
Fast Packet Classification for Snort by
Native Compilation of Rules

Alok Tongaonkar, Sreenaath Vasudevan, and R. Sekar – Stony Brook University

ABSTRACT

Signature matching, which includes packet classification and content matching, is the most
expensive operation of a signature-based network intrusion detection system (NIDS). In this paper,
we present a technique to improve the performance of packet classification of Snort, a popular
open-source NIDS, based on generating native code from Snort signatures.1 An obvious way to
generate native code for packet classification is to use a low-level language like C to access the
contents of a packet by treating it as a sequence of bytes. Generating such low-level code manually
can be cumbersome and error prone. Use of a high-level specification language can simplify the
task of writing packet classification code. Such a language needs features that minimize the
likelihood of common errors as errors in the packet processing code can crash the intrusion
detection system, which may leave it open to attacks.

To overcome these problems, we use a rule-based specification language with a type system for
specifying the structure and contents of packets. The compiler for the specification language generates
C code for packet classification. This code can be compiled into native code using a C-compiler and
loaded into Snort as shared library. Our experiments using real and synthetic traces show that the use
of native code results in a speedup of the packet classification of Snort up to a factor of five.

Introduction

Recent years have seen a rapid escalation of
security threats making Network Intrusion Detection
Systems (NIDS) critical components of modern net-
work infrastructure. A NIDS inspects each packet for
a match against a large signature set. The NIDS must
work at near wire speed to be effective in an online
analysis mode. Typical NIDS perform a number of
operations upon receiving a packet like buffering the
packet, matching the packet against signature set, and
logging packets or alerts. The performance of each of
these operations affects the performance of the system
as a whole. Even so, the signature matching compo-
nent remains one of the most important factors that
determines the performance of these systems.

Generally, the signature matching used in IDS
consists of two distinct operations: i) packet classifica-
tion, which involves examining the values of packet
header fields, and ii) deep packet inspection, in which
the packet payload is matched against a set of prede-
fined patterns. According to [3], packet classification
and deep packet inspection are the most expensive
parts of Snort (a popular open source IDS) [10],
accounting for 21% and 31% of the execution time.
The signatures for Snort-like systems are usually spec-
ified using simple rule-based language. Typically, the
IDS uses an interpreter to check whether any rule
matches an incoming packet.

A lot of research has focused on improving the
performance of signature matching component of Snort.

1This research is supported in part by ONR grant N00014
0710928 and NSF grant CNS-0627687.

Most of the research has focused on deep packet inspec-
tion which involves string matching and regular expres-
sion matching. Current versions of Snort (i.e., starting
with version 2.0) use an improved detection engine that
matches strings in parallel. Snort uses many efficient
and high-speed string matching algorithms like Aho-
Corasick [1] and Wu-Manber [13] to match strings in
parallel. If the string match succeeds for certain rules,
then the packet header fields in thoses rules are
checked sequentially. Snort uses Perl Compatible Reg-
ular Expression (PCRE) library for checking regular
expressions. The regular expressions are also checked
sequentially for the rules for which string matching
has succeeded.

In this paper, we look at the problem of improv-
ing the performance of packet classification used in
Snort. We use a technique based on generating native
code for packet classification. Use of native compila-
tion to speed up programs is a common technique used
in programming language domain. For example, Jo-
hansson and Jonsson [5] have shown how simple
native compilation can increase the speed of Erlang
programs. Native code for packet classification can be
generated by writing C code which understands the
grammar of packet formats, and performs necessary
byte-order and alignment adjustments. However, writ-
ing such C code is cumbersome and error-prone.
Moreover, maintaining such low-level code is tedious
as making even a small change to the rule set may
involve making lot of changes in the C code. Making
frequent large-scale changes to the low-level C code
makes it difficult to have high confidence that the
code is performing signature matching correctly.

22nd Large Installation System Administration Conference (LISA ’08) 159

Fast Packet Classification for Snort . . . Tongaonkar, Vasudevan, and Sekar

To overcome this problem, we use a high-level
specification language with a special type-system for
packet processing to specify Snort rules. The compiler
for the language generates C code which can be com-
piled using common C compiler like GCC to get
native code for packet classification. We provide a
translator to convert existing Snort rules to a specifica-
tion in this language. This way system administrators
need not learn the high-level specification language
and can continue specifying rules in the Snort rule lan-
guage.

In the Snort Overview section, we discuss Snort’s
detection engine. The Packet Classification Code sec-
tion discusses different approaches to generate packet
classification code. We describe the type system used
to generate native code in the Specification Language
section. The implementation details are provided in the
Implementation section which is followed by Evalua-
tion, Related Work, and the Conclusion.

Snort Overview

In this section we discuss the rule language of
Snort and the signature matching scheme used in
Snort.
Snort Language

Snort uses a simple rule-based language to spec-
ify signatures. Snort signatures are written in a config-
uration file which is read when Snort starts up. A
Snort signature file consists of variable declarations
and rules. The variable declarations are similar to
typedefs in C; the value of the variable is substituted
in the rules for signature matching. The rules them-
selves consists of a rule header and a rule body.

The rule header consists of action, protocol, ip
addresses, ports, and direction operator. Rule actions
specify the action like logging or alerting that Snort
should perform when a rule matches a packet. Each
rule is applicable to packets belonging to a particular
protocol like TCP, UDP, ICMP, or IP. For TCP and
UDP rules, the header specifies the source and desti-
nation ip addresses and port fields for which the rule is
to be applied. Specifying any for one of these fields
means that the field in the rule matches for any value
in a packet. The fields to the left of the direction oper-
ator (→) are the source fields, while the ones on the
right hand side are for the destination. An alternative
operator, called bidirectional operator (<>), indicates
that the rule is to be applied to both directions of the
flow. Consider the following variable declaration and
rule:
var internal_host 192.168.2.0/24
alert tcp $internal_host any -> 192.168.1.1 80

‘‘internal_host’’ is a variable whose value is the host
address 192. 168. 2. 0 with subnet mask of 24 bits. So
any host with this subnet address matches inter-
nal_host variable. This rule generates an alert when it
sees a tcp packet from any port on an internal host to
host 192. 168. 1. 1 on port 80.

Rule body consists of rule options which belong
to one of the following categories: i) meta-data op-
tions provide information about the rule but are not
used in signature matching operation, ii) payload
options are concerned with tests for deep packet
inspection, iii) non-payload options specify other tests
including tests on packet header fields, and iv) post-
detection options specify some triggers which are fired
when a rule matches a packet. Consider the rule body
appended to the previous Snort rule:
var internal_host 192.168.2.0/24
alert tcp $internal_host any ->

192.168.1.1 80 (msg:’’web-attack’’;
ttl: 5; content: ’’abc’’;
logto: ’’logfile’’;)

In this rule, msg is a meta-data option that speci-
fies the message to be generated when a packet
matches this rule. logto is a post-detection option that
specifies the file to be used for logging. content is a
payload option which means that the rule is matched
by a packet only if the payload contains the string
‘‘abc’’. Further, the packet has to satisfy the constraint
that ttl field value is equal to 5 for the rule to match.

Snort Detection Engine

Starting with version 2, Snort uses an improved
detection engine for matching signatures. The rules
are first grouped based on the protocol field. Thus, all
rules are put in one of the groups corresponding to
TCP, UDP, ICMP, and IP. The rules are further
grouped based on certain fields – source and destina-
tion ports for TCP and UDP, type for ICMP, and pro-
tocol for IP rules. For each group, the strings specified
by rules in the group are combined to form an Aho-
Corasick automaton. The Aho-Corasick automaton is
a deterministic finite automaton that can be used to
match the payload against multiple strings in parallel.

When Snort receives a packet, it identifies the
group to which the packet belongs. Then the payload of
the packet is matched against the Aho-Corasick autom-
aton corresponding to that group. Aho-Corasick algo-
rithm identifies all the rules whose content option is
matched. For each of these rules, an interpreter checks
whether the other payload and non-payload options are
satisfied by the packet. If all the options of a rule are
satisfied, then a match is announced for that rule.

Packet Classification Code

Signature matching operation consists of two
main components: i) packet classification, and ii) deep
packet inspection. Packet classification is the problem
of identifying the rules matching a packet based on the
values in the packet header fields. The performance of
packet classification can be improved by using native
code instead of interpreted code. Native code can be
generated from packet classification code written in a
low-level language like C. The most straight forward
way to write such code is by treating the packet as a

160 22nd Large Installation System Administration Conference (LISA ’08)

Tongaonkar, Vasudevan, and Sekar Fast Packet Classification for Snort . . .

sequence of bytes. There are many problems with this
approach. To access any field of the packet, the offset
of that field from the start of the byte sequence has to
be calculated. This way of accessing fields with offset
calculations has many potential pitfalls. For example,
to access the source port field of tcp header, one needs
to first ensure that the packet is a tcp packet. The off-
set for tcp source port depends on the length of the
variable-length options field of ip header. Also, the
bytes at those offsets need typecasting to unsigned
short and conversion to the host order. It is clear
that writing such code is very tedious and error-prone.

#define ETHER_LEN 6
struct ether_hdr {

byte e_dst[ETHER_LEN]; /* Ethernet destination address */
byte e_src1[ETHER_LEN]; /* Ethernet source address */
short e_type; /* Protocol of carried data */

};

Listing 1: Ethernet header description.

#define ETHER_IP 0x0800
struct ip_hdr : ether_hdr with e_type == ETHER_IP {

bit version[4]; /* IP Version */
bit ihl[4]; /* Header Length */
byte tos; /* Type Of Service */
short tot_len; /* Total Length */
...
short check_sum; /* Header Checksum */
unsigned int s_addr; /* Source IP Address Bytes */
unsigned int d_addr; /* Destination IP Address Bytes */

};

Listing 2: IP header with inherited Ethernet header.

struct ip_hdr : (ether_hdr with e_type == ETHER_IP) or
(tr_hdr with tr_type == TOKRING_IP) {

...
}

Listing 3: Headers for Ethernet and Token Ring.

A better approach is to overlay the packet header
structure on the byte sequence and then access packet
header fields as fields of the structure. Even this
approach does not solve the problem completely due
to the presence of variable length fields and the need
to perform protocol decoding before accessing any
field. Another approach is to use a special language
developed explicitly for packet processing. Such a lan-
guage can have a hand-crafted type checker for partic-
ular network protocols or have a generic type checker
that supports different network protocols. In the for-
mer approach, the packet structure for supported pro-
tocols are hard coded into the compiler. This approach
is very rigid and supporting new protocols requires
modification to the compiler. We use the latter ap-
proach which is more flexible and extensible.

In [11] we presented a special type system that
can capture packet structures while providing the
capabilities to dynamically identify packet types at
runtime. In the next section we describe the features of
the high-level language that uses that type system.

Specification Language

The language for specifying packet classifiers is
rule-based. Specifications consist of variable and type
declarations, followed by a list of rules. In the follow-
ing sections we describe each of these components of
specifications.
Packet Structure Description

The structure of the packets has to be specified
using packet type declarations before specifying the
rules. The syntax of type declaration for packets is
similar to that of the C-language. For example, Listing
1 describes an Ethernet header.

The nested structure of protocol header can be
captured using a notion of inheritance. For example,
an IP header can be considered as a sub-type of Ether-
net header with extra fields to store information spe-
cific to IP protocol. The specification language per-
mits multilevel inheritance to capture protocol layer-
ing. Inheritance is augmented with constraints to cap-
ture conditions where the lower layer protocol data
unit (PDU) has a field identifying the higher layer data
that is carried over the lower layer protocol. For
instance, IP header derives from Ethernet header only
when e type field in the Ethernet header equals
0800h; see Listing 2.

To capture the fact the same higher layer data
may be carried in different lower layer protocols, the
language provides a notion of disjunctive inheritance.
The semantics of the disjunctive inheritance is that the
derived class inherits fields from exactly one of the
possibly many base classes. Listing 3 shows a specifi-
cation that IP may be carried within an Ethernet or a
token ring packet.

22nd Large Installation System Administration Conference (LISA ’08) 161

Fast Packet Classification for Snort . . . Tongaonkar, Vasudevan, and Sekar

We can declare a variable of type ether_hdr and
access various packet fields by using the fields in the
respective structure. For example, to access the source
port of a tcp packet, we declare a variable correspond-
ing to packets as follows:
ether_hdr p;

Now, p.tcp_sport stands for source port of a tcp
packet.

Rules

The rules are of the form ‘‘cond → actn’’, where
actn specifies the action to be taken on a packet that
matches the condition cond. The cond is a conjunction
of tests on packet fields. The language supports vari-
ous tests like equality, disequality, and inequality
along with bit-masking operations on packet fields. A
packet matches a rule if all tests in the rule succeed. If
multiple rules match at the same time, actions associ-
ated with each rule are launched. Consider the rule in
Listing 4. The first test in the rule is equivalent to check-
ing whether the source address of the packet belongs to
192. 168. 2. 0/24. Here, 0xc0a80200 is the hex repre-
sentation of 192. 168. 2. 0 and 0xffffff00 corre-
sponds to the 24-bit subnet mask. This rule further
checks that destination address is 0xc0a80100 (192.
168.1.0) and destination port is 80. This rule is equiva-
lent to the Snort rule shown in the Snort Language sec-
tion.

R1: (p.s_addr & 0xffffff00 == 0xc0a80200) &&
(p.d_addr == 0xc0a80100) &&
(p.tcp_dport == 80) -> alert(R1);

Listing 4: Sample packet matching rule.

R1: (p.e_type == 0x800):(p.s_addr & 0xffffff00 == 0xc0a80200) &&
(p.e_type == 0x800):(p.d_addr == 0xc0a80100) &&
(p.e_type == 0x800):(p.proto == 0x11):(p.tcp_dport == 80) -> alert(R1);

Listing 5: Transformed R1.

R1: (p.proto == tcp) && (p.s_addr == $EXTERNAL_NET) &&
(p.d_addr == $INTERNAL_NET) && (p.tcp_dport == $HTTP_PORT) &&
(p.ttl == 5) -> alert(R1)

Listing 6: Alerts for tcp packets with ttl field of 5.

The compiler generates a C function for this rule
set which takes a network packet (as byte sequence) as
input, performs the matching, and returns the rules
that match. The packet matching code contains appro-
priate offset calculation, byte alignment, and order
adjustment code.

Constraint Checking

An important requirement for the language to be
type safe is that the constraints must hold before the
fields corresponding to a derived type are accessed.
Note that at compile time the actual type of the packet
is not known. For example, a packet on an Ethernet
interface must have the header given by ether_hdr.
But it is not known whether the packet carries an ARP
or an IP packet. So the constraint associated with
ip_hdr must be checked at runtime before accessing

the IP-relevant fields. Similarly, before accessing TCP
relevant fields, the constraints on tcp_hdr must be
checked. Furthermore, the constraints on ip_hdr must
be checked before checking constraints on tcp_hdr.

The compiler automatically inserts the appropri-
ate constraints before each field test using the packet
structure specification (described in the Packet Struc-
ture Description section). For example, the compiler
automatically transforms the previous rule to that
shown in Listing 5.

Here, the test to the left of : is the precondition
that needs to be satisfied before the test on the right
can be performed. For the first test in the rule, the
compiler figures out that s_addr is a field in the
ip_hdr structure. So it adds the constraint on ip_hdr,
i.e., e_type ≡0x800, to this test as precondition.
Before accessing tcp fields, the constraints on ip_hdr
and tcp_hdr need to be satisfied. As shown in the test
on tcp_dport in this example, the compiler adds these
constraints as a list. Note that the compiler adds these
constraints in the order defined by the inheritance
chain of packet structures.

Implementation

We implemented a Perl based translator for con-
verting Snort rules into a specification for our lan-
guage. The translator generates the packet structure
specification and generates a rule in the specification
for each rule in a Snort rule file. So there is a one-to-
one correspondence between the rules in the Snort
rules file and the rules in our specification file. The
rules in our specification contain only the tests on
packet header fields. The other tests in the rules are
checked by using the detection engine of Snort itself.

For each non-payload detection option of Snort
rules we generate the corresponding packet field test
in our language. For example, consider the following
rule in Snort,
alert tcp $EXTERNAL_NET any

-> INTERNAL_NET $HTTP_PORT
(..., ttl: 5; ...)

This rule generates alerts for tcp packets with ttl
field of 5 from external network to internal network on

162 22nd Large Installation System Administration Conference (LISA ’08)

Tongaonkar, Vasudevan, and Sekar Fast Packet Classification for Snort . . .

port for http (80). The corresponding rule in our speci-
fication language is shown in Listing 6.

We use our compiler to compile the Snort rules
in our specification format into C code. The compiler
generates a backtracking automaton that matches each
rule sequentially. Then it generates the C-code for
matching this automaton in a straight-forward way
using if-then-else branching. We use C compiler like
gcc to generate native packet classification code in the
form of a shared library. So to update the rules, all that
one needs to do is to compile the rules offline and then
reload the shared library. We note that this approach is
no more disruptive than that of Snort where the rules
need to be re-read and recompiled.

We load the shared library containing the packet
classification code when Snort starts up. At runtime,
when a packet is delivered to Snort by pcap library,
we pass on the packet to the shared library. The shared
library matches the packet against all the rules and
returns the rules that match. At this point control is
transferred to the default Snort detection engine. From
this point on, the usual Snort processing (like logging)
is performed on the packet.

We note that using this approach does not modify
the behavior of Snort. In particular, for any packet the
modified Snort matches the same rules as the original
Snort. This is because we are just changing the way
packet classification is performed without changing
the actual tests in a rule.

Evaluation

We evaluated the effectiveness of the proposed
technique using Snort 2.6.1.5. Our experiments were
performed on a system with 3.06 GHz Intel Xeon pro-
cessor and 3 GB memory, running Fedora Core 5
(Linux kernel 2.6.15). To understand the impact of
native compilation of Snort rules we used the default
signatures that come with two different versions of
Snort – Snort-1.8 and Snort-2.6. Snort-1.8 uses a
slower scheme for matching packet fields where each
rule is checked sequentially without first grouping the
rules. To compare the performance of native code for
packet classification, we generate native code for
matching similar to the way used in Snort-1.8. This is
a very simple way of matching where a packet is
matched against all the rules for the protocol that it
belongs to. For example, a tcp packet will be matched
against all tcp rules. On the other hand, in Snort-2.6 it
will be matched against only the tcp rules whose
source and destination port values are compatible with
the values in the packet.

We converted the signatures to a specification for
our language as described in implementation section
by combining rules which differed only in payload
detection options. So we were left with around 300
unique rules on packet header fields for Snort-1.8 rule
set and 600 rules for Snort-2.6 rule set. We ignore the

payload options for evaluating the packet classifica-
tion schemes.

We used two sets of packet traces for measuring
runtime performance. The first one consists of all
packets captured at the external firewall of a medium-
size University laboratory that hosts about 30 hosts.
Since the firewall is fully open to the Internet (i.e., the
traffic is not pre-screened by another layer of firewalls
in the University or elsewhere), the traffic is a reason-
able representative of what one might expect a NIDS
to be exposed to.

Our packet trace consisted of about 8 million
packets collected over a few days. The second one cor-
responds to 10 days of packets from the MIT Lincoln
Labs IDS evaluation data set [8], consisting of 17 mil-
lion packets. We used Snort-2.6 in offline mode to per-
form these experiments. In offline mode, Snort reads
the packets from a trace file using pcap_loop function
call of pcap library. For each packet, pcap_loop calls a
callback function.

In Snort, the callback function first decodes the
packet and passes it to detection engine, i.e., the com-
ponent that performs signature matching. We mea-
sured the time spent in the callback function by calling
times() function before and after the call to pcap_
loop.

To get the time spent in detection engine, we first
ran Snort without making any call to the detection
engine and measured the time spent in the callback
function. This is the time spent in reading the packets
from file and decoding them. Then we measured the
time spent in the callback function for unmodified
Snort. The difference in the two measured times gives
the time spent in the detection engine.

We modified Snort-2.6 such that after decoding
the packet was passed to the function in shared object
which performs packet classification. We used the
above technique to measure the time spent in this
function. To compare the effect of the number of rules
on the matching time, we used configuration files with
different number of rules and found the packet classi-
fication time for the original Snort and the modified
Snort that uses native code.

Figures 1 and 2 show the per packet classifica-
tion time for Snort-1.8 rule set for the first and second
packet traces. Even though Snort-2.6 groups the rules
based on certain fields for each protocol, it is five
times slower for the first packet trace and two times
for the second trace when the complete rule sets are
used. As expected, the matching time for compiled
rules increases linearly with the number of rules but is
always better than the interpreted rules by a factor of
at least 2. Snort-2.6 stores the rules as some simple
data structure in memory. At runtime, this data struc-
ture needs to be traversed. This traversal involves
many memory accesses. The compiled code on the
other hand performs this traversal using simple condi-
tional and unconditional branching intructions. This is

22nd Large Installation System Administration Conference (LISA ’08) 163

Fast Packet Classification for Snort . . . Tongaonkar, Vasudevan, and Sekar

 0

 1000

 2000

 3000

 4000

 5000

 300 200 100 80 60 40 20 1

D
et

ec
tio

n
tim

e
in

 n
an

o
se

co
nd

s
pe

r
pa

ck
et

Number of Rules

Compiled rules
Snort-2.6

Figure 1: Matching time for Snort-1.8 rules for first
trace.

 0

 1000

 2000

 3000

 4000

 5000

 300 200 100 80 60 40 20 1

D
et

ec
tio

n
tim

e
in

 n
an

o
se

co
nd

s
pe

r
pa

ck
et

Number of Rules

Compiled rules
Snort-2.6

Figure 2: Matching time for Snort-1.8 rules for sec-
ond trace.

the main reason for the performance improvement
obtained by using native code over interpreted code.

The results for Snort-2.6 (Figures 3 and 4) are
qualitatively similar showing that native compilation
of packet classification, even with a naive matching
scheme, performs about 30% better for the complete
rule sets than the interpreted method that uses a more
sophisticated scheme.

Related Work

Chandra, et al. developed Packet Types [2], a
high-level specification language that provides a type
system for packet formats similar to our language. It
uses a construct called as refinement to capture the
notion of inheritance. The inheritance mechanism of
Packet Types offers more power than that of our lan-
guage in that it can capture protocols that use trailers
also. Our language trades off this power for simplicity.
For the kind of protocols that Snort rules handle, this
additional expressive power is not required.

Vern Paxson developed Bro [9] which is another
popular open source NIDS. Bro has a powerful policy
language that allows the use of sophisticated signa-
tures. Bro comes with a translator to convert Snort

 0

 1000

 2000

 3000

 4000

 5000

 600 500 400 300 200 100 40 1

D
et

ec
tio

n
tim

e
in

 n
an

o
se

co
nd

s
pe

r
pa

ck
et

Number of Rules

Compiled rules
Snort-2.6

Figure 3: Matching time for Snort-2.6 rules for first
trace.

 0

 1000

 2000

 3000

 4000

 5000

 600 500 400 300 200 100 40 1

D
et

ec
tio

n
tim

e
in

 n
an

o
se

co
nd

s
pe

r
pa

ck
et

Number of Rules

Compiled rules
Snort-2.6

Figure 4: Matching time for Snort-2.6 Rules for sec-
ond trace.

rules to Bro signatures [12]. But the semantics of
matching differ in Bro and Snort. Unlike snort, which
uses signatures that are based on individual packets,
Bro performs matching on data streams obtained after
packet reassembly. Our goal was to develop a plug-in
for Snort that speeds up Snort while preserving the
matching semantics.

Kruegel and Toth developed the Snort-NG [6]
system, which demonstrated the performance gains
achievable by parallelizing the signature matching.
They use a two-stage approach where a decision tree
is used for packet classification followed by content
search. They use an interpreter based approach for
packet classification. In that respect, our technique can
help them in speeding-up the packet classification.

Previous research [14, 16] has looked at speed-
ing up packet classification using hardware based
approach. But these works focus on IP lookup prob-
lem, i.e., classifying packets based only on source and
destination addresses and ports. Such an approach is
useful in routers but not in intrusion detection systems
like Snort which use additional fields like ttl, window,
and tcp flags.

164 22nd Large Installation System Administration Conference (LISA ’08)

Tongaonkar, Vasudevan, and Sekar Fast Packet Classification for Snort . . .

There has been a lot of research on speeding up
the content matching component of Snort. Various soft-
ware [3, 7] and hardware [15, 4] based solutions have
been proposed in this area. In that respect our work can
be used in conjunction with these solutions. Our packet
classifier can quickly filter out the packets that do not
need the expensive content matching operation.

Conclusion

In this paper, we presented a technique for
improving the performance of packet classification
used in IDS like Snort by using native code while pre-
serving the matching semantics. Generating native
code by hand is tedious and error prone. So we used a
type system tailored for packet formats to generate
type safe code. Our experiments with real and syn-
thetic traces show that use of native code can result in
speeding up the packet classification of Snort from
30% up to 80%. In the future, we want to generate
native code for content matching.

Author Biographies

All The authors of this paper are members of the
Secure Systems Laboratory of Stony Brook and their
homepages are accessible on the web from the labora-
tory page at http://www.seclab.cs.sunysb.edu.

R. Sekar is currently Professor of Computer Sci-
ence and heads the Secure Systems Laboratory at
Stony Brook University. Prof. Sekar’s research inter-
ests include computer system and network security,
software and distributed systems, programming lan-
guages and software engineering. He can be reached
by email at sekar@cs.sunysb.edu .

Alok Tongaonkar is a Ph.D. student in the CS
department at Stony Brook. His main research area is
computer security and is currently working on analyz-
ing and optimizing firewalls and intrusion detection
systems. He is available at alok@cs.sunysb.edu .

Sreenaath Vasudevan is a M.S. student in the CS
department at Stony Brook. Sreenaath does research in
the area of computer security. He can be reached via
email at sreev@cs.sunysb.edu .

Acknowledgments

We would like to thank Manuel Rivera and Lohit
Vijayrenu who helped in writing the translator for
Snort rules. We would also like to thank our shephard
Brent Hoon Kang for his insightful comments and
Rob Kolstad for his help in formatting the final ver-
sion of the paper.

Bibliography

[1] Aho, A. and M. Corasick, ‘‘Efficient String Match-
ing: An Aid to Bibliographic Search,’’ Communi-
cations of the ACM, Vol 18, Num. 6, pp. 333-343,
1975.

[2] Chandra, Satish and Peter J. McCann, ‘‘Packet
Types,’’ Second Workshop on Compiler Support
for Systems Software (WCSSS), May, 1999.

[3] Fisk, M. and G. Varghese, Fast Content Based
Packet Handling for Intrusion Detection, 2001.

[4] Jacob, Nigel and Carla Brodley, ‘‘Offloading IDS
Computation to the GPU,’’ ACSAC ’06: Proceed-
ings of the 22nd Annual Computer Security Ap-
plications Conference, IEEE Computer Society,
pp. 371-380, 2006.

[5] Johansson, Erik and Christer Jonsson, Native Code
Compilation for erlang, Technical Report, 1996.

[6] Kruegel, Christopher and Thomas Toth, ‘‘Using
Decision Trees to Improve Signature-Based Intru-
sion Detection,’’ 6th Symposium on Recent Ad-
vances in Intrusion Detection (RAID), 2003.

[7] Kumar, Sailesh, Sarang Dharmapurikar, Fang Yu,
Patrick Crowley, and Jonathan Turner, ‘‘Algo-
rithms to Accelerate Multiple Regular Expres-
sions Matching for Deep Packet Inspection,’’
SIGCOMM ’06: Proceedings of the 2006 Confer-
ence on Applications, Technologies, Architec-
tures, and Protocols for Computer Communica-
tions, pp. 339-350, ACM, 2006.

[8] MIT Lincoln Labs, DARPA Intrusion Detection
Evaluation, 1999.

[9] Paxson, V., ‘‘Bro: A System for Detecting Network
Intruders in Real-Time,’’ USENIX Security, 1998.

[10] Roesch, Martin, ‘‘Snort – Lightweight Intrusion
Detection for Networks,’’ 13th Systems Admini-
stration Conference, USENIX, 1999.

[11] Sekar, R., Y. Guang, S. Verma, and T. Shanbhag,
‘‘A High-Performance Network Intrusion Detec-
tion System,’’ ACM Conference on Computer and
Communications Security, pp. 8-17, 1999.

[12] Sommer, R. and V. Paxson, ‘‘Enhancing Byte-
Level Network Intrusion Detection Signatures
with Context,’’ ACM CCS, 2003.

[13] Wu, S. and U. Manber, ‘‘A Fast Algorithm for
Multi-Pattern Searching,’’ Technical Report TR-
94-17, 1994.

[14] Yu, Fang and Randy Katz, ‘‘Efficient Multi-
Match Packet Classification with TCAM,’’ High
Performance Interconnects, 2004.

[15] Yu, Fang, Randy H. Katz, and T. V. Lakshman,
‘‘Gigabit Rate Packet Pattern-Matching Using
TCAM,’’ 12th IEEE International Conference on
Network Protocols, 2004.

[16] Yu, Fang, T. V. Lakshman, Marti Austin Motoya-
ma, and Randy H. Katz, ‘‘SSA: A Power and
Memory Efficient Scheme to Multi-Match Packet
Classification,’’ Symposium on Architectures for
Networking and Communications Systems, 2005.

22nd Large Installation System Administration Conference (LISA ’08) 165

