused on maximizing
the performance of event notification, while providing
data models that are generic enough to express a variety
of events. CORBA also provides support for event [16]
and notification [17] services. Akamai uses Query to col-
lect data from many different software components, im-
plemented in a variety of programming languages. To
achieve that, the publishers utilize various native lan-
guage interfaces that Query provides, as was described
in Section 3.1.

10 Conclusion

We have explained the goals and design of Query, Aka-
mai’s near real-time monitoring system. We have pre-
sented a number of the issues we face developing, man-
aging, and operating it. We have stated some of the
lessons we have learned from our experiences. Manage-
ment of Query has been made much easier by the avail-
ability of rapid changes in configuration; isolating criti-
cal users and putting others into groups of similar relia-
bility expectations; having multiple ways of addressing
a problem in both the short term and the long term, and
being explicit about which ones are good for each time
scale; and having a strategy for debugging our monitor-
ing tools. All of those strategies have allowed Query to
scale with the Akamai network and handle the growth of
load that it has been experiencing for more than a decade.
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