
System Configuration as a Privilege∗

Glenn Wurster Paul C. van Oorschot
gwurster@scs.carleton.ca paulv@scs.carleton.ca

School of Computer Science
Carleton University, Canada

Abstract

We present a new approach for separating configu-
ration privilege from traditional root privilege. We
limit this new configuration privilege to a single (new)
system daemon, configd. This daemon reads re-
quests for changes in system configuration, either al-
lowing or denying each request based on various cri-
teria (possibly including user input). We do not allow
any other application to run with configuration per-
mission, forcing all requests for a change in system
configuration to be processed by configd. We dis-
cuss the basic functionality required for configd to
protect system configuration, and some preliminary
improvements to a basic prototype design. We con-
centrate on only those system configuration changes
performed through the modification of a file on disk.

1 Introduction and Overview

In the server environment, the root (or Administra-
tor) privilege is normally restricted to system dae-
mons and those applications responsible for chang-
ing the configuration of a system (loosely: what code
runs and how). The same is increasingly the case in
desktop environments, with the root user being re-
served for performing special activities. The current
root privilege, however, does not adequately protect
a system against malicious configuration changes.

The principle of least privilege dictates that an ap-
plication should only be given the privileges neces-
sary to perform its task [13, 14]. While attempts
to apply this principle to software running on a sys-
tem abound, the principle of least privilege has ap-
parently been applied less as it relates to the soft-
ware installation process itself. Typically, software
installers are given full access to the system, being

∗Version: July 8, 2009. USENIX HotSec 2009.

allowed to make any configuration changes they de-
sire. In today’s computing environment, installers
are often downloaded from the Internet (in addition
to being shipped on CD). Almost all users who desire
the functionality reported to be provided by a to-be-
installed program will happily run the installer. Even
in environments where users do not run as root for
the majority of tasks, users purposefully become root
to install software (Windows “helpfully” presents a
dialogue box to elevate an application’s privileges to
Administrator if the executable is called setup.exe).
The risk that follows from being able to easily modify
arbitrary system configuration is compounded by the
fact that the privileges required to install software
are often not separated from those given to system
daemons, which are also subject to exploit.

In this paper, we separate the privilege to configure
a system (the configure privilege) from the traditional
root privilege. While other systems have separated
the configure privilege from root in the past, we be-
lieve the historical approach of treating the configure
privilege as any other privilege given to applications
is misguided. We approach the problem differently,
granting the configure privilege to a single process
which in turn mediates requests for changes in system
configuration. We explore the benefits of mediating
requests to configure a system through a configura-
tion daemon, including the ability to involve the user.

We limit our discussion of system configuration to
those operations having a direct visible effect on ei-
ther configuration files or applications on disk (i.e.,
configuration operations which are persistent across
reboots) – this includes scripts, startup files (related
to both the operating system and applications) and
any executable file (including libraries). While it may
be possible to expand this approach to include other
configuration operations (e.g. network interface mod-
ifications), they are not the focus of this paper.

In Section 2, we provide motivation for a core con-

1



figuration daemon. Section 3 describes a possible
configuration daemon. Section 4 discusses related
work. We conclude in Section 5.

2 Motivating a Configuration
State

We are not the first to propose a configuration state
which is distinct from root privilege. We are also
not the first to allow as a (optional) requirement user
input to transition into the configuration state. Sys-
tems such as DTE-enhanced UNIX [20] and XENIX
[18] have separated out configuration privilege and
both hardware keys [1] and read-only media [7] have
attempted to tie the granting of configuration privi-
lege to a physical action performed by the user. To
our knowledge, however, we are the first to attempt
to restrict configuration privilege to a single process.
While current systems attempt to limit the privilege
to configure a system by separating it from the priv-
ileges required to perform routine tasks, this separa-
tion has proven to be ineffective in the presence of
malware. The combined effect of both installing soft-
ware and running daemons as root leads to a situa-
tion where it is altogether too easy to gain configura-
tion privilege on a running system. To better protect
the configuration of a system, it becomes clear that
the granting of configuration privilege should be more
tightly held and more granular.

The isolation of configuration privileges allows one
to restrict what applications can do when perform-
ing standard tasks. Many configuration operations
are inherently dangerous, including formatting hard
drives, editing system configuration, and deleting
program/system files. To allow these operations by
any program (having broad privileges such as root)
during standard system operation is an apparently
unnecessary risk. Many viruses have exploited the
fact that configuration operations can be performed
without additional privileges to infect files, disable
virus scanners, install themselves into the boot se-
quence, and infect the running kernel (among other
activities) [15].

The end-user of a computer system (or IT depart-
ment in corporate environments) is normally involved
in any configuration changes within the system (ei-
ther directly, by making them manually, or indirectly,
by approving/initiating them). We believe that for
a typical program, obtaining configuration privilege
without the assistance of a physical user of that sys-

tem should be much harder than it currently is. We
propose that configuration permission should only be
given to one process, configd.

3 A configd Prototype

One of the key aspects in limiting configuration is pre-
venting programs from routinely running in configu-
ration mode. It seems creating a configuration state
on a system and then allowing arbitrary installers
to operate in this space is a flawed approach. We
can not be guaranteed that installers will limit their
actions when given configuration permission (the in-
staller may be malicious or badly written).

While operating systems mediate what applica-
tions can do to a system, traditional access control
methods have focused on a preconfigured allow/deny
rule-set, giving the user no real-time say in what
configuration changes should be allowed and denied.
While the operating system (OS) could be modified to
query the user every time a configuration change is re-
quested, the constant barrage of fine-grained queries
would be a usability nightmare (we discuss user in-
teraction in Section 3.3). In an effort to keep the OS
kernel from becoming much bigger, we focus on a so-
lution running in user-space, working alongside the
kernel to involve the user in configuration changes.

In installing software, a user will typically become
root (e.g., by entering a password, running sudo, or
logging in as Administrator) and then run the ap-
plication installer. To date, this explicit transition
to root level control and subsequent running of an
installer was considered sufficient security. It was as-
sumed a user would not transition to root and run
the installer unless they really did intend to install
the application associated with the installer, and that
the installer would restrict its system changes to only
those required to get the specific application run-
ning on the system – in effect, trusting that all in-
stallers are non-malicious. Indeed, today installers
may make any number of configuration changes to a
system against the user’s wishes (a user has no way
of knowing what an installer is doing). Typically, the
scope of configuration changes made by an installer
is at the sole discretion of the software’s developer,
putting us at the mercy of the imagination of an at-
tacker. Even when installers are created by legitimate
entities, the configuration changes can still involve
privileges beyond those expected (e.g., consider P2P
file sharing clients [4] or the Sony Root-Kit [5]).

That we cannot trust installers to self-police the

2



scope of their actions clearly motivates the need for
a mediator with the ability to accept or reject sys-
tem configuration changes. We thus present configd,
an in-progress prototype daemon designed to mediate
requests for configuration changes. Its purpose is to
work alongside the operating system kernel (a modi-
fied Linux 2.6.28.7 kernel in our prototype) to protect
the configuration of a system. In this proposal, the
OS kernel is responsible for:

1. Restricting to programs running with configure
permission the ability to delete, move, and write
to configuration-related files. “root” should no
longer be allowed to make arbitrary configura-
tion changes to a system (including the kernel) –
these changes should be limited to the program
running with configuration privilege (configd).
While we do not mandate any specific method for
distinguishing configuration-related files, storing
a mark (discussed in Section 3.1) in file meta-
data is one suitable approach (and the approach
used in our prototype).

2. Restricting the ability to obtain configuration
permission. In this proposal, this is done by al-
lowing only a single process to have configuration
permission.

3. Restricting the ability to control the process run-
ning with configuration permissions (e.g. by not
allowing the process to be killed or modified by
a debugger).

The configd daemon is responsible for:
1. Responding to requests for configuration changes

from other applications on the system (e.g.,
through a UNIX socket).

2. Communicating with the user regarding configu-
ration changes on the system (e.g., through USB
keys, a keyboard, and the display).

3. Notifying the kernel (through a yet to be spec-
ified interface) which files are marked as being
configuration related.

4. Performing allowed changes to the configuration
of the system.

We rely on configd being started early during
the boot process (configd itself prevents malicious
changes to the boot process). Once configd has
started, other programs are prevented by the OS ker-
nel from obtaining configuration permission.

In developing configd, we take advantage of the
temporal nature of software installs. We assume the
operating system and configd are already installed
and running on a system. If configd is made part of
the OS or core system, this assumption is reasonable.

3.1 Mediating Configuration Changes

By proxying all configuration requests through
configd, we can limit the configuration privilege on
a system. configd will respond to requests from
other applications, queueing up configuration change
requests until such time as a USB key previously as-
sociated with the request is inserted. In relying on
USB keys, we borrow pieces from the work of Butler
et al. [1], who coarsely tie configuration of a system to
USB keys, relying on the user to insert the USB key
associated with a disk block before that block can be
modified (in their work, a specific USB key can be as-
sociated with one or more different disk blocks). We
adapt their work, tying files to a particular USB key
(instead of blocks; blocks are too fine a granularity
for our goal). Butler et al. prevent modifications to
the disk when the USB key is not inserted, but do
not limit which applications can run once the key is
inserted; an installer need only ask the user to insert
the USB key in order to obtain the privileges required
to modify the file of its choosing. Any malicious dae-
mon running on their system would be equally ca-
pable of waiting for a USB key to be inserted. In
contrast, when a USB key is inserted in the proto-
type configd system, only configd and the kernel
remain running.

In addition to configd using USB keys, standard
system IO devices such as the keyboard and video
display can be used to interact with the user. By
interacting with the user through these, configura-
tion changes performed when a key is inserted can be
further restricted (for example, in our prototype, all
processes other than configd are suspended by the
kernel to prevent standard system IO devices being
controlled by malware during configure operations).
While configd is capable of supporting many USB
keys, we foresee most non-technical users typically
using only one or two.

In order for system configuration to be possible at
all, configd must support some basic operations. We
now discuss some simple, basic requests that it should
be able to process, respond to, or queue. We note
several caveats which should be considered in imple-
menting these operations.

1. Marking a File. If modifications to a file are
to be restricted based on the USB key inserted,
it must be possible to mark a file as requir-
ing a specific key to be inserted. While Butler
et al. make the association implicit by tagging
all files modified while the USB key is inserted,
the association is made explicit in our prototype

3



(by requiring applications explicitly mark files as
configuration-related by calling configd). While
implicit tagging has the benefit of being more
easily integrated into current systems, explicit
tagging avoids the problem of mistakenly tag-
ging certain files. We foresee software installers
explicitly marking files by calling configd.

2. Move a File. In order to properly configure a
system, one needs to be able to at least replace a
file with a new version. configd therefore sup-
ports the move operation, allowing a new version
of a marked file to replace the version currently
installed on a system.

3. Delete a File. In order to uninstall an applica-
tion, configd must support being able to delete
a file. We note that when a file is deleted, the
associated mark (discussed in item 1) is also re-
moved.

3.2 Creating USB Configuration Keys

To ease deployment of systems supporting configd
and associated USB keys, we suggest using off-the-
shelf USB flash drives. In using standard USB flash
drives, however, one must ensure that software with-
out configuration permission can not “create” a USB
key recognized by configd from any USB drive in-
serted into the machine (and hence enable configura-
tion mode).

As a solution, we propose that the file mark be of
the form m = H(p), where H is a one-way hash func-
tion, p is a random and suitably long secret which is
stored on the USB key, and m is the mark associated
with a file. All files on a given machine protected
with the same USB key would have the same mark
m. In order to verify the appropriate key is inserted,
p is hashed and compared to m. Assuming p can not
be easily guessed, an attacker is not able to create a
new USB key which can be used to authorize changes
to a file protected with hash m. This approach also
protects against what we term the Curious George
attack – attackers spreading portable storage devices
(e.g., CD’s and USB keys) in an area like a parking
lot or lobby with the intention that victims will be
curious and insert the media into their computer to
have a look. With cryptographic file marks, malicious
media found by the user will not be recognized as a
valid USB key for the system.

3.3 Confirming Configuration
Changes with the User

When a USB key pre-configured with configd marks
is inserted, configd will go through all queued config-
uration change requests and determine which files are
associated with the key that has been inserted. For
those configuration operations involving files which
are associated with the currently inserted USB key,
configd will furthermore query the user for permis-
sion to perform the change.

The näıve approach to querying the user would be
to list each requested configuration change, includ-
ing the old and new versions of the file. Most users
will not find such information helpful – indeed, it is
likely that many users would accept all configuration
requests. How best to reliably involve the user re-
mains an issue that is obviously very important, but
not one that we claim to solve in the present note –
our main focus here is on proposing a base system to
isolate configuration privileges which in its first in-
stance, appears suited mainly for technical users or
IT staff. We present, however, a possible improve-
ment in Section 3.5.2.

3.4 Deployment

Because configd prevents installers from directly
modifying system configuration, we acknowledge it
can not be deployed in current mainstream computer
systems. Installers (and auto-updaters) will fail if
they are denied permission to install, update, and
modify configuration files and binaries on a system.
More and more application environments, however,
are also providing generic application installer frame-
works. These frameworks provide the functional-
ity required to install an application, not requiring
the application to provide its own installer. This
trend toward providing install frameworks exists in
both the open source software community (through
package managers [2]) and in Windows (through
the Microsoft Installer (MSI) [11]). The introduc-
tion of these installer frameworks may ease the fu-
ture deployment of configd. As long as configura-
tion changes on a system are not appropriately con-
strained however, we will continue to see malware and
other application installers take advantage of overly
broad permissions.

4



3.5 Extensions to configd

While configd and its supporting system does pro-
tect against malicious configuration changes on a run-
ning system, the basic system, as noted, is at best
suitable for advanced users. We now discuss two ex-
tensions to the base system. We expect these and
other possible extensions will improve the usability
of configd, and encourage research in this area.

3.5.1 Updates without the USB Key

In the basic configuration daemon setup, all opera-
tions to a marked file require user authorization and
the presence of the associated USB key. As an im-
provement, operations involving the replacement of
one binary from a software vendor with a new ver-
sion from the same vendor could use a system such as
self-signed executables (SSE) [21] instead of requiring
the USB key to be inserted. SSE restricts binary re-
placement to new versions of the binary provided by
the same software source, significantly reducing the
risk to system configuration. Because software up-
dates (including security updates) are now common
on binaries, SSE greatly reduces the number of times
a user would need to insert/remove the USB key.
Application installs/removals and configuration file
changes would still require the USB key. The proto-
type configd is being extended to enforce SSE (shift-
ing SSE enforcement from the kernel into configd).

3.5.2 Path-Description Aliasing

Because few users can be expected to know what
each file on a system is used for, we suggest alias-
ing as an improvement on the näıve approach. We
expand the list of commands accepted by configd
(see Section 3.1) to include one more: the associate
command, allowing a specific path prefix to be as-
sociated with a text description. As an example,
C:\Windows\System could be associated with “The
Windows System”. Such associations would be per-
manent (as long as files with the path prefix remain
on the system) and stored on the USB key along
with p, the random key associated with files under
the prefix. The stored description on the USB key
allows configd to ask the user whether they want
to allow changes to “The Windows System” instead
of C:\Windows\System. We envision that the alias
association would be set during the initial install of
an application by the installer, similar to how an ap-
plication would call configd to mark each file (as
discussed above). In order to prevent abuse of the

aliasing system, new aliasing prefixes would be lim-
ited to those files not already associated with a prefix
(e.g., C:\Windows\System32 could not be associated
with a description if C:\Windows\System had already
been associated). Like the core configd proposal,
this technique leverages, for the benefit of security,
the order software is installed.

Once path prefixes are associated with a descrip-
tion, it becomes possible to group configuration re-
quests based on the description which will be pre-
sented to the user. Instead of asking 10 questions,
one for each file in the C:\Windows\System directory,
configd could be programmed to ask whether mod-
ifications to “The Windows System” should be al-
lowed. This change may provide considerable benefit
to the user but the design requires further study.

While it remains unclear how to involve non-
technical users in configuration tasks while minimiz-
ing the chance of error (both accidental and through
social engineering), both SSE and aliasing provide
some initial steps.

3.5.3 Compatibility with Current Installers

While the basic proposal requires installers to ex-
plicitly request system configuration changes through
configd, our system could be extended to work with
current installers as follows. Attempts to modify pro-
tected files are already detected by the modified ker-
nel (as discussed above) and rejected. These requests
could instead be forwarded to configd by the modi-
fied kernel, being processed like any other request to
configd. This approach allows current installers to
operate within the configd framework.

4 Related Work

While projects such as DTE-enhanced UNIX [20] and
XENIX [18] restrict the privileges of root (including
root’s ability to configure the system), we are un-
aware of any such privilege systems restricting which
applications can run with configuration privileges –
i.e., it seems any installer can be run with such privi-
leges, again still having full access to all files on disk.
For systems using the OpenBSD schg [8] and ext2
immutable [19] flags, any application can be given
the ability to change an immutable file – the user can
simply be asked to run an application after acquiring
sufficient configuration privileges. SVFS [22] protects
files on disk but is susceptible to the same problem
of inadequate control over installation applications.

5



There have been many attempts to detect mali-
cious modifications to system configuration. Win-
dows file protection (WFP) [9, 3] maintains a
database of specific files which are protected, along
with signatures of them. WFP is designed, however,
to protect against a non-malicious end-user, prevent-
ing only accidental system modification. Pennington
et al. [12] proposed implementing an intrusion detec-
tion system in the storage device to detect suspicious
modifications. Strunk et al. [17] proposed logging all
file modifications for a period of time to assist in the
recovery after malware infection. Tripwire [6] main-
tains cryptographic hashes of all files in an attempt
to detect modifications. All these attempts rely on
detecting modifications after the fact.

Applications such as registry watchers [16] and
clean uninstallers [10] attempt to either detect or re-
vert changes made to a system by an application in-
staller. These systems don’t actually prevent changes
in system configuration. The separation of config-
uration privileges as proposed in configd prevents
installers from making unauthorized changes to sys-
tem state, leading to a proactive rather than reactive
approach to limiting system configuration changes.
Package managers [2] and MSI [11] both limit system
configuration actions allowed by packages designed
for their system, but do not prevent applications from
simply providing their own installer, bypassing the
limits enforced by the package manager.

5 Concluding Remarks

The separation of configuration privilege from the
traditional root privilege better facilitates applying
the principle of least privilege to application installers
and other root-level processes, to better protect a
system against unauthorized or unwanted configura-
tion changes. While we mention two improvements
to the basic configd framework in this note, this
proposal and related prototype is work-in-progress.
While we do not propose that it is suitable for uni-
versal adoption, we expect that configd will prove
suitable in security-conscious environments (e.g., na-
tional defence, government, financial infrastructure).

Acknowledgements. We thank anonymous ref-
erees for helpful comments. The second author ac-
knowledges NSERC for an NSERC Discovery Grant
and his Canada Research Chair in Network and Soft-
ware Security. Partial funding from NSERC ISSNet
is also acknowledged.

References
[1] K. R. B. Butler, S. McLaughlin, and P. D. McDaniel.

Rootkit-resistant disks. In Proc. 15th ACM CCS, Oct
2008.

[2] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman. A
look in the mirror: Attacks on package managers. In Proc.
15th ACM CCS, Oct 2008.

[3] J. Collake. Hacking Windows file protection. Web Page,
May 2007. http://www.bitsum.com/aboutwfp.asp.

[4] B. Edelman. Comparison of unwanted software installed
by P2P programs. Web Page, Mar 2005. http://www.

benedelman.org/spyware/p2p/.
[5] J. A. Halderman and E. W. Felten. Lessons from the

Sony CD DRM episode. In Proc. 13th USENIX Security
Symp., Aug 2006.

[6] G. H. Kim and E. H. Spafford. The design and imple-
mentation of Tripwire: A file system integrity checker. In
Proc. 2nd ACM CCS, 1994.

[7] Knoppix Linux. Web Page (accessed 15 Dec 2008). http:
//www.knoppix.net.

[8] Y. Korff, P. Hope, and B. Potter. Mastering FreeBSD
and OpenBSD Security, chapter 2.1.2. O’Reilly, 2005.

[9] Microsoft. Description of the Windows file protection fea-
ture. Web Page, May 2007. http://support.microsoft.

com/kb/222193.
[10] Microsoft. Description of the windows installer cleanup

utility. Technical Report Q290301, Microsoft, 2008. http:
//support.microsoft.com/kb/290301.

[11] J. Moskowitz and D. Sanoy. The Definitive Guide to Win-
dows Installer Technology. Realtimepublishers.com, 2002.
http://nexus.realtimepublishers.com/dgwit.php.

[12] A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Good-
son, and G. Ganger. Storage-based intrusion detection:
Watching storage activity for suspicious behavior. In
Proc. 12th USENIX Security Symp., Aug 2003.

[13] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE,
63(9):1278–1308, Sep 1975.

[14] F. B. Schneider. Least privilege and more. IEEE Security
& Privacy Magazine, 1(5):55–59, Sep 2003.

[15] E. Skoudis and L. Zeltser. Malware: Fighting Malicious
Code. Prentice Hall, 2003.

[16] E. Software. Registry watch. Software Application
(viewed 23 Apr 2009). http://www.easydesksoftware.

com/regwatch.htm.
[17] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and

G. Ganger. Self-securing storage: Protecting data in com-
promised systems. In Proc. 4th USENIX Symp. on Op-
erating Systems Design and Implementation, Oct 2000.

[18] Trusted XENIX version 3.0 final evaluation report. Tech-
nical Report CSC-EPL-92-001, National Computer Secu-
rity Center, Apr 1992.

[19] C. Tyler. Fedora Linux, chapter 8.4. O’Reilly, 2007.
[20] K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac,

D. L. Sherman, and K. A. Oostendorp. Confining root
programs with domain and type enforcement (DTE). In
Proc. 6th USENIX Security Symp., Jul 1996.

[21] G. Wurster and P. van Oorschot. Self-signed executables:
Restricting replacement of program binaries by malware.
In USENIX 2007 HotSec, Aug 2007.

[22] X. Zhao, K. Borders, and A. Prakash. Towards protect-
ing sensitive files in a compromised system. In Proc.
Third IEEE International Security in Storage Workshop
(SISW’05), 2005.

6

http://www.bitsum.com/aboutwfp.asp
http://www.benedelman.org/spyware/p2p/
http://www.benedelman.org/spyware/p2p/
http://www.knoppix.net
http://www.knoppix.net
http://support.microsoft.com/kb/222193
http://support.microsoft.com/kb/222193
http://support.microsoft.com/kb/290301
http://support.microsoft.com/kb/290301
http://nexus.realtimepublishers.com/dgwit.php
http://www.easydesksoftware.com/regwatch.htm
http://www.easydesksoftware.com/regwatch.htm

	Introduction and Overview
	Motivating a Configuration State
	A configd Prototype
	Mediating Configuration Changes
	Creating USB Configuration Keys
	Asking the User
	Deployment
	Extensions to configd
	Updates without the USB Key
	Asking the User
	Backwards Compatibility


	Related Work
	Concluding Remarks

