
Ghost turns Zombie:
Exploring the Life Cycle of Web-based Malware

Michalis Polychronakis∗ Panayiotis Mavrommatis† Niels Provos†

Abstract
While the web provides information and services that en-
rich our lives in many ways, it has also become the pri-
mary vehicle for delivering malware. Once infected with
web-based malware, an unsuspecting user’s machine is
converted into a productive member of the Internet un-
derground. In this work, we explore the life cycle of web-
based malware by employing light-weight responders to
capture the network profile of infected machines. Our
results indicate that web-based malware provides a cor-
nerstone for large scale electronic fraud. It is used to
exfiltrate address books of compromised machines cre-
ating databases of hundred millions of email addresses,
to form spamming botnets responsible for a significant
fraction of spam currently seen on the Internet, and also
to steal login credentials that can be directly monetized
or leveraged to turn more web servers into malware de-
livery vectors.

We support our findings by providing a broad overview
of the post-infection network behavior of web-based mal-
ware, as well as in-depth examinations of the botnets and
leaked information we found during the course of our
study.

1 Introduction

A thriving Internet underground [6] has grown up in the
past several years, employing the hundreds of thousands
of malware infected commodity PCs to provide an infras-
tructure for conducting a wide range of criminal enter-
prises. Such activities range from carrying out electronic
fraud through phishing, to sending out billions of spam
email messages.

In previous work, we examined how vulnerable com-
puter systems become infected with malware simply by
browsing the web [10, 11]. Our analysis was based on

∗FORTH-ICS, Greece, email:mikepo@ics.forth.gr
†Google Inc., email:{panayiotis,niels}@google.com

detectingdrive-bydownloads on billions of web pages.
In a drive-by download attack, a malicious web page ex-
ploits a vulnerability in a web browser, media player, or
other client software to install and run malware on the
unsuspecting visitor’s computer. By loading suspicious
web pages with a web browser inside a virtual machine,
we found several million web pages capable of compro-
mising vulnerable computer systems.

While prior research has tried to understand the behav-
ior of individual malware binaries, little work has been
done to understand the network-level behavior of a large
population of computer systems infected with a diverse
set of web-based malware. To better understand this is-
sue, we instrumented our virtual machines with light-
weight responders to capture and respond to any network
payloads sent to the Internet by malware installed as a
result of a successful drive-by download attack. Our re-
sponders are capable of emulating HTTP, IRC, SMTP
and FTP sessions. For any protocols not directly emu-
lated, we also built a generic responder that captures all
other payloads.

Over the course of two months, we collected over
448, 000 responder sessions. We subsequently analyzed
these sessions, looking at overall trends and perform-
ing several in-depth case studies. Our analysis organizes
malware’s behavior into three categories:propagation,
data exfiltrationandremote control. We show how these
aspects taken together provide a compelling perspective
on the life cycle of web-based malware. The observed
malware activities range from capturing email addresses
from compromised machines, to joining infected systems
into botnets responsible for operating large-scale spam
campaigns.

Furthermore, the botnets created by web-based mal-
ware are not only controlled via traditional mechanisms
such as IRC, but often employ other protocols such as
HTTP. Our in-depth examinations turned up a variety of
interesting trends, including rich data exfiltration activity
and the use of custom protocols for command and con-

W e b C o n t e n tM a c h i n e L e a r n i n g S c o r i n gC a n d i d a t e U R L sV e r i fi c a t i o nD a n g e r o u s U R L s
M a c h i n el e a r n i n gt r a i n i n g

Figure 1: Overall system architecture. Using ma-
chine learning techniques, suspicious URLs are selected
among billions of web pages for verification in a virtual
machine.

trol communication. We believe these results provide the
first large scale empirical look at web-based malware.

The remainder of the paper is organized as follows. In
the next section, we provide a brief overview of our mal-
ware analysis and collection architecture. In Section 3,
we investigate the life-cycle of web-based malware based
on broad trends in our data, and discuss in-depth case
studies of botnets and data exfiltration activities. Finally,
we discuss related work in Section 4 and conclude in
Section 5.

2 System Architecture

We build upon a scalable system developed with the goal
of detecting harmful URLs on the web. In this section,
we describe our extensions to this system to collect and
analyze malicious network activity occurring after infec-
tion. To provide context for our research, we first give a
brief overview of the overall system described in depth in
prior work [10]. This is followed by a detailed descrip-
tion of the light-weight responders which allow us to au-
tomatically capture the network-level activity of drive-by
downloads.

2.1 Overview

Our system consists of an efficient first-pass filter fol-
lowed by a verification component. Figure 1 provides an
overview of the system components and their interaction.
The first-pass filter is essentially amapreduce[5] over
billions of web documents. For each web page, we ex-
tract several features, including links to known malware

V i r t u a l M a c h i n eM a l w a r ep r o c e s s (e s) W e bH T T P p r o x yG e n e r i cR e s p o n d e rB r o w s e r
S M T P , I R C ,F T PR e s p o n d e r s

Figure 2: Network flow in the verification component.
Outgoing connections to known ports are forwarded di-
rectly to the corresponding responder or the HTTP proxy.
All other connections are handled by the generic respon-
der, which can potentially identify and hand off connec-
tions that use any of the emulated protocols to the appro-
priate responder.

“distribution” sites, suspicious HTML elements, or the
presence of code obfuscation. The combination of these
features is scored by a model trained on a specialized
machine-learning system [3]. URLs with a high score
are considered potentially malicious, and are submitted
to the verification component for further analysis. The
URLs that are verified to be malicious are then exported
to Google Web Search and, via the Google Safe Brows-
ing API [1], to other clients. The verification results are
also used to retrain the machine learning model.

To verify if a candidate URL is indeed malicious,
we have deployed a network of client honeypots based
on virtual machines running Windows and Internet Ex-
plorer. To start the verification of a URL, we load it with
Internet Explorer, which is configured to use a web proxy
running outside the VM. The proxy records all HTTP
requests and scans all HTTP responses using several
anti-virus engines. New processes, file system changes,
and registry modifications are monitored from within the
VM. Upon infection, we typically find abnormal activ-
ity in all of the monitored areas. A combination of these
signals is used to decide whether the URL is malicious
or not.

2.2 Responders

To better understand the purpose and effects of web mal-
ware, we extended the verification component with light-
weight responders, which provide fabricated responses
for commonly used protocols such as SMTP, FTP and
IRC. Upon infection of the virtual machine, any traffic to
standard ports is forwarded to the appropriate handler, as

shown in Figure 2: web traffic is handled by the HTTP
proxy, port 25 traffic is redirected to the SMTP respon-
der, and so on.

Since malware may communicate over non-standard
ports or using custom protocols, all outgoing traffic to-
wards any port other than the standard ports of the emu-
lated services is redirected to ageneric responder. The
purpose of the generic responder is twofold: i) to hand
off connections over non-standard ports that use one of
the emulated protocols to the appropriate responder, and
ii) to elicit further information about the malware from
connections to non-emulated services, or connections
that use unknown protocols.

Upon receiving a connection, the generic responder at-
tempts to heuristically identify the application-level pro-
tocol used. For client-initiated protocols, in which the
client first sends a message to the server (e.g., HTTP,
IRC), the generic responder can determine which service
it should emulate by looking in the client’s message for
known protocol keywords and structure.

For protocols in which the server initiates the dialog
by sending a message to the client (e.g., SMTP, FTP),
the responder acts as follows: after it accepts a connec-
tion, if no data is received within a few seconds, the re-
sponder assumes that the client is waiting for a message
from the server. In that case, the responder blindly ini-
tiates the dialog by sending a generic welcome banner
message. Depending on the client’s response, the generic
responder can identify the actual protocol being used and
hand off the connection to the appropriate emulated ser-
vice. As discussed in Section 3, the generic responder
successfully identified many HTTP and IRC connections
over non-standard ports and handled them appropriately.

The generic responder is useful even if the malware
uses unsupported or unknown protocols. Without the
responder, we would observe just a connection attempt,
with no transmitted data. However, by accepting all TCP
connections to any port, the generic responder can po-
tentially elicit the first application-level message sent by
the malware, which may provide useful insight about the
intended activity. Indeed, as discussed in the following
section, the generic responder captured several sessions
of custom malware communication protocols over arbi-
trary ports.

3 Life Cycle of Web-based Malware

Once web-based malware infects a computer, it often in-
teracts with other hosts on the Internet to either report in-
formation about the compromised system, or to receive
instructions for further actions. For example, a newly
infected computer is likely to become part of a botnet.
Web-based malware may also download other malware

components, report stolen information and credentials,
or attempt to propagate further.

In the following, we provide a large-scale analysis of
post-infection malware activity as observed by our light-
weight responders. We aim to provide insight into what
happens after a vulnerable system gets infected as a re-
sult of visiting a malicious URL, and how it interacts
with the Internet. We do not study malware in isolation,
but as it behaves after compromising a typical user’s sys-
tem running as a virtual machine. For example, in most
drive-by downloads, multiple malware components are
being installed at the same time.1

Our network-level analysis of malware, i.e., malware’s
interaction with other hosts and our responders, is orga-
nized into three categories:propagation, data exfiltration
andremote control. As we explore the post-infection ac-
tivity, we show how these behaviors taken together pro-
vide revealing insights into the life cycle of web-based
malware.

3.1 Data Set

Our analysis covers a two-month period, from January
17, 2008 to March 25, 2008. During this period, our vir-
tual machines analyzed URLs from5, 756, 000 unique
hostnames—we report on unique hostnames instead of
unique URLs, as URLs from the same host usually in-
stall the same set of malware. There were307, 000 host-
names serving at least one harmful URL, while152, 700

of these sites (49%) had URLs that resulted in HTTP
requests initiated from processes other than the web
browser. About18, 000 sites (5%) had URLs that trig-
gered responder sessions.

Across all URLs, the total number of responder ses-
sions with transmitted data exceeded448, 000. There
were many more cases where malware made network
connections without transmitting any data. For example,
we observed connections to popular SMTP servers with-
out actual data transmission. We speculate that these are
attempts to test the victim’s firewall configuration or In-
ternet connectivity.

3.2 Network Characteristics

We begin our analysis by providing high-level statistics
about the overall post-infection network activity of the
analyzed URLs.

Figure 3 presents the destination port distribution of
all outgoing connections from the virtual machine upon
infection. For each port, we report the number of unique

1We hypothesize the existence of malware that relies on the installa-
tion of multiple components for becoming fully functional.Its purpose
might not be discovered by analyzing individual binaries inisolation.

N
um

be
r

of
 u

ni
qu

e
ho

st
na

m
es

10

10 2

10 3

10 4

Destination Port

21 22 25 37 82 83 85 11
1

13
5

13
9

44
3

44
5

66
6

80
8

10
10

12
07

14
33

18
00

19
00

19
35

20
00

20
07

20
08

20
14

27
03

30
14

31
28

34
60

36
03

40
99

55
88

66
66

66
67

70
00

70
70

77
77

80
00

80
01

80
08

80
88

81
81

85
26

88
88

95
98

98
98

31
66

6
45

22
1

60
00

0

Figure 3: Port distribution of outgoing connections (ex-
cluding HTTP/80). For clarity, ports with activity related
to less than50 unique host names have been omitted.

other

SMB

NETBIOS HTTP (non std)

SMTP

IRC

MSSQL

FTP
DCOM

Figure 4: Network protocols used by malware (excluding
HTTP/80).

host names on which we found at least one URL in-
stalling malware that transmitted data to that port. This
removes any bias from host names for which the sys-
tem happened to analyze multiple URLs. A total of416

different destination ports were contacted and is indica-
tion of the diverse and obscure nature of malware’s post-
infection network behavior.

Figure 4 shows the network protocol distribution of
the observed outgoing connections. The classification
was made using payload inspection, without consider-
ing the destination port number. Potential reasons for
the increased diversity in destination port numbers are
custom protocols as well as standard protocols over non-
standard ports — probably for making the purpose of the
traffic less obvious. For example, in addition to port80,
we witnessed HTTP connections to63 other port num-
bers. Similarly, we found malware communicating with
IRC servers on44 different ports.

The exact distribution of HTTP and IRC connections
according to the destination port number is shown in
Figures 5 and 6, respectively. Most of the HTTP con-
nections to non-standard ports are either GET or POST
requests. Using technologies such as PHP and JSP,
malware authors can implement flexible communication

N
um

be
r

of
 u

ni
qu

e
ho

st
na

m
es

0

10

10 2

10 3

CONNECT

POST

GET

Destination Port

79 83 85 88 89 90 99 66
6

72
0

80
8

85
6

88
0

99
9

10
10

10
24

11
11

12
07

12
34

18
50

20
07

20
08

21
11

23
68

30
30

30
32

31
28

33
00

34
00

37
00

40
99

43
09

44
24

45
38

51
00

55
88

56
08

59
77

69
48

70
00

71
82

77
77

78
78

80
00

80
01

80
08

80
15

80
16

80
19

80
82

80
88

81
81

82
82

85
26

88
88

88
89

88
99

90
00

92
00

99
96

10
32

7
17

20
1

19
88

8
27

00
0

60
00

0

Figure 5: Destination port distribution of HTTP connec-
tions destined to non-standard ports, for different HTTP
request methods.

N
um

be
r

of
 u

ni
qu

e
ho

st
na

m
es

0

10

10 2

IRC server port

11
0

10
00

11
11

12
99

17
28

18
20

19
80

19
89

20
08

25
69

30
29

31
69

32
40

35
25

36
70

39
21

39
35

58
53

66
60

66
61

66
62

66
65

66
67

66
68

66
69

67
89

70
00

70
12

70
45

75
31

75
75

76
13

77
77

80
01

80
40

84
92

91
73

92
83

96
67

96
69

99
99

13
78

6
20

73
3

23
57

4
65

52
0

Figure 6: The distribution of IRC server ports contacted
by web-based malware.

mechanisms for sending commands or updates and re-
trieving information from the infected hosts. We also
witnessed some CONNECT requests which probably
correspond to probes for open proxies that support the
CONNECT method for constructing tunnels. About one
third of the connections, corresponding to theothercate-
gory in Figure 4, used less popular or unknown protocols
to 317 different destination ports.

3.3 Discovery and Propagation

One of the most common network activities of malware
upon infecting a host is to scan for other vulnerable sys-
tems, either in the same LAN or the Internet, to further
propagate. As shown in Figure 4, we observed a sig-
nificant number of network connections using common
Windows protocols. About half of the connections were
to ports 139 (NETBIOS) and 445 (SMB), which are often
related to exploiting Windows vulnerabilities. Ports 135
(DCOM) and 1433 (MSSQL) are also commonly associ-
ated with exploits against Windows and Microsoft SQL
servers, respectively.

As our responders do not emulate these protocols, we

observed only the first protocol packet.2 The majority of
probes were to IP addresses on the same network with
the virtual machine, which implies that most malware
first scan neighboring computers, either for vulnerable
services or network shares with unrestricted access.

3.4 Reporting home

Part of the malware life cycle consists of notifying its au-
thor upon successful installation. This activity accounted
for the majority of the emails captured by our SMTP re-
sponders. Table 1 shows the most common email sub-
jects we observed. The subjects of the captured emails
signify this type of activity quite clearly:XP Hacked,
or Installation Report. The email bodies usually contain
further information about the victim’s host, such as its IP
address, access credentials, and the port numbers of any
installed back doors.

Table 2 shows the SMTP domains most frequently
used by malware to send installation reports. In most
cases, the emails were sent to drop box accounts on pop-
ular free web mail services, as well as ISP mail services,
usually employing several different SMTP servers for
each service.

Subject # Messages
XP Hacked 390
ProRat [...] 162
Vip Passw0rds 98
Log file from ... 82
Installation report 76
Perfect Keylogger [...] 47
Installation on XP succeeded 12
E g y S p y KeyLogger [...] 12
INFECTADO 6
Mais 1: XP 3
AVSXP 3
C-h-e-c-k-i-n-g:XP 2
...:Noticia quentinha de:... XP 2

Table 1: Top malware email subjects.

SMTP Server # Messages
yahoo.com 436
google.com 118
tvm.com.tr 98
aol.com 82
hotmail.com 19
outblaze.com 8
globo.com 6

Table 2: Top second-level domains of the SMTP servers
employed by malware.

The HTTP protocol is also frequently used to inform
malware authors about infections. The following exam-
ple shows a GET request made by theDoDoLook tro-

2We plan on emulating more protocols as part of future work.

jan that uses the MAC address (here sanitized) of the in-
fected computer as an identifier for retrieving targeted
updates:

GET /geturl.php?version=1.1.2&fid=7493&mac=00-00-00-00-
00-00&lversion=&wversion=&day=0&name=dodolook&recent=0
HTTP/1.1
Accept: */*
User-Agent: Mozilla/4.0 (compatible;)
Host: loader.51edm.net:1207
Cache-Control: no-cache

We also found malware utilizing custom communica-
tion protocols for reporting home. In some cases, the
malware reported successful infections using a custom
XML-like format. Specifically, the captured connections
of this particular protocol were destined to129 remote
hosts using29 different destination ports. Two examples
of the transmitted data3 are shown below:

HGZ5.<FT>2008-01-28 12:55:30</FT><IM>80</IM><GR>_&</GR>
<SYS>Windows XP 5.1</SYS>
<NE>XP</NE><pid>488</PID><VER>Ver1.22-0624</VER>
<BZ></BZ><P>1</P><V>0</V><IP>0.0.0.0</IP>

000......<LC></LC><GR>-</GR><IM>25</IM><NA>XP</NA>
<CS>English (United States)</CS><OS>Windows XP</OS>
<MEM>1024MB</MEM><CPU>2200 MHz</CPU>
<NET>LAN</NET><video>0</video><BZ>-</BZ>

The leaked information includes the IP address, OS
version, country, and other machine properties. We ob-
served several different instances in the above format
with only slight variations in the field types and order.
Another example of custom infection notification, ob-
served only on port6346, looked as follows:

105|OnConnect|United States|SYSTEM|XP - SYSTEM
|0.0.0.0|Not Detected|4.0.4 (BAZ)
|United States|OnConnect|

In this case, different fields are separated using pipe
characters. There were also cases in which most of the
contents of the captured stream consisted of binary data,
with some interspersed ASCII strings representing ma-
chine information.

3.5 Data Exfiltration

Moving from reporting successful installations to exfil-
trating more sensitive information is the next logical step
in the malware life cycle. Many responder sessions con-
tained signs of data exfiltration, including browser his-
tory files and stored passwords, usually captured by key-
board loggers or browser hooks. As one of the email
subjects —Vip Passw0rds — indicates, SMTP is
one method of achieving this goal. We observed several
emails sending back stored passwords from the compro-
mised machine.

3Non-printable characters are represented as dots, and someof the
information was masked.

The large number of POST requests in Figure 5 sug-
gests that HTTP is also employed for sending sensitive
information back to data collection servers. Moreover,
almost all of the observed FTP sessions corresponded
to uploads of harvested data. The malware connected
to our FTP responder, supplying a login and password,
and started uploading data. We were able to analyze the
stolen information by accessing some of the FTP servers
that were still operational using the malware’s creden-
tials.

In the following, we give a few examples of the types
of information we found. Some of the servers func-
tioned as drop boxes for exfiltrated email addresses from
users’ address books, organized in separate files accord-
ing to the name of the computer from which they were
harvested. One server had4, 729 files containing more
than250, 000 addresses, all dated within two days of our
inspection. This indicates that the server’s administra-
tors collect and remove the information regularly. How-
ever, it also means that malware authors have a supply of
valid email addresses and even their social context read-
ily available.

More sensitive information was found in extensive
logs periodically uploaded by malware, containing the
victim’s IP address, DNS server, gateway, MAC address,
username, as well as theURL and interceptedform and
password fieldsof any HTTP request made by the user’s
machine. We analyzed over250 MB of logs from a single
server, extracting user names and passwords of500 users
for over 250 unique sites, includingmyspace.com,
yahoo.com, live.com, google.com as well as
many online banking sites.4 Banking credentials can
be monetized easily, while even the recently introduced
two-factor authentication that relies on secure cookies
cannot provide complete protection, since the adversary
may decide to steal the cookie file, too. On the other
hand, credentials to web content management systems
can be used to turn more web servers into malware in-
fection vectors.

3.6 Joining Botnets

Self propagation, reporting, and data exfiltration are dis-
concerting, but a more troubling aspect of malware lies
in its ability to connect a compromised system to a net-
work of bots that can be collectively controlled by a sin-
gle entity. Command and control channels can be imple-
mented using either well-known application-level proto-
cols, such as HTTP and IRC, or through custom com-
munication mechanisms. In the following, we give an
overview of the different botnets we encountered.

4We reported the stolen credentials to Security Science who col-
laborate with the FTC and FBI as well as banks to protect customers
whose credentials were exfiltrated.

IRC Server # Sessions
irc.dal.net 109
undernet.irc.justedge.net 43
72.9.146.134.tailormadeservers.com 40
oslo.no.eu.undernet.org 35
42.32.1343.static.theplanet.com 14
dns2.labinahost.com 10
undernet.xs4all.nl 7
irc2.saunalahti.fi 7
Tampa.FL.US.Undernet.org 6
primescratchcards.com 6
w0rm.UnionIRC.Net 6

Table 3: Top IRC servers used by malware.

3.6.1 IRC Botnets

Internet Relay Chat provides the basis for the most com-
monly studied type of C&C communication. By join-
ing a predefined channel, each bot can receive commands
from its author and send back collected information. We
observed IRC sessions to90 servers, utilizing1587 dif-
ferent nicknames in95 channels. Table 3 presents the
most frequently contacted IRC servers. As we can see
from Figure 6, most of the IRC sessions use servers
bound to well-known IRC ports, although there is a con-
siderable number of IRC connections to non-standard
ports.

We observed that some malware families use seem-
ingly regular nicknames and channels on public and
sometimes popular IRC servers. This saves the burden
of running a dedicated IRC server, while at the same
time offers some degree of concealment among legiti-
mate users. On the other hand, we found cases using
artificial nicknames, e.g.,[0]USA|XP[P]152102 or
Inject-2l087876, that are usually unique to the in-
fected host, and sometimes provide further information,
such as the victim’s IP address and OS.

3.6.2 HTTP Botnets

Among the HTTP-based botnets we observed, a case of
particular interest involved a botnet that was used for or-
chestrating large-scale spam campaigns. Each bot peri-
odically downloaded ZIP-archives with instructions on
participating in spam campaigns using HTTP requests
like the following:

GET /g/FA3521-9EE5C0-69ED87 HTTP/1.1
Host: 208.72.169.153
X-Flags: 0
X-TM: 34
[...]

Each response contained a ZIP-archive containing
nine files with detailed instructions on how to partic-
ipate in the spam campaign:000 data22 - a list
of domains and their authoritative name severs used
to form the sender’s email address,001 ncommall

Email Domain Frequency
yahoo.com 28899
sbcglobal.net 14417
yahoo.co.uk 8939
shaw.ca 8321
hotmail.com 6985
korea.com 6041
yahoo.co.jp 5215
striker.ottawa.on.ca 4415
web.de 4276
yahoo.co.in 4200

Table 4: Top domains out of700, 000 email addresses
collected from a spam-sending botnet.

- a list of common first names used as part of the
sender’s email address,002 otkogo r - a list of pos-
sible “from” names related to the subject of the spam
campaign,003 subj rep - a list of possible email sub-
jects,004 outlook - the template of the spam email,
config - a configuration file that instructs the bot how
to construct emails from the data files, how many emails
to sent in total, and how many connections are allowed at
a given time,message - the message body of the spam
campaign,mlist - a list of email addresses to which to
send the spam, andmxdata - a binary file containing in-
formation about the mail-exchange servers for the email
addresses inmlist.

We downloaded about700 such ZIP-files, amount-
ing to approximately700, 000 different email addresses.
Table 4 shows the most frequently occurring email do-
mains. We reported our findings to another researcher5

who provided us with a set of250 million email ad-
dresses captured from the same botnet in only24 hours.
We noticed that the most frequent domains captured by
us within an hour did not completely overlap with the
larger data set. This indicates that the email addresses
are not handed out at random.

As part of infecting the system, the malware at-
tempted to install a malicious kernel driver named
ntio922.sys but failed. To help the malware authors
debug their software, the installer attempted to upload a
small memory dumpfile containing a stack trace in case
of a failed driver installation. To us, this indicates a high-
level of sophistication on part of the malware authors.

3.7 Summary

Taking a step back, we outline how these individual
pieces might fit into a much larger puzzle. Figure 7
shows what we deem to be the life cycle of web-based
malware. The malware is seeded to millions of users
from compromised web servers that infect new visitors.
The infected PCs are transformed into a platform for con-

5The researcher prefers to remain anonymous.

w e b
v u l n e r a b l eP C sw e b � b a s e d m a l w a r ei n f e c t i o n e m a i l a d d r e s sc o l l e c t i o nu p l o a da d d r e s s b o o kv u l n e r a b l eP C s s p a mC & Cs p a m c o n fi g u r a t i o ne m a i l a d d r e s s e sv u l n e r a b l eP C s d e b u gi n f o r m a t i o n c r e d e n t i a lc o l l e c t i o nu p l o a d c o o k i e sl o g i n p a s s w o r d sc o m p r o m i s ew e b s e r v e r s b a r t e r / s e l ls t o l e n c r e d e n t i a l s

Figure 7: An overview of the malware life cycle based
on observations from light-weight responders.

ducting large-scale electronic fraud.
Stolen address books are used to create databases con-

taining hundred millions of email addresses. This infor-
mation, together with the computational resources pro-
vided by the compromised machines, is currently being
used for sending a significant fraction of the email spam
currently encountered on the Internet. With access to lo-
gin credentials, the malware can potentially gain access
to web servers which can be turned into additional mal-
ware delivery vectors. From this point of view, the life
cycle of web-based malware may be self perpetuating.

4 Related Work

Virtual machines, virtual honeypots, and lightweight re-
sponders have been used by several researchers to cap-
ture and better understand attacks [2, 9, 12, 14]. Pang
et al. [8] used active responders emulating protocols as-
sociated with commonly exploited services to elicit at-
tack payloads from darkspace traffic. Our light-weight
responders are similar in that they respond to network
connections initiated by adversaries, in our case malware
running inside a virtual machine. However, we use them
to analyze the post-infection behavior of malware, rather
than to capture new attacks.

Our previous work [10,11] analyzed the maliciousness
of a large collection of web pages. Although we pro-
vided some details on the prevalence of malware, we did
not give any insights on the network activities of mal-
ware once installed on a system. While there is already
significant research on malware analysis [4, 7, 15], our
analysis focuses on a large collection of web-based mal-
ware and provides insights into the activities of currently
deployed malware. Our approach is much less sophis-
ticated than analysis systems that employ whole-system
emulation and information flow tracking, nonetheless us-
ing a very simple approach based on light-weight respon-
ders provides interesting insights when applied to a large

collection of malware. CWSandbox uses a similar ap-
proach [13] but unlike our system it hooks the malware
and emulates protocols inside the virtual machine.

5 Conclusion

Although malware analysis has developed into its own
research area, resulting in increasingly sophisticated
analysis techniques, we showed that simple approaches
motivated by low-interaction honeypots can yield a sur-
prising amount of information on malware’s activities.
We explored the life cycle of web-based malware by em-
ploying light-weight responders to capture the network
profile of infected machines. Our responders are capable
of emulating protocols such FTP, HTTP, IRC and SMTP
as well as capturing payloads from any protocols not di-
rectly emulated.

We supported our findings by analyzing more than
448, 000 responder sessions collected over a period of
two months. Our analysis divided malware’s behavior in
three different categories: propagation, data exfiltration
and remote control. Our in-depth investigation of these
areas allowed us to explore several different aspects of
malware’s life-cycle.

Besides notifying adversaries about compromised sys-
tems and exfiltrating sensitive data, web-based malware
often joins compromised hosts into botnets. These bot-
nets make use of traditional C&C communication via
IRC, but are also using other protocols such as HTTP
to establish communication to a C&C server. One of the
botnets we analyzed is currently responsible for a signif-
icant fraction of spam on the Internet and demonstrated
surprising sophistication, even going as far as providing
malware developers memory dumps of failed installa-
tions.

In future work, we plan on extending the protocol em-
ulation to more services and hope to increase our under-
standing of currently unclassified network communica-
tion. Furthermore, the light-weight responders may pro-
vide additional signals for determining whether a URL
is indeed malicious, especially for cases where the pro-
cess activity and malware scanning provide insufficient
information.

Acknowledgments

The work of Michalis Polychronakis was supported in part by
the project CyberScope, funded by the Greek General Sec-
retariat for Research and Technology under contract number
PENED 03ED440. M. Polychronakis is also with the Univer-
sity of Crete. We would like to thank Oliver Fisher, Fabian
Monrose, Moheeb Rajab, and the anonymous reviewers for
their valuable feedback.

References

[1] Google Safe Browsing API.http://code.google.com/
apis/safebrowsing/.

[2] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,
E. Markatos, and A. D. Keromytis. Detecting Targeted Attacks
Using Shadow Honeypots. August 2005.

[3] J. Bem, G. Harik, J. Levenberg, N. Shazeer, and S. Tong. Large
scale machine learning and methods. US Patent: 7222127.

[4] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant.
Semantics-aware malware detection.Security and Privacy, 2005
IEEE Symposium on, pages 32–46, 2005.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. InProceedings of the Sixth Symposium on
Operating System Design and Implementation, Dec 2004.

[6] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An Inquiry into
the Nature and Causes of the Wealth of Internet Miscreants. In
Proceedings of the ACM Conference on Computer and Commu-
nications Security (CCS), October 2007.

[7] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution
paths for malware analysis.Proc. IEEE Symposium on Security
and Privacy, pages 231–245, 2007.

[8] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson.
Characteristics of Internet background radiation. InProceedings
of the 6th ACM SIGCOMM Conference on Internet Measurement
(IMC), pages 27–40, 2004.

[9] N. Provos. A virtual honeypot framework. InProceedings of the
12th USENIX Security Symposium, pages 1–14, August 2004.

[10] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose.
All Your iFrames Point To Us. Technical Report provos-
2008a, Google Inc, 2008.http://research.google.
com/archive/provos-2008a.pdf.

[11] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser analysis of web-based
malware. InProceedings of the First Workshop on Hot Topics in
Understanding Botnets (HotBots), 2007.

[12] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multi-
faceted Approach to Understanding the Botnet Phenomenon. In
Proceedings of ACM SIGCOMM/USENIX Internet Measurement
Conference (IMC), pages 41–52, Oct., 2006.

[13] C. Willems, T. Holz, and F. Freiling. Toward Automated Dy-
namic Malware Analysis Using CWSandbox.Security & Privacy
Magazine, IEEE, 5(2):32–39, 2007.

[14] V. Yegneswaran, P. Barford, and D. Plonka. On the Designand
Use of Internet Sinks for Network Abuse Monitoring. InPro-
ceedings of the 7th International Symposium on Recent Advances
In Intrusion Detection (RAID), September 2004.

[15] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:
Capturing System-wide Information Flow for Malware Detection
and Analysis. InProceedings of the 14th ACM Conference of
Computer and Communication Security, October 2007.

