
Kangaroo: Video Seeking in P2P Systems

Xiaoyuan Yang†, Minas Gjoka‡, Parminder Chhabra†, Athina Markopoulou‡, Pablo Rodriguez†

† Telefonica Research, {yxiao, pchhabra,pablorr}@tid.es
‡ University of California Irvine, {mgjoka, athina}@uci.edu

Abstract
A key challenge faced by peer-to-peer (P2P) video-on-

demand (VoD) systems is their ability, or lack thereof, to

provide DVD-like functionality, such as pause, forward

and backward seeking (or jumps). Such operations can
significantly degrade the performance of a P2P system

as arbitrary video segments may need to be served timely

on demand. Currently, little is known of the impact that
these operations can have on the swarm efficiency, user

experience and server load. In this paper, we design and
implement a novel P2P system called Kangaroo, which

supports DVD-like jumps. Using a carefully designed

peer topology management, hybrid block scheduling al-
gorithms, and a smart tracker, Kangaroo provides low

buffering times and high swarming throughput under

jump operations, without the need for overly provisioned
peers or server. We experimentally evaluate the perfor-

mance of the system using live VoD traces captured from

a large commercial IPTV network.

1 Introduction

Peer-to-peer (P2P) systems have been successful in dis-

tributing files to a large number of users. P2P systems are

also widely used for distribution of video content, includ-
ing video downloads (where users need to completely

download the file before they can watch the video) and

live media streaming (such as Coolstreaming). Recently,
new systems [1, 10, 11] have been designed to support

video-on-demand (VoD) using P2P. Although such VoD

systems allow users to start watching the video at any
time, they assume that viewers watch from start to finish

without any jumps. Supporting DVD functionality is a
natural requirement for most VoD systems. For exam-

ple, the most popular centralized VoD services, such as

YouTube or home theater solutions, support such seek-
ing functionality. However, DVD functions have been

largely ignored by many P2P VoD systems. Understand-

ing the performance impact of realistic DVD operations
and optimizing the system design for their support is a

step forward towards fully functional P2P VoD systems.

Designing a VoD system with DVD features using P2P

technologies is non-trivial. The main difference in de-
signing for DVD operations vs. standard VoD is that in

VoD, younger peers can pull resources from older ones

that contain early parts of the video, thus creating a “cas-
cade” of peers based on age. However, with DVD oper-

ations such aged-based cascades do not work well. In-

stead, peers’ neighborhoods need to be constantly re-
adjusted to match peers that have roughly the same play-

ing point. If one does not match peers with each other
properly as they jump, the chance of sharing video blocks

decreases, and receiving the video in a timely manner

often requires pulling data from the server. This is espe-
cially critical during flash crowds, since the server is the

only node in the system with a copy of the file.

The challenge is to design a P2P system that meets the
user VoD requirements (low delay and sustained playout

rate), while minimizing the amount of data that has to be

delivered from the server (and thus the server capacity)
under arbitrary jump patterns. In an ideal scenario, the

server should only be used if there are not enough peers

in the system to satisfy the demand created by jump oper-
ations. However, scheduling data, finding the right peers

or freeing their resources on time is a non-trivial task.

To this extent, we design, build and deploy Kangaroo:
a P2P mesh-based system that can support jumps effi-

ciently. The goal is to provide users with high-quality
DVD services, i.e., with low latency after jump opera-

tions and high throughput. To achieve this goal, Kanga-

roo implements (i) a hybrid scheduling policy that com-
bines selfish (sequential segment downloads for continu-

ous playback) with altruistic (local rarest to improve seg-

ment diversity) behavior, (ii) a neighborhood manager
that constantly re-visits the peer’s neighborhood and de-

cides which are the best peers to get/push data from/to

and (iii) a scalable tracker implementation, which helps
to find new peers with similar playback points with little

delay when jumps occur.

2 Architecture

Kangaroo resembles a typical mesh-based P2P system in

that it consists of Peers coordinated by a Tracker. Con-
tent is hosted by a special peer called a server or seeder.

There is one swarm per media file. A media file is split

into segments of equal size. By default, we choose a
segment size of 64KBytes to keep the buffering times

low. Each peer downloads data in parallel from a small

number of neighbors through data connections. Peers
also maintain a number of control connections which

are used to exchange information about available seg-

ments in a neighborhood, thus enabling the peer to infer
the popularity and location of the segment for schedul-

ing. We strive to keep the number of control connections
bounded as the overhead of exchanging control informa-

tion with a large number of peers could be significant.

Data connections are established with a subset of peers
with whom the peer has control connections. We use per-

sistent HTTP/1.1 connections to allow for seamless inte-

gration with web proxies: segments can be cached by
transparent proxies in the path, which in turn can behave

as extra seeding resources for the swarm.

2.1 Peers

A peer consists of several sub-components, the Segment

Scheduler, the Peer Selection Scheduler, and the Neigh-
borhood Manager, which we discuss next. The Segment

scheduler decides what segment should be scheduled for

download next, while the Peer Selection Scheduler de-
cides which neighbor peer(s) to schedule the download

from and the Neighborhood manager decides the com-

position of a peer’s neighborhood.

Segment Scheduler. The segment scheduler faces the

following trade-off: on one hand, a peer wants to down-
load the next segments for its own continuous playback;

on the other hand it wants to download the local-rarest

segment to help the swarm performance. We choose to
use a hybrid sequential and local-rarest policy. Since

each peer can have a maximum of five data connections,

it initially starts by downloading the next four segments
from its play point (greedy strategy) to minimize jump

delay and ensure continuous playback; it also downloads

one local-rarest segment to be altruistic to the neighbors.
Furthermore, over the course of the download, and de-

pending on the swarm performance and the number of

segments in the buffer, the allocation of segments be-
tween sequential and local-rarest policies varies dynam-

ically. Since our algorithm constantly adapts the ratio of

sequential vs. local-rarest segments, depending on the
buffer size and the deadline of each segment, it differs

from other works that statically combine greedy with
local-rarest [3]. Pseudo-code of the algorithm imple-

menting such adaptive hybrid scheduling policy is shown

in Algorithm 1.

NeighborhoodManager. This sub-component essen-

tially does admission control on requests arriving from

Algorithm 1 Hybrid Scheduling Algorithm

1: Ti = Time-stamp when the system needs segment i.

2: T̂i = Time-stamp when the system expects to receive segment i based on
current download rates.

3: N = Max. num of simultaneous connections.
4: G = Num of greedy-download connections.
5: R = Num of local-rarest download connections.
6: R← 1
7: In a Window of size W closest to the current play point
8: while R < N do
9: Find T̂i for segment i in W

10: if T̂i < Ti then
11: R← R + 1
12: end if
13: end while
14: G = N - R
15: Schedule G sequential segments and R local-rarest segments in window W

other peers. It may deny peer requests if there are no

more connections available, i.e., when the number of

active connections is equal to the maximum number of
connections. However, when a peer refuses to upload a

segment, its neighborhood manager also suggests the lo-

cation of another peer that has the segment in order to
facilitate peer matching. Even if the maximum number

of connections has been reached, the seeder can make
an exception and accept the extra connection: a request

is always accepted if the segment has exceeded a delay-

tolerance parameter, which captures the maximum delay
that a peer can tolerate for each segment. If the delay tol-

erance is exceeded and the peer cannot find the segment

in its neighborhood, then the peer can go to the seeder
as a last resort; this policy bounds the jump delay at the

expense of potentially more capacity at the seeder.

The peer neighborhood manager also reshuffles a

peer’s neighborhood when necessary and maintains it
“healthy”. In particular, each peer periodically calculates

the health factor h of its neighborhood, which is defined

as the percentage of useful segments that a peer’s neigh-
borhood has. We define useful segments to be those that

are within a windowW of the currently playing segment.
If h falls below a pre-defined threshold t, then: more

collaborators are requested from the tracker, the connec-

tions with the non-useful peers are reset and new neigh-
bor relationships are created. A careful choice of param-

eters t and W is necessary to strike a good balance be-

tween getting data from the server and often contacting
the tracker. E.g., if W is too short or t is too high, fre-

quent updates will be triggered to keep a highly healthy

neighborhood; conversely, a small value of t will result
in more segments being requested from the server since

neighbor peers will not hold interesting content.

Peer Selection Scheduler. Given a neighborhood, a
peer decides to request a segment from neighbors that

have the smallest number of useful segments. The ra-

tionale is to avoid overloading peers that have segments
that can potentially be useful for other peers too. Since

the server holds all the segments, this also prevents peers

from going to the server unless strictly necessary (e.g.,
when the server is the only node in the neighborhood that

holds the missing segment) and avoids a synchronization

effect where multiple peers request the same segment re-

peatedly from the server.

Another key functionality of the peer selection sched-

uler is the propagation of Have messages. Every time a
peer successfully downloads a segment, it issues Have

messages to let its neighbors know of the existence of

that segment. Because flooding the neighbors with Have
messages would cause a high overhead, we try to min-

imize the number of such updates as follows. When a

peer knows that a neighbor peer already has the segment,
the Have message of that segment is batched. As soon

as the peer downloads a segment that the neighbor does

not have, it sends the Have message for the downloaded
segment together with all previously batched messages.

Other considerations. Due to space limitations, there
are certain aspects of the system that we have not consid-

ered in this paper. In particular, we do not consider in-

centive mechanisms for cooperation in VoD P2P systems
where different peers may target different parts of the file

with different playout deadlines. However, there are a

number of research efforts in this area such as “give to
get” [15]. Similarly, we do not consider security threats

that could arise from peers lying about segments, number

of connections. Our system could, however, be deployed
as is under a closed and controlled system where incen-

tives are not required and tampering the system is harder

(e.g. on top of IPTV set-top-boxes).

2.2 Tracker

A key function and design feature of Kangaroo is its
tracker implementation. The role of the tracker is to al-

low quickly discovery and mesh together peers that have

content to exchange (which is particularly critical during
jump operations) as well as to maintain healthy neigh-

borhoods. This function has to scale with the number of

peers and possible jump points.

In file sharing applications, this is easy: a random se-

lection works well because peers are interested in the en-

tire file. In P2P DVD systems, peers’ needs are guided
by their current playback point. Hence, a tracker needs

to carefully choose and provide a list of neighbors so as
to ensure a good performance and a low jump delay. In

essence, the tracker needs to estimate the current play-

back point of all peers in the system and suggest suitable
peers that have the needed content; and this has to scale

with the number of peers and possible jump points.

We base the design of our tracker on the following
two intuitive observations: (i) users who are roughly at

the same playback point benefit by collaborating, and
(ii) in between jumps, users play the video sequentially.

Every time a peer needs a list of neighbors, it contacts

the tracker with its current playback point. Based on
the playback point, the neighborhood selection algorithm

at the tracker invokes two mechanisms: (1) the Smart

Neighborhood Selection (SNS) that selects a list of peers
that are at the same playback point as the playback time

in the request and (2) the History-based Neighbor Selec-

tion (HNS) that selects peers, which are not at the same

playback point but contain the video portions of a given
play point. These two may not be the same as peers may

perform arbitrary jumps and may hold non-contiguous

parts of the video. If no suitable peers are found by (1)
or (2), then, we attempt to get the peers that are as close

as possible to the play point of the requesting peer.

For every peer request at the tracker, the tracker would

potentially need to search over all peers and all poten-
tial play points to find the right matches, which is an ex-

pensive operation and clearly does not scale. Next, we
describe how the Kangaroo tracker implements SNS and

HNS in an scalable way.

Smart Neighborhood Selection (SNS). When the

tracker receives a peer’s request for a list of neighbors,
it needs to know the point of the video this peer plays.

Since the play point increases with time, a naive tracker

would have to re-calculate the play point of every peer
at every request, thus incurring a very high overhead. To

avoid a per-peer computation, we created a hash table

that keeps in each entry all peers that are progressing to-
gether in the same part of the video. We use a hash key

that is a function of the video time when the jump hap-

pened, the final jump point and the session jump time.

For a jump operation at video time Tj , peer j reports
the jump point, Pj to the tracker. The tracker generates

a hash key Kj as: Kj =
Pj−Tj

C
where C > 1 is the

granularity of the mechanism to predict the play point of
peers; a good choice for C depends on the length of the

movie and the user behavior. Then the peer is removed

from the old hash entry and inserted into the new entry
with key as Kj . Note that the hash key Kj is static and

the tracker does not need to update the peer in the hash

table until the next jump operation.

In Fig.1 we demonstate our approach using a simple
example. Peer A begins watching a video at time 2 and

at time 6 jumps to play point 7. Assuming C = 1, the

hash key for peer A at the jump is 1. The hash key of
peer A is the projection of its play point at jump time.

We assume that Peer B has started playing at time 4. At

time 8, Peer B jumps to play point 9. At time 9, peer B
also has a hash key 1 and the tracker will return A as a

neighborhood peer for B.

The value C in the Kangaroo is set to 30 seconds, ac-

cording to our user behavior trace and for a movie length
of 120mins; we also tested other smaller values of C

without significant changes. Additionally, to ensure that
the tracker does not include stale information (e.g. from

peers who left the system), every peer periodically con-

tacts the tracker to inform it of its current play position.

History Neighborhood Selection (HNS):While SNS
only knows about the current play point of a peer, HNS

knows about past playing points. This is more compli-

cated as it requires a separate history table containing
whether some peers visited a given segment. Keeping

history about a peer in the order of fractions of a minute

Figure 1: An example that demonstrates the logic behind

the SNS grouping mechanism of the tracker.

is memory intensive; searching over it is resource inten-

sive as well. In our implementation, we divide videos

in time-fragments of size C as before. The memory re-
quirement is Np ∗

L
C
∗ size(Pid), where L is the length of

the movie, Pid is the unique peer-id of each peer and Np

is the total number of peers. Each peer has a unique id of
32 bits. Thus, the tracker would require about 18MB of

memory to build the history for 20K peers, for a movie

length of 120 minutes and with C = 30 seconds.
To generate the history table of the content of each

peer, peers do not need to periodically report their con-

tent to the tracker. Instead, by estimating their current
play point the tracker can infer the content of each peer

and refresh the history table accordingly. The refresh pe-

riod affects the prediction: for a large refresh period, the
tracker may under-count the content in the peers, thus

maintaining an incorrect history. In the experimental

evaluation (results not presented due to lack of space),
we saw that a refresh time of 1 minute was sufficient to

minimize the prediction error for finding peers with re-

quested neighborhoods by current playpoint.

3 Experimental Evaluation

In this section, we evaluate the sub-components of Kan-

garoo as well as the system as a whole under realistic
jump operations. First, we evaluate the performance of

the tracker in terms of its effectiveness to quickly pro-

vide useful peers for various workloads and peer neigh-
borhood management algorithms. Next, we study the

impact of various block scheduling policies. To evalu-

ate Kangaroo, we use a real VoD-DVD trace, which was
collected from a live commercial IPTV service run by

a large Telco in Europe, with more than half a million
subscribers. The trace was collected at one of the VoD

servers that provide service over ADSL to one of the 17

regions within the country. The trace spanned a period
of 109 days from Feb. 3, 2007 to May 24, 2007, and in-

cluded a total of 65,498 sessions and 700 unique movies.

In the trace, 60% and 90% of the forward and backward
jump distances are longer than 1 and 10 minutes respec-

tively and most viewers (90%) perform 10 or less jumps

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

N
u

m
b

e
r

o
f

P
e

e
rs

P
e

rc
e

n
ta

g
e

 o
f

U
s
e

fu
l
N

e
ig

h
b

o
rs

Time (Minutes)

Number of Peers
RNS Policy
SNS Policy

SNS+HNS Policy
Optimal

Figure 2: Comparison of Peer Selection Algorithms at

the Tracker.

during the period of a movie. Some of the information

about these jump patterns is used as part of the input to
the experiments described next.

3.1 Tracker Performance

Here, we evaluate the performance of the peer match-

ing algorithms implemented in the Kangaroo tracker.

In particular, we compare our two proposed algorithms
SNS (smart neighbor selection) and HNS (history-based

neighbor selection) against two baselines. The first base-
line is a simple algorithm, which we call RNS (random

neighbor selection). RNS is the standard algorithm used

by most P2P tracker systems today: the tracker provides
the requesting peer with a list of n peers, selected at

random from a list of active peers. RNS is clearly the

most scalable algorithm since it does not require any so-
phisticated data structure to maintain the candidate list

of peers. However, this simplicity comes at the cost

of neighborhoods where the peers cannot share enough
data, which eventually leads to poor performance. The

second baseline for comparison is the optimal neighbor-

hood selection algorithm, which assumes global knowl-
edge of every segment at every peer and performs ex-

haustive search over all peers to return the peers with

the most relevant segments. Although optimal in terms
of peer neighborhood formation, this algorithm is pro-

hibitively expensive in terms of the tracker’s processing
load: for each request, the tracker needs to check all N

peers to generate the best neighborhood.

Fig. 2 compares four algorithms, namely RNS, SNS,

SNS+HNS, and Optimal. These results are obtained

through simulations. We used all 350 sessions from the
most popular video of the VoD trace. Peers arrive ac-

cording to a Poisson process with λ = 1 peers/sec. Time
indicates progress as users jump according to the trace.

Most users arrive within a few minutes and the peak

swarm size is close to 350 peers. We observe that simpler
neighborhood selection strategies perform poorly. Ini-

tially, both SNS+HNS and SNS algorithms return about

the same percentage of useful neighbors. However, over
time, as users jump, the fraction of useful neighbors re-

turned by the tracker is quite small for both SNS and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Jump Delay(Seconds)

Hybrid
Greedy

LocalRarest

Figure 3: Jump delay for different policies.

RNS, but is kept very high and close to the optimal peer
selection strategy for SNS+HNS. SNS does much bet-

ter than RNS since SNS selects peers that are close to

the playback point of the requesting peer and therefore
has a higher likelihood of forming useful neighborhoods.

SNS+HNS performs nearly optimally and much better
than SNS, since HNS can return peers who are not play-

ing at the same playback point but have the requested

segment. On the other hand, the SNS policy might not be
able to return enough useful neighbors, in which case the

tracker complements the returned list with peers playing

as close as possible but not close enough to the current
play point.

The number of requests received by a tracker is an im-

portant test for the scalability of the system. Peers con-
tact the tracker (i) at every jump operation and (ii) when

triggered by neighborhood health evaluation. The former

depends on the workload while the latter depends on the
value of the threshold t which represents an acceptable

health factor. To strike a trade-off between tracker re-

sponse time and good topology connectivity, we picked
a value of t = 0.2 . To test the scalability of the tracker,

we ran experiments where we used an off-the shelf com-

modity PC for the tracker and produced requests from
jump patterns of up to 16, 000 “dumb” peers at the same

time. The tracker is able to respond with less than 0.1

sec delay, a negligible value compared to the transmis-
sion time of the first segments of the video (2 sec for a 64

KB segment and a 1 Mbps link). The maximummemory
usage observed was 32 Mbytes with CPU usage peaking

at 74%. More details of the experiments for health factor

impact and tracker scalability are omitted due to lack of
space.

3.2 Scheduler Performance

In this section we test another critical component of the

Kangaroo system, the segment scheduler. From a user’s

point of view, we are interested in small delays after each
jump operation, thus termed jump delay. From the sys-

tem’s point of view, we are also interested in keeping the

capacity/bandwidth low at the seeder.

Experimental Setup. We ran experiments in a cluster

of 10 machines connected inside a Gigabit LAN and used

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500

M
b

p
s

Time(Seconds)

Hybrid
Greedy

LocalRarest
BestP2P

Figure 4: Server load for different policies

Modelnet [8] to simulate a realistic Internet environment.

Each cluster machine (Intel Core Duo, 2.13 GHz CPU,

2GB RAM) ran at most 10 peer instances. We first used
INET [9] to create an Internet topology of 3500 nodes.

Link delays in the topology were assigned based on link

lengths derived from the INET node location. Each peer
instance was connected to the network topology through

a different client-stub link in the topology. All packets

from the 10-host cluster were routed through a Modelnet
emulator which shaped them according to the specified

delay and bandwidth of the link in the network topol-
ogy. We rate limited each peer’s access capacity using

the modelnet emulator machine to 1.5Mbps. But we left

the upload capacity unrestricted at the server (only) ; the
demandwe will observe over time will then give us an in-

dication of what capacity we need to provision the server

with, so as to meet user requirements.

Below, we show results of an experiment with 60
peers for a video file with duration 1024 seconds, split

into 2048 segments of 64KB each, and playback rate of

1Mbps. Each peer connects to no more than 15 neigh-
bors. We use jump patterns extracted from the most pop-

ular video from the trace and peer arrivals according to

a Poisson distribution with λ = 1 peers/sec. We ran the
same experiment for three policies: greedy, local-rarest

and the proposed adaptive hybrid policy.

Results. Fig.3 shows the jump delay for the three

strategies. The greedy policy achieves the lowest delay
because peers use all their bandwidth to download only

the segments they need, whereas local-rarest achieves the

highest delay because peers are fetching segments for the
neighbors. The hybrid policy is very close but not better

than greedy because it allocates at least some bandwidth

to download rare segments.

However, if algorithms are not efficient, low latency
could potentially come at the expense of high server load.

Fig.4 shows the server load in the three cases as well

as for an idealized baseline, which we call BestP2P. In
BestP2P, peers have infinite capacity and number of ac-

tive upload connections, which allows them to instanta-

neously disseminate all segments once provided by the
server. Clearly, BestP2P abstracts away the inefficien-

cies of any real P2P system and thus outperforms any

P2P system that could be considered as baseline. It cap-

tures the minimum possible load on the server, which
depends only on the jump patterns in our trace.

We observe that the greedy policy provides a low jump

latency at the expense of a very high server load, since
peers in the system that do not find the blocks that they

need turn to the server. In fact, the average server load is

4.5Mbps and remains high for 2000 seconds. We also ob-
serve that the local-rarest policy achieves a lower server

load,1 because it keeps all video segments well repre-
sented, but at the expense of high jump delay, since peers

do not download segments for their own continuous play-

back. Our proposed hybrid policy achieves the best com-
promise between low server load (close to BestP2P) and

low jump delay.

4 Related Work

The first P2P video systems were built for live video
streaming and included tree-based overlays, such as

SplitStream, and mesh-based overlays, such as Cool-

Streaming and PPLive. The next generation video P2P
systems were designed to support VoD including BitOS

[11], BASS [10], Redcarpet [1], Toast [14], but with-

out optimizing the system for efficient DVD-like oper-
ations. In [6], the authors present an analytical formula-

tion of the impact of various scheduling policies to opti-

mize VoD performance. In [3], the authors describe the
challenges faced by a commercial P2P live video sys-

tem deployed by PPLive, and propose content discovery,
replication, and scheduling algorithms to deal with these

challenges.

Recent work [12] [7] and [2] discussed some of the
issues that can arise when designing P2P systems that

support DVD-like functionality. For instance, [12] in-

troduced the concept of anchors to prefetch data in pre-
defined points of the video and allow for jumps to such

points. In contrast, the users of our system may jump

to any point in the video. In [7], the authors proposed
an aggressive prefetching strategy to proactively create

multiple copies of every segment on an overlay, thus re-

ducing the dependence on the source. The goal was to
ensure that all blocks are replicated regardless of when

the set of active peers in the overlay would need them
to support current playback. Kangaroo does not require

such pre-fetching, but instead provides careful allocation

of swarm resources when needed. In [2], the authors pro-
pose a gossip protocol over a ring, where each peer keeps

some nearby neighbors as well as some remote neigh-

bors following a power-law radius; however, no block

1Interestingly, the load is not as low as one might expect. In the
beginning, there is only one copy of the video (at the server) and peers
try to increase the diversity of all segments. For a video size 2048Mbits,
and an average rate of 4Mbps, the server needs just 512 seconds to
upload all the segments. However, as seen in the plot, the server load
remains high even after 512 seconds. This is because peer departures
reduce the number of replicas for some segments, which need to be
reseeded by the server.

scheduling or peer management is considered. In com-

parison to the above, our contributions are: an entirely
mesh-based architecture which includes an adaptive hy-

brid segment scheduling, a “least useful” peer selection

scheduling and a scalable tracker that implements quick
and efficient neighborhood matching algorithms.

5 Conclusions

We have analyzed the impact of realistic DVD operations

on the design of P2P systems, and designed and deployed
Kangaroo – a P2P VoD system optimized for jumps. Us-

ing traces captured from a commercial IPTV system, we

experimentally evaluated the performance and provision-
ing of servers and peers. We have carefully optimized

Kangaroo to handle DVD operations with minimum de-

lays, network overhead, and server resources. We have
also tested our system with several hundred real users

during the 2008 Olympic games; the results were similar

to what we observed using the trace in this paper. Over-
all, we believe that Kangaroo is a step forward towards

fully functional P2P VoD systems and can pave the way
to the next generation of IPTV architectures.

References

[1] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena and
P. Rodriguez. Is High-Quality VoD feasible using P2P Swarm-
ing. In WWW, 2007.

[2] B. Cheng, H. Jin and X. Liao. Supporting VCR functions in P2P
VoD Services Using Ring-Assisted Overlays. In ICC, 2007.

[3] Y. Huang, T. Z. J. Fu, D.M. Chiu, J.C.S. Lui and C. Huang. Chal-
lenges, Design and Analysis of a Large-scale P2P VoD System.
In Proc. of Sigcomm, 2008.

[4] A. Hu. Video-on-demand broadcasting protocols: A compre-
hensive study. In IEEE Infocom, 2001.

[5] K. Almeroth, and M. Ammar. On the use of multicast delivery
to provide a scalable and interactive Video-on-Demand service.
In JSAC, 1996.

[6] Y. Zhou, D. Chiu and J. Lui. A Simple Model for Analyzing
P2P Streaming Protocols. In Proc. of ICNP, 2007.

[7] N. Vratonjic, P. Gupta, N. Knezevic, D. Kostic, A. Rowstron.
Enabling DVD-like features in P2P Video-on-Demand-Systems.
In ACM P2P-TV Workshop, 2007.

[8] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti,
J. Chase, D. Becker Scalability and Accuracy in a Large-Scale
Network Emulator In Proc. of OSDI, 2002.

[9] C. Jin, Q. Chen, S. Jamin. Inet: Internet topology generator.
Univ. of Michigan TR CSE-TR-433-00, 2000.

[10] C. Dana, D. LI, D. Harrison, and C. Chuah. BASS: BitTorrent
assisted streaming system for VoD. In Proc. of MMSP, 2005.

[11] A. Vlavianos, M. Iliofotou, and M. Faloutsos. Enhancing Bit-
Torrent for supporting streaming applications. In IEEE Global

Internet, 2006.
[12] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A Measurement Study

of a Peer-to-Peer Video-on-Demand System. in IPTPS’07.
[13] P Marciniak, N Liogkas, A Legout, E Kohler. Small Is Not

Always Beautiful. In IPTPS’08.
[14] Yung Ryn Choe, Derek L. Schuff, Jagadeesh M. Dyaberi, Vijay

S. Pai. Improving VoD server efficiency with bittorrent. In Proc.
of IEEE Multimedia 2007

[15] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epema, and
H.J. Sips. Give-to-Get: Free-riding-resilient Video-on-Demand
in P2P Systems. In MMCN’08.

