DELAY / DISRUPTION TOLERANT

NETWORKING

Axes of scale

Dr. Keith Scott keithlscott@gmail.com

The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Outline

- History and motivation
 - Interplanetary Internet
 - Large distances
 - Intermittent (but generally scheduled) and expensive connectivity
 - No end-to-end data path
- DTN Approach
 - Store-and-forward on (large) time scales
 - Naming and routing when DNS resolves take 10 minutes
 - Protocol mechanisms (including security)
 - DTN and content-based networking
- Future Directions
 - Large scale in terms of numbers
 - What if every access point were a MANET point-of-presence?

Scaling in Distance: One-Way Light Times*

Delay Causes Disruption

Stock TCP implementations fall off quickly with distance

$$BW < \left(\frac{MSS}{RTT}\right) \frac{1}{\sqrt{p}}$$

Scaling in Time: Intermittent Connectivity

- Mars Exploration Rovers return ~98% of their data via orbiting relays
 - Orbiter Lander connectivity
 - ~4 passes per day; 6 15 minutes per pass

- Orbiter Earth connectivity
 - 1 or 2 2-4 hour tracking passes per day

- No end-to-end connectivity
- Round-Trip time may be measured in HOURS

IntermittentConnectivity + Storeand-Forward = Delay

Why Delay / Disruption Tolerance?

- There are a number of inherent assumptions in the Internet architecture and protocol implementations that break under long delays / intermittent connectivity:
 - There's always an end-to-end path
 - Round trips are cheap
 - Retransmissions from the source are a good way to provide reliability
 - End-to-end loss is relatively small
 - Endpoint-based security meets most security concerns
- Environments exhibiting some / all of these characteristics:
 - Space communications (high latencies, intermittent connectivity due to view periods / antenna schedules)
 - Sensor networks (nodes powered down much of the time to conserve energy)
 - Tactical communications (line-of-sight radios, intermittent SATCOM, urban/wooded environments, jamming, ...)
 - Mobile networks

First Round Conclusions

- Deploy "standard" internets in low latency environments
- Bridge high latency environments with an IPN Backbone
- Create gateways and relays to interface between low- and high-latency environments
- Construct a network of internets
 - Bundle Layer: A layer that bridges internets, providing end-to-endedness

Store-And-Forward Delivery

Store-and-Forward (DTN): Incremental progress w/o end-to-end path

DTN Can Reduce Delay and Increase Throughput

Bundle Space

Network of internets spanning dissimilar environments

Bundle space supports end-to-end transfer across IPN domains and/or heterogeneous network protocol stacks

DTN's Derived Design Rules

- Don't plow the same ground twice hold the gains you've achieved
- Don't engage in unnecessary chit-chat build complete transactions and make network accesses count
- Don't depend on information from inaccessible / remote places if you can avoid it – build a sequence of local control operations and use late binding
- Don't force homogeneity allow different network components to use environmentallyrelevant optimizations

Naming in the Bundle Protocol

- Bundle Protocol endpoints (applications) are identified by name
 - Intent was to allow progressive binding of names to actual nodes while a bundle is in transit
 - Derived from interplanetary internet notion of 'Regions'
 - "I don't know where <u>www.example.com</u> is, but it's on Earth, go that way." (but withOUT resolving to a destination IP address)
- Bundle Protocol names are URIs...

BP Name Examples

- dtn://mymachine/ping
- dtn://marsOrbiter8/instrument2/thermister4
- dtn://sensornet_mojave?tempValue>20c
 - All sensors in the sensor network with current readings > 20 degrees c?
- dtn://I495cars?speed<20mph</p>
 - All cars on 1495?

More BP Name Examples

- dtn:flood:sql:batterylevel<0.25</p>
- dtn:flood:sql:police_1000m_<LATLON>_haveK9
- dtn:pop:mailto:keithlscott@gmail.com
 - Route the bundle until it makes sense to email it (as the content of a MIME attachment?)
- http://tools.ietf.org/html/draft-irtf-dtnrg-dtn-urischeme-oo

Routing

- IP routing builds a picture of what the network looks like *right now* and uses that picture to forward packets
 - Part of why mobility is an issue
- Because DTN can store bundles at intermediate nodes, it can route taking time into account
 - Route this way because there will be connectivity there later

11/5/2009 16

Routing in DTNs

- Ports of Internet routing protocols (Distance-Vector and Link-State)
 - Expedient, and can be extended to include some resilience to network partitioning
- Probabilistic routing
 - Usually applied to probabilistic nodes (e.g. zebras)
- Scheduled routing
 - Take advantage of a known schedule to route according to what the network will look like later
 - Spacecraft
 - Some aircraft
- Database-name, query-like support...?

FAPH: DTN Enables OTM-to-OTM Comms and Reliably Delivers Data

Dynamic Routing Alone Can't Exploit Future Connections – DTN Enhances Dynamic Routing with Storage for **Delivery over Disconnected Paths**

DTN Delivers:

- 1. Along direct paths when they exist
- 2a. To advantaged nodes (custodians) when no direct path exists
- 2b. Custodians deliver data when destination becomes reachable Original sender need not be connected to complete delivery!

DTN routing uses 'advantaged' locations (e.g. BN) for temporary data storage Off-shortest-path storage makes reliable delivery possible

DTN Routing & Storage Deliver All Messages that Live Across Link Outages

Approved for Public Release, Distribution is Uniimited

Protocol Mechanisms

- Bundles composed of collections of 'blocks'
- Per-bundle and per-block processing directives
 - Replicate block in each fragment
 - Discard bundle if can't process block
- Status reporting flags
 - Report on [receipt, custody, transmit]
 - Separate 'report-to' address

Primary Bundle Block

Other Block (s)

Payload Block

Support for Content-Based Naming and Addressing

- URI-based naming
- Metadata blocks can identify content
 - Could be used to implement 'network as a database'
 - Can be encrypted separately from the payload
- Can serve as input to routing
 - Routing 'hints' so that every node doesn't have to do a full routing lookup

Primary Bundle Block

Metadata: jpg image of rover arm

Security: Prevent Unauthorized Resource Utilization

- Bundle Authentication Block (BAB) provides hop-by-hop authentication and integrity protection for the bundle between adjacent bundle nodes
- Protects against unauthorized use by enabling bogus or modified bundles to be detected and discarded at the first node at which they are received
- Each node needs only keys to interact with adjacent nodes
- Minimizes dependencies on a key server, which may be many hops away

"E2E" Integrity and Confidentiality

- Payload Integrity Block (PIB) provides "end-to-end" authentication and integrity on the non-mutable parts of the bundle between any source and destination nodes
- Payload Confidentiality Block (PCB) provides "end-to-end" encryption on the payload (and perhaps other parts of the bundle) between any source and destination nodes
- Extension Security Block (ESB) provides "end-to-end" encryption and integrity (depending on ciphersuite) of an extension block between any source and destination nodes

Supporting Applications

Example: DTN-Web Proxy

DTN Deployments

- NASA
 - Experiments on the International Space Station
 - Deep Impact Networking Flight Experiment
- University / Experimental
 - DieselNet
- Connectivity to 'disadvantaged' users
 - Sami community

Scaling in Number: A Sea of Connectivity

11/5/2009 26

Challenges to Scaling in Number

- Naming
 - How far can we push the URI-based name scheme? Can metadata 'hints' (or something else) extend that?
- Routing
 - Knowing how to appropriately address
 - Reachable now
 - Used to be reachable via this path but not there now
 - Scheduled to be reachable via some path in the future
- Connectivity
 - Difference between 'not connected now' and 'not coming back'
 - What can be served by the infrastructure and what can't?
- Culture
 - "Wait, MY phone is routing YOUR data?"

27

Thanks

- DARPA
- DTNRG
- MITRE
- NASA