Rethinking Deduplication Scalability

Petros Efstathopoulos Fanglu Guo
Petros_Efstathopoulos@symantec.com Fanglu_Guo@symantec.com

Symantec Research Labs
Symantec Corporation, Culver City, CA, USA

1 ABSTRACT Item Scale Remarks
Physical capacitg C=400TB
Segment siz8 B=4KB

Number of segments N =100Gsegs | N=C/B
Block fingerprintsizé= | F =20B

Deduplication, a form of compression aiming to eliminate
duplicates in data, has become an important feature of most
commercial and research backup systems. Since the ad
vent of deduplication, most research efforts have focused o : d
maximizing deduplication efficiency—i.e., the offered com | BloCk index sizd | =2000GB I =Nx*F
pression ratio—and have achieved near-optimal usage of| DSk speed Z = 300 MB/sec
raw storage. However, the capacity goals of next-generatio | Block lookup speed gogl 75 Kops/sec Z/B
Petabyte systems requires a highly scalable design, able toraple 1: An example system configuration, illustrating some of thalc
overcome the current scalability limitations of deduptica. lenges involved.

We advocate a shift towards scalability-centric design-pri

ciples for deduplication systems, and present some of theof storing multiple copies. When operating in small scale,
mechanisms used in our prototype, aiming at high scalabil- we can easily maintain a block index in memory to quickly

ity, good deduplication efficiency, and high throughput. check if a block already exists in the system, and use meth-
ods similar to object reference sharing within operatings sy
2 INTRODUCTION tems to keep track of data sharing. Challenges arise when the

Enterprise storage is rapidly shifting to disk-based backu deduplication system needs to scale to high capacities—and

loading deduplication systems with the burden of dealing Pillions of objects.

with the uncontrolled explosion of data that corporatiorsa ~ When a deduplication server is presented with a piece of
required to keep. Researdh [1, 2] and commercial systems,data it needs to answer the following questions: “Have | seen
such as Symantec PureDigk [3], have utilized a number of this data before? And if | have, where is it stored?” This
different variations of techniques and deduplication girin ~ kind of lookup operation is served using an indexing data
ples: file segmentation methods, index optimizations,-vari Structure—often referred to atht indeX. A hash is calcu-
ous forms of caching, and many other mechanisms have beerated for each unique chunk of data stored in the system
heavily optimized in order to maximize duplicate detection (MD5, SHA-1/2, etc), and stored in the index as the chunks
and deduplication efficiency. fingerprint along with the chunk’s location on disk.

Despite achieving very high deduplication efficiency, ~ During a backup on a typical block-level deduplication
commercial systems today still suffer from limited scala- System, all files are partitioned to segments. Segment size
bility, and have difficulties scaling to Petabyte-level aap can vary between a few hundred bytes to multiple KB. For
ities. Once a system reaches its scalability limits, admin- €ach segment, a fingerprint FP is calculated, and if FP does
istrators can do very little to increase system capacity and not exist in the index, a copy of the data is stored in the sys-
avoid significant performance degradation. Scalabiligngl ~ tem, and the index is updated. This process might have to be
based on adding more nodes, introduce serious system manperformed for millions of segments during a backup.
agement and performance problems. We believe that an opti- Table[l presents an example which gives a sense of the
mized deduplication engine is insufficient, if the system-ca target scale and the challenges of a large scale system. In
not scale to high capacities. Therefore, we are attemptingthis example, the performance requirements dictate that we
to design a next-generation deduplication system, from the need to maintain the segment fingerprintindex in main mem-
ground up, setting scalability as one of our top goals—even ory, but its size is simply too large (2000 GB) tcﬂﬁStoring
at the cost of less than optimal deduplication efficiency. the index on disk is not a viable solution, because disk ran-

dom access speed can not support 75 Kops/sec. Additionally,

2.1 Hittingthe Memory Wall

.. . INotice that the 20 bytes do not include additional block miata (loca-
The core of any deduplication system, performs two basic tjon, fiags, etc). For a 20-byte fingerprint we would requitetal of at least
tasks: itdetectsand sharesduplicate data blocks—instead 25 bytes per block entry.

segment fingerprints are cryptographic hashes, randosdy di would need to deal wittN = 100 Gsegments. If a file uses
tributed in the index, and adjacent index entries share no lo fingerprints £ = 20 bytes) to reference data segments, we
cality among them. Therefore, segment read-ahead and sim-are going to read at lealst* F = 2,000 GB of datain orderto

ple caching cannot make up for low disk performance. mark all files once, assuming each data segmentis used once.
In a typical system, where each data segment will be used
2.2 Resource Reclamation an average of 10 times (deduplication factor), marking once

. . would require reading 20,000 GB of data. Assuming disk
Contrary to traditional backup systems, where each file Con'speed of 300 MB/sec, marking alone will take 18.5 hours.

sists of its own data blocks, a deduplicgtion system ShareSSince mark-and-sweep needs to touch all files in the system,
data bIocl_<s by default. When(_aver afileis de_Iete_d,_we need o larger the system, the slower the process becomes.
to determine whether each of its data blocks is still in ulse. |

not, we can reclaim the segment and reuse the space. 3 TOWARD A SCALABLE DESIGN

The_ simplest method to solve t,h's problem is refgrgnce When considering a scalable deduplication server design,
counting for se_gme_n_ts: a segmen_ts reference count is-incre we have to take into consideration the following intertwdne
mented every time itis used by afile, and decre_m(_ented Whenmetrics: speed, scale, and space. In order to reduce space us
the data segment is released—eventually reclaiming the seg age, we do extra work for data segment lookup and sharing.
ment when the count drops to zero. This impacts backup speed. Which, in turn, can be especially

Reference counting is less suitable for deduplication for iyt to achieve when the system reaches a larger scale.
several reasons. First, if we want to build a multi-nodedarg Keeping these three metrics in mind, we define the follow-
scale deduplication system, reference counting will need t ing as our goals:

be transactional—in order to support references to remote
data segments—Ileading to serious performance degradation e Scalability: support hundreds of billions of segments.

Second, even in a single-node system, it is not trivial to Ideally, we would like to support an unlimited number
make a simple reference count work correctly: any lost or of data segments.

repeated update will incorrectly change the count. Logging e Capacity: perform best effort deduplication. If re-
is necessary to recover from these error conditions. If a dat sources are scarce, we are willing to sacrifice some

object becomes corrupted, however, it is desirable to know space for speed and scale.

which files are using it, so as to request new copies of those e Speed: near raw disk throughput for backup, restore,
files, and recover the corrupted data. Unfortunately, refer and data removal.

ence counting cannot help us determine which files are using

a particular data segment. Even though space savings is deduplication’s primary pur-

Maintaining a reference list is a better solution, since it POSE, itis not the only goal. Speed (|.e.., high throughpyt) '
also important, because a system that is too slow to finish a

is immune to repeated reference updates, since a referenc - . . e
. i ackup within a backup window, is useless. Scalability is im
list can determine whether the reference add/remove oper- . .

portant, since a highly scalable system can greatly deereas

ation in question has been performed already. Furthermore,the management cost, by reducing the number of computers

reference lists have the capability to identify which files & involved. Thus speed and scalability are more a usability is
using each data segment. However, although reference lists

. . sue. We aim at making our system usable, and then try our
are immune to repeated operations, they cannot deal with los :
: . ; ! .~ best to save space under the resource constraints.
operations and transactions, and some kind of logginglis sti
necessary to ensure correctness. Additionally, maimtgiai 3.1 Indexing: Beyond Memory Bounds
variable-length reference list has heavy space and computa
tional overhead, since we need to persistently store itsk di
Also, managing individual reference lists for each of tHe bi
lions of data segments, is simply too costly, while managing
a single reference list for all data segments would requoire t
allocate space for new entries on every addition, or rewrite
the whole list. In either case, there is no simple solution.
Another alternative is the mark-and-sweep approach. Dur- i1 the memory index
ing the mark phase, we need to go through all files and mark y N .
. . For our sampled index we assume a sampling pefipd
all data segments that are in use. Then, in the sweep phase,. : " a
. _ signifying that we insert in the index only “1 odt” new
we sweep the data segment lists, reclaiming all unmarkedﬁn erprints. We define a samoling raes follows:
segments. The main advantage of mark-and-sweep is that it gerp ' piing :
is very resilient to errors. If anything goes wrong, we can R=1/T = (SxM)/(E*C) (1)
simply restart the process, and all operations can be regeat
without side effects. The main downside, however, is that it whereM is the amount of memory available for indexing (in
is not scalable: going back to the example of Tdble 1, we GB), Sis the deduplication segment size (in KB),is the

Notice that successfully locating a fingerprint in the index
during backup only affects the deduplication efficiency of
the server. For example, if a lookup fails, even though the
segment in question is already stored in the system, a dupli-
cate copy of the segment will be stored, but correctness will
be preserved. Using this kind of flexibility, we apply sam-
pling techniques and maintain only a subset of fingerprints

memory entry size (in bytes), ar@lis the total supported 3.1.3 Solid State Drives for Solid Scalable Indexing
storage (in TB). For mstance, in the example of Téble 1, us- Using sampled indexing, we are able to scale to higher ca-
Ing a generous 32 bytes per index entry (_20 bytes for the fin- pacities, but main memory size remains a limiting factor for
gerprint + 12 bytes of entry metadata), with 4 KB segments g apjlity. Additionally, we need to maintain a disk copy
and 32 GB of memory available for indexing, we can support of the memory index, in order to provide persistence and

4 TB of data W_ith a sampling rate of 1 (i..e., no entr.ies are crash recovery. Maintaining and querying the index diyectl
dropped). Scaling to 400 TB, would require a sampling rate on hard drives is not considered a viable alternative, for pe

of Q.Ol—i.e., insert in the index one out O_f 100 fingerprints. ¢ mance reasons, but Solid State Drives (SSDs) provide an
Using an 8 KB segment size, the sampling rate doubles 10 e rnative that may prove a valuable indexing tool.

0.02 (one out Qf 5_0 seg_m_ents), sacr!f|C|ng some.md_ex ac- ggps support high storage capacities, with unique
curacy (deduplication efficiency) for higher scalat.nlrfyus- _ performance characteristics: SATA SSDs are able to
sgrrlpllng s_cheme alloyvs us to scale: to a theoretically |pf|- achieve sequential read/write throughput of around 29D/17

nite” capacity: expanding the system's storage capacly-wi - \ig/sec, and about 35,000/3,300 IOPS for random 4 KB

out upgrading its indexing capacity (i.e., amount of RAM), reads/writes ||5]. High-end, PCle SSDs [6] can achieve

comes at the cost of lower sampling rates (i.e., lower dedupl o 4ayrite performance of 750/500 MB/sec and around
cation efficiency). Investing in indexing capacity (by awgli 154 000/90,000 random I10PS, respectively. Our prototype
more RAM), is rewarded with higher sampling rates. aims to leverage SSDs and provide an alternative to memory
3.1.1 Spatial Locality and Pre-fetching indexing: the fingerprint index is stored on the SSD, and it
is possible to locate a fingerprint with at most one SSD read
operation. In order to amortize the cost of low SSD write per-
A .) formance (dominated by long flash memory erase cycles),
deduphcgtlon efficiency—would _b§ times Iower._To ad-. index updates are logged, buffered and batched. Addition-
dress this problem, we are relying on the spatial locality ally, container indexes are pre-fetched and cached, inrorde
among data segments: during backup, adjacent segments ar, amortize some of the SSD read cost. By storing the pri-

storeq n the_same disk container—even i some of th.e rele- mary index on the SSD, we achieve the following benefits:
vant fingerprints are not sampled for insertion in the index.

Upon an index hit, we locate the container pointed by the in- e Better deduplication: sampling rate calculated using

Using sampled indexing we are able to scale to higher stor-
age capacity, but the index hit-rate—and, consequenty, th

dex entry, and temporarily pre-fetch that container’srimat SSD capacity.

fingerprint index into memory. The likelihood of subsequent ¢ Memory benefits: large amounts of RAM no longer
lookups hitting on these temporary index entries is veriahig needed—available RAM used primarily for caching.
due to spatial locality properties of data streams—prestiou e Fullindexing: a large SSD can support a full index

observed and taken advantage of in many deduplication sys- o |ndex persistence: index persistently stored at all times
tems (e.g.,ll4]). Using part of main memory to implement _ _ _
this type of container index caching is significantly impeev ~ Notice that when using an SSD index, the memory would be

the deduplication efficiency, even when relatively low sam- used primarily for caching purposes, as well as for storing a
pling rates are utilized. Bloom filter large enough to summarize the SSD.

3.1.2 Progressive Sampling 3.2 Grouped Mark-and-Sweep

Sampled indexing and container index pre-fetching provide In order to make mark-and-sweep a scalable solution, we
us with a scalable, well performing indexing solution with must reduce the number of files we need to touch during the
reasonable deduplication efficiency. We can further improv process. Based on the observation that the majority of files
the deduplication efficiency, by observing that formlla 1 in the system are not changed between backups—and there
calculates the minimum rate required to support the total fore we do not need to include them in the mark phase over
amount of available storage. Alternatively, we can caleula and over again—we propose thhgouped mark-and-sweep

a progressive sampling ratéy using the amount of stor- algorithm, presented in Figuié 1.

age currentlyused—as opposed to the total capacity. For in- Each backup, consists of a list of files, and one or more
stance, in the previous example, if the system is equippedbackups form a group. We track changes to each group of
with 400 TB of storage, but only 500 GB are being used, backups, and for each changed group we further track if files
there is no reason to utilize the rate R = 0.01, since we canare added to or deleted from it. In Figlile 1, we assume that
easily index all 500 GB of data stored in the system. As the some files were deleted from Groupl and some files were
amount of used storage increases, we can adjust the samplingdded to Group3, while Group2 remained unchanged since
rate and easily re-sample the index, by dropping the extrathe last mark-and-sweep cycle. G1, G2, and G3 are the mark
entries. For instance, we can start with R = 1 (all FPs are in- results of each group’s containers, and can be thought of as
serted in the index), and once the amount of utilized storage bitmaps showing which data blocks in the container are used
approaches 8 TB, we can switch to R = 0.5, by dropping half by the files in a particular group. For example, G1 over SO
the entries in the index (e.g., use “mod T” sampling). container 1 shows which data blocks in container 1 are used

Group 3

A
Backup 1 Backup 2 Backup 3 Backup 4

Some DOs added j

Backup 5

=62 =062 =06G2—

(SO container 3] (SO container 4 | (SO container 5)

Figure 1: Example illustrating the scalability of our grouped markd-sweep mechanism.

by files from Group1. In our prototype, one mark-and-sweep 4 PRELIMINARY EVALUATION

cycle would involve the following steps: We have implemented a full prototype of our scalable dedu-

e Go through all the changed groups and mark. Since Plication system design for Linux. Although our prototype
Groupl and Group3 have been changed, we clear theirimplementation is still in progress, we are already able to
old mark results, i.e., G1 and G3, for all containers. Go Perform full backups and evaluate the effectiveness of our
through all the files in Groupl and Group3. Generate Scalability improvements.
new G1 and G3 for all containers that have data blocks .
used by files in Groupl and Group3, respectively. 4.1 Indexing

e During the mark phase, track all containers which are The current index implementation uses a split hash table de-
marked from groups (Groupl) that have files deleted. sign: one hash table (“the index”) is used to hold all sam-
Put the containers to the sweep list. Only containers in pled entries, and a separate hash table (“the cache”) is used
the sweep list may have data blocks freed because onlyto cache pre-fetched entries. Hash table buckets can be one
these containers are used by groups that have deletedr a few KB in size, and different strategies can be used for
files. collision resolution: we want to avoid dropping colliding-e

e After all files in changed groups (Groupl and Group3) tries in the index, therefore we use chaining for hash table
are marked, sweep containers in the sweep list. In our buckets—incurring a small performance penalty. However,
example, it will be SO container 1 and SO container 2. the cache does not have such strict requirements, but we aim
For each container in the sweep list, merge the mark at high performance. When a particular bucket is full, we
results of all groups for that container. If a data block is clear the bucket and make room for new entries. We keep
not used, it can be reclaimed. track of already pre-fetched container indexes, in order to

. avoid unnecessary pre-fetching.
Generahzmg the above example, our approach takes the fol- A |t of effort was invested in optimizing memory usage:
lowing steps to make mark-and-sweep scalable: index entry size has been reduced to sizes between 18 or

« Divide files to groups. Track changes to each group. 19 bytes, and all pointers have been substituted with aifset
Only mark the changed groups and avoid repeatedly leading to memory savings, and making the index easily se-

marking the unchanged groups. Store the mark results.fi@lizable ondisk.
For unchanged groups, the old mark results can be Table2 shows that index performance depends a lot on the

reused. index state: when using chaining, index operations become
« Track the affected containers. Only containers storing slower as the index fills up. However, even at high index load,

data blocks used from groups that have deleted files

index performance is well within our performance goals: on
are put to sweep list because only these containers may? 3 GHz Intel Xeon machine, we are able to achieve through-
have data blocks freed. During sweep,

mark results arePUt of 229, 394 and 178 Kops/sec for lookup, insert and
merged to determine if a data block is still in use. delete operations res_pectwely—much faster 'Fhan our doal o
75 Kops/sec. Assuming a 4 KB segment, this performance
In the above process, the workload is proportional onlyéo th corresponds to 1,576, 916 and 712 MB/sec, just for sam-
working set, as opposed to being proportional to the capac-pled index entries. However, this high performance comes
ity of the whole system, since we avoid touching unchanged at a small cost: a small percentage of entries may need to be
data, while still achieving the benefits of mark-and-sweep. dropped, if the index runs out of buckets for colliding en-

X | Load | Insert | Lookup | Remove Data Add Delete
1M | 0.7% | 4,825 4,783 8,443 Time (Throughput) Time (Throughput)
10M 7% | 5,411 5,320 8,923 30GB 4.29 sec (6.99 GB/sec)| 21.77 sec (1.38 GB/sec
100 M 70% 10,412 6,701 13,807 300 GB 39.33 sec (763 GB/sec) 218.77 sec (137 GB/SGC)
145M | 97% | 13,101 7.620 16.836 990 GB | 163.02 sec (6.07 GB/seq) 690.29 sec (1.43 GB/seq)
Table 2: Average insert/lookup/remove cost, in CPU cycles, whenith Table 4: Grouped mark-and-sweep resource reclamation is scalptie
dex is pre-populated witlX entries. Index load calculated based on total ~cessing time is proportional to the size of the working settmoughput is
capacity of 149 Mentries. stable regardless of working set size and system capacity.
. SATA SSD | ioDrive can be reclaimed. We performed three different backups (30
Seektime 0.24 msec | 0.06 msec GB, 300 GB, and 990 GB), measuring grouped mark-and-
Throughput 90 MB/sec | 454 MB/sec sweep performance after each backup. Then we removed
Cycles per lookup 138,871 95,590 each backup one by one, measured the mark-and-sweep pro-
Ops per sec 17,323 53,646 cessing time for each removal, and found it to be propor-

Table 3: Unbuffered SSD performance. Ops/sec assume a 3 GHz CPU. tional to the amount of data added or deleted. The through-
put is consistent—regardless of the size of the data added or
tries. Performance presented in TdHle 2 is using a configura-removed. We repeated these tests with our test system run-
tion guaranteed to suffer less than 2.3% of dropped entries.ning near its capacity (8 TB, 2 billion data segments), and
got the same results, demonstrating that our resource recla
The SSD index implementation was tested on a low-end mation method is indeed scalable.
SATA SSD, as well as a 160 GB SLC PCle ioDrive. Tdle 3
presents the results of our preliminary SSD tests for full fin 5 CONCLUSIONSAND FUTURE WORK
gerprint lookup, demonstrating that our approach can be aOur work explores methods to overcome the scalability limi-
viable, well-performing solution—especially after werm tations of deduplication servers. We have addressed two ver

duce container caching. important scalability problems: sampled indexing can be
used to overcome memory limitations, while grouped mark-
4.2 Throughput and Dedup Performance and-sweep can significantly improve resource reclamation.

Our preliminary results have been encouraging, demon-
strating that our techniques can indeed help us achieve high
scalability, and very good throughput. We aim to invesggat
these and other methods further, pursuing maximum scala-
bility for our prototype. In particular, among other things
our future work will focus on improving index performance,
investigating the effectiveness of a full SSD index impleme
tation, and introduce multi-threaded implementationslbf a
CPU-intensive operations that can be parallelized.

We have tested our prototype on a Linux server, using a 8
TB disk array with a raw read/write throughput of 305/330

MB/sec. Backup throughput was initially CPU-bound, due

to the overwhelmingly expensive hash calculations. After
implementing multi-threaded hash calculation, the backup
server is able to achieve 98% of raw-disk backup through-
put of for new backups (326 MB/sec). Deduplication backup

tests, with container pre-fetching enabled, and using sam-
pling rates of 10% and 14%, yielded perfect deduplication
for consecutive backups of identical files—even though only REFERENCES
a small subset of file fingerprints were sampled. With perfect

deduplication, we observed backup throughput of up to 663 archival storage,” iFAST '02: Proceedings of the Conference

MB/se<_:. At very high capacity and index loads (above 90%), on File and Storage TechnologieBerkeley, CA, USA, 2002,
dedupllcated backup throughputdrops to a performa_mce_ near pp.89-101, USENIX Association.

t_he disk read throu_ghpu.t..The exact.reasons are b(_alng |nves—[2] OpenDedup, “A userspace deduplication file system
tlgateq, bu_t we believe it is due to d|sk_ read limitations (fo (SDFS)” Mar. 2010, htt p:// code. googl e. cont p/
container index pre-fetching) and a high number of cache gpendedup! .

flushes. Recent, ongoing testing on better hardware (more[3] Symantec, “Symantec NetBackup PureDigkt’t p: / / www.
CPU cores, faster Fiber Channel arrays) showed that our

desian is limited by 1/O ; q by inh symant ec. com busi ness/ net backup- pur edi sk.
esign 1S "T."t? _y per ormgnce—an not by inherent [4] Benjamin Zhu, Kai Li, and R. Hugo Patterson, “Avoidingeth
throughput limitations of our design.

disk bottleneck in the data domain deduplication file system

. in FAST '08: Proceedings of the Conference on File and Stor-
4.3 Resource Reclamation age Technologie008, pp. 269—282.

Table[4 shows time and throughput measurements for our[5] Intel Corporation, “Intel X25-E Extreme SATA Solid-Sea
grouped mark-and-sweep. After adding or removing data, Drive,;” May 2009, http://downl oad.intel.conl

our grouped mark-and-sweep thread runs to update the mark ~ desi gn/ fl ash/ nand/ ext r eme/ 319984. pdf .

results for new and/or deleted backups. If any files or back- [6] Fusion-IO Corporation, “ioDrive,” 2010, ht t p: / / vww.

ups are deleted, it further checks whether any containers fusi oni o. conl products/iodrive/.

[1] Sean Quinlan and Sean Dorward, “Venti: A new approach to

	Abstract
	Introduction
	Hitting the Memory Wall
	Resource Reclamation

	Toward a Scalable Design
	Indexing: Beyond Memory Bounds
	Spatial Locality and Pre-fetching
	Progressive Sampling
	Solid State Drives for Solid Scalable Indexing

	Grouped Mark-and-Sweep

	Preliminary Evaluation
	Indexing
	Throughput and Dedup Performance
	Resource Reclamation

	Conclusions and Future Work

