
Enabling Multiple Accelerator Acceleration for Java/OpenMP

Ronald Veldema, Thorsten Blass, Michael Philippsen
University of Erlangen-Nuremberg, Computer Science Department

Programming Systems Group, Erlangen, Germany
veldema@cs.fau.de, thorsten.blass@cs.fau.de, philippsen@cs.fau.de

Abstract—While using a single GPU is fairly easy, using
multiple CPUs and GPUs potentially distributed over multiple
machines is hard because data needs to be kept consistent
using message exchange and the load needs to be balanced.
We propose (1) an array package that provides partitioned
and replicated arrays and (2) a compute-device library to
abstract from GPUs and CPUs and their location. Our system
automatically distributes a parallel-for loop in data-parallel
fashion over all the devices.

There are three contributions in this paper. First, we provide
transparent use of multiple distributed GPUs and CPUs from
within Java/OpenMP. Second, we partition arrays according
to the compute-devices’ relative performance that is computed
from the execution time of a small micro benchmark and a
series of small bandwidth tests run at program start. Third, we
repartition the arrays dynamically at run-time by increasing or
decreasing the number of machines used and by switching from
CPUs-only to GPUs-only, to combinations of CPUs and GPUs,
and back. With our dynamic device switching we minimize
communication while maximizing device use.

Our system automatically finds the optimal device sets and
achieves a speedup of 5 – 200 on a cluster of 8 machines with
2 GPUs each.

Keywords-Parallel computing, Java, GpGPU, OpenMP

I. INTRODUCTION

OpenMP [1] is well-suited for shared-memory parallel
processing. There are of course implementations on top of
SMPs, NUMAs and Distributed Shared Memory (DSM)
systems, but not much work has been done on targeting
OpenMP for heterogeneous distributed architectures. We
propose to use OpenMP even for distributed architectures
because shared memory programming is still far easier than
distributed programming. This is even more the case when
not all processors are the same.

ClusterJaMP is a version of OpenMP for Java [2], [3]. It
provides the common OpenMP annotations for translation
to multi-core. jCudaMP [2] already translated parallel-for
statements into Cuda code, however, it (like its ilk) can only
use a single GPU comfortably, because both OpenMP and
Java assume a single global address space which is no longer
present in a multi-machine and/or multi-GPU environment
(each GPU also has its own memory and address space).

When only a single GPU is used, the shared memory
illusion can be implemented by copying all required data
to the GPU, waiting for it to finish, and copying the data
back. This provides an illusion of a single path of control

and a single address space. But this simple model does no
longer hold when we try to use multiple GPUs (what to copy
where?) and/or multiple machines. In general, when using
multiple compute devices (including the CPUs), there are a
few problems that need to be solved:

1 What compute devices are available and how fast are
they? How fast can data be transported to them?

2 How to manage data consistency across multiple
address-spaces?

3 How to spread the computational load in a fair way
across compute devices of different speeds and commu-
nication latencies?

4 How many compute devices and/or machines to use for
optimal performance?

In this paper we address (1) by providing an abstraction
layer that abstracts from both the network and the concrete
device implementation (Cuda, OpenCL, etc.). We solve (2)
by providing distributed array classes. An array class is then
responsible for maintaining its consistency. We solve (3) and
(4) by running an initial separate benchmark to probe each
discovered device’s performance parameters as well as the
network latency and bandwidth to that device’s memory. The
benchmark results are used to balance the load equitably
across the devices.

Additionally, we can redistribute the work at run-time by
increasing (or decreasing) the number of devices and even
switch between GPU, CPU, and CPU+GPU device types
to locate the sweet spot of the application performance.
Decreasing the number of machines or devices used can
improve performance by decreasing the amount of commu-
nication. However, if the network is not yet saturated and
the devices are fully loaded, using more compute devices
can also increase performance.

Note that to take best advantage of dynamically changing
the number of used processors it is necessary to change
the cluster’s management software. Ideally, the cluster’s
software should dynamically change process groups to max-
imize cluster utilization.

Our contributions are:

1 transparent use of multiple distributed CPUs and GPUs
from Java and OpenMP;

2 an array partitioning that takes individual accelerator
speeds into account;

void foo (i n t N) {
/ / #omp managed (a)
i n t [] a = new i n t [N] ;

/ / #omp p a r a l l e l f o r
f o r (i n t i =0 ; i<N; i ++) {

a [i] + + ;
}

}

Figure 1: Example ClusterJaMP program.

3 an adaptive tuning of the set of compute devices (by
increasing or decreasing the number and selecting the
type of accelerators) that finds an optimal communica-
tion/computation ratio for best performance.

II. CLUSTERJAMP

We study the problem of multi-GPU and multi-machine
use in the context of an OpenMP adapted to Java, called
ClusterJaMP. Without a loss of generality, all our results
should be transferable to OpenMP for C++/Fortran.

ClusterJaMP’s compilation pipeline is as follows. First,
the programmer annotates the source code with OpenMP
annotations. The annotated code is fed to ClusterJaMP’s
compiler which is implemented as an extension to the Java
compiler of Eclipse. The resulting Java bytecode files are
annotated with the locations of each parallel section and
their OpenMP attributes. At run-time, the standard Java
class loader is replaced by the ClusterJaMP class loader.
For each loaded class file it checks if it holds the OpenMP
annotations and if so, it passes control to the Compute
Device Manager (CDM) to JIT-compile each parallel-for in
a device specific way (CDM is described in Sec. III). This
compilation process creates ’kernels’, functions that contain
the parallel loop’s body and are parametrized by all live
variables. Any regular code without OpenMP annotations is
passed to the standard Java VM’s JIT compiler.

To enable the use of multiple accelerators at the same
time and to exploit their computation power efficiently,
we slightly extend the current set of OpenMP directives.
The new directives help the compiler (1) to optimizing the
partitioning process, (2) to replace Java arrays with array
packages so that arrays can be managed by ClusterJaMP
and, (3) to enable support for parallelization of perfectly
nested loops to expose more parallelism. We cannot show
(3) in this paper due to space restrictions.

In Fig. 1 we show a simple ClusterJaMP program.
Because the array a is used in a parallel context, the
compiler requires that a is marked with managed. This
causes the array to be allocated on the accelerators. For a
managed array the ClusterJaMP compiler rewrites the code
and replaces the Java array with a proxy object to the native
C++ object that performs the actual array management. This
involves replacing any managed array with its proxy type. To

/ / Java :
void foo (i n t N) {

In tAr ray1D a = new In tAr ray1D (N) ;
J N I c a l l (d o p a r a l l e l f o r , a . g e t C p t r () , N) ;

}
/ / C++:
void d o p a r a l l e l f o r (In tAr ray1D ∗a , i n t N) {

a r g u m e n t l i s t a r g s = a l l o c a t e a r g u m e n t l i s t () ;
a r g s . add (a) ;
a r g s . add (N) ;
c d m p a r a l l e l f o r (0 , N, a rgs , k e r n e l o f f o o) ;

}
/ / OpenCL /CDM−C k e r n e l :
void k e r n e l o f f o o (i n t ∗a) {

i n t i = g e t l o o p i n d e x 1 d () ;
a [i] + + ;

}

Figure 2: Pseudocode of generated ClusterJaMP program.

/ / #omp a l l o c s t a r t
/ / #omp managed (a)
i n t [] a = new i n t [N] ;
/ / #omp managed (b)
i n t [] b = new i n t [M] ;

/ / #omp a l l o c e n d

Figure 3: Example data allocation block.

simplify compilation, it is not allowed for a managed array to
have pointers to non-managed arrays or objects. This ensures
that an array will never have pointers to machine-local data.

The compiler transforms the example code from Fig. 1
to that of Fig. 2. It replaces the int[] type with
IntArray1D in foo and places the loop’s body into a
new OpenCL/CDM-C function kernel_of_foo().

One problem when using multiple compute devices is how
to reasonably partition the data of multiple individual arrays.
If this issue was ignored, one big array could completely fill
a device’s memory leaving no room for the partitions/repli-
cas of arrays instantiated later. Our solution is to allow a
programmer to group his array allocations in a block. This
is shown in Fig. 3. The ClusterJaMP compiler then allocates
both arrays a and b in one step and in cooperation with each
other.

III. COMPUTE DEVICE MANAGER, CDM

A cluster may hold different compute devices. Instead
of targeting each accelerator type (CPU, GPU, Cell, etc.)
and API (Cuda, OpenCL, etc.) separately, we create a new
abstraction layer “Compute Device Manager” (CDM). It
provides an abstract ComputeDevice class that encapsu-
lates in its current version the Cuda, OpenCL, and the main
(multi-core) CPU devices. Cuda is a C dialect that adds a
parallel-call statement to invoke a kernel multiple times in
parallel on a GPU. OpenCL is Cuda-like, but standardized.
For the main multi-core CPU we create a ComputeDevice

that starts one thread per core. Device specific optimizations
are left to the devices’ JIT or normal compilers.

In short, CDM’s abstract ComputeDevice class pro-
vides methods that

• allocate and free memory on a specific device,
• invoke a method on a specific device, and that
• provide relative speed and memory size information.

If an abstract device proxies some remote hardware, MPI [4]
is used for message exchange.

After initialization, all devices on all machines are quickly
benchmarked, all with the same kernel, so that CDM can
compute each device’s relative speedup compared to the
slowest device.

IV. CLUSTER ARRAY PACKAGE

The (Java-OpenMP) compiler rewrites arrays used inside
of parallel regions to use one of the classes from our Cluster
Array Package (CAP) instead. The compiler has the choice
between a partitioned array and a replicated array which can
then be further specialized for their element types (int, float,
double, etc.). The partitioned array class distributes array
elements over a given set of devices. The replicated array
class replicates its data over all the devices in a device set.
Both classes use CDM’s abstract ComputeDevice classes
to access the real hardware.

A. Partitioned Array Class

Partitioned arrays distribute subsets of array indices over
a given set of devices. The higher the computing power of
a device is, the larger is its chunk and hence its parallel
workload. We allow a Java array to be implemented by
means of a partitioned array if:

(1) there are no data dependencies between different loop
iterations on read/write accesses on this array and

(2) the indexing functions only add or subtract a small
constant from the loop variable.

If either of these constraints is violated, we must resort to
using a replicated array for that Java array. Of course, a
replicated array has the disadvantage that it occupies far
more memory on the cluster than a partitioned array does.

To simplify matters we only partition the single highest
array dimension instead of creating tiles or blocks. This
reduces algorithm complexity, allows for easier creation of
bulk transfers, and avoids fragmentation of the index set. If
a kernel contains both an access to a[i] and b[i], where
both arrays can be partitioned, both arrays are partitioned
in the same way. This way no kernel will ever have to
access remote partitions. In particular, partitioned arrays can
be used with “stencils” whose ghost cells will automatically
be created and updated.

B. Replicated Array Class

If a Java array cannot be implemented as a partitioned
array, it must be implemented by means of a replicated array.
Unfortunately, random writes to a replica trigger several
steps to restore data consistency among all replicas. After
all kernels on all devices have finished, our replicated array
package merges all the changes that have been made to the
replicas and propagates them to all other replicas of the
array. This is done using the following steps.
1) Each machine stores a single additional local copy of

the array (called a twin) in its main memory. This copy
is allocated when the replicated array is instantiated.

2) After a kernel finishes, for all devices in a machine
(including the CPUs), we create (in parallel) a diff-vector
using the twin from (1). The diff-vectors are exchanged
between all machines.

3) Each machine updates the replicas on all its devices by
applying all incoming diffs, including the diff created
locally if a machine holds multiple compute devices. It
is considered a program error if more than one processor
updates a variable at a time.

V. ADAPTIVELY CHANGING THE NUMBER AND TYPES OF
DEVICES USED

A central issue in cluster computing is to select the opti-
mal number of cluster nodes to use for an application to get
a good computation/communication ratio. On heterogeneous
cluster nodes, the device types also need to be selected.
For example, a data-flow dominated (streaming) kernel will
perform better on a GPU, while a kernel that is dominated
by control-flow or random memory access benefits from
the branch prediction or caching of the CPU. Autotuning
relieves the programmer of having to manually select the
set of devices to use. Note that growing/shrinking assumes
that the work load is proportional to the data size. It is
open research to find a load distribution for other types of
problems.

We test two autotuning heuristics in this paper: “grow”
and “shrink”. Reconfiguration of the cluster is triggered on
every nth parallel invocation for the following parallel invo-
cations. Our autotuner does not get stuck in local minima by
detecting that a change (more or fewer nodes or a different
device type) only causes a slight improvement or even a
loss of performance. In this case another device type (or
combination thereof) is tried.
Grow-heuristics. We start with one machine and a device

of some type. Then a reconfiguration doubles the number
of machines used for a parallel-for. Whenever we double
the number of machines, we add the newly available
devices of the same device type to the set that executes
the next parallel-for. Once all machines are used, we
switch to using another device type and start from scratch
using only one machine and one device of that new type.

Table I: Application performance (in seconds) using a fixed
configuration (bold numbers highlight best performance).

1 CPU 2 CPUs 4 CPUs 8 CPUs
Edge Detection 6.6 3.7 1.3 0.7
Matrix Multiply 178.5 97.8 50.6 26.5
M.M. + Nest 175.2 95.1 49.3 25.8
Black Scholes 142.3 113.7 61.7 37.4
SFE (Constructor) 254.8 135.6 65.7 35.8

2 GPUs 4 GPUs 8 GPUs 16 GPUs
Edge Detection 2.90 0.90 0.04 0.02
Matrix Multiply 121.30 64.40 33.00 20.30
M.M. + Nest 5.80 3.10 1.60 0.80
Black Scholes 0.86 0.67 0.52 0.45
SFE (Constructor) 17.30 9.30 4.70 1.60

1 CPU + 2 CPUs + 4 CPUs + 8 CPUs +
2 GPUs 4 GPUs 8 GPUs 16 GPUs

Edge Detection 2.9 0.9 0.2 0.09
Matrix Multiply 104.3 53.8 29.0 18.80
M.M. + Nest 22.7 13.2 8.0 4.80
Black Scholes 14.2 11.7 9.6 5.40
SFE (Constructor) 33.3 17.9 8.2 3.20

Once all device types have been tried, we start trying
the combination of two device types (CPU and GPU,
for example).

Shrink-heuristics. We start with a device set containing all
available devices of all machines. On each reconfigura-
tion we shrink by halving the number of machines and
by then ignoring the devices from the removed machines.
Once only a single machine is left, we restart with a full
set and remove a different device type.

Reconfiguration is not cheap as array chunks have to be
copied between devices to fit both the new configuration and
the corresponding work distribution. With both heuristics,
if a machine is added or removed all partitioned arrays
must be repartitioned. For replicated arrays, a replica is
allocated for each new device that is newly included into
the configuration.

VI. PERFORMANCE

All measurements were performed on a cluster consisting
of 8 machines, each with two Xeon 5550 ”Nehalem” chips
(8 cores + hyperthreading) running at 2.66 GHz with 8 MB
shared cache per chip, 24 GB of RAM (DDR3-1333). Each
machine holds two nVidia Tesla M1060 GPUs (4 GByte
of memory each) and an Infiniband interconnect with 20
GBit/s bandwidth per link and direction. Each node runs
Linux kernel 2.6.18 and all benchmarks were compiled with
a combination of Cuda 3.1 and GNU G++ 4.3.3. For inter-
node communication, we rely on OpenMPI [4] version 1.4.2.
To measure the shrink/grow versions, we submit a fixed
size reservation to Torque/Maui [5] and then sub-allocate
processors within the reservation. Since the data used in the
benchmarks is mostly too large for a single GPU’s memory,
there are no single-GPU times.

To stress-test the cluster’s network performance, we ex-
amined the achievable inter-device bandwidths by copying
chunks of main-memory from the primary machine to an-
other device’s memory, potentially on another machine. We
found that for copying inside a machine, bandwidth from
one device to another is around 4 GByte/sec. When copying
to another machine’s device, the copying bandwidth drops
to around 590 MByte/sec, regardless of CPU → CPU or
CPU → GPU.

The application measurements are shown in Table I. The
applications’ performance with the adaptive reconfiguration
autotuner switched on is shown in Table II. All measure-
ments are performed five times and averaged. Slight jitter
occurs due to asynchronous message processing (a thread
is awoken from a pool to handle an incoming message).
Overall, when adaptive configuration was enabled, the sys-
tem always automatically selected the GPUs only. The only
exception was the naive matrix multiply where all available
CPUs and all their GPUs were finally selected.

Without looking closer at the benchmarks themselves, we
can make some global conclusions. First, each line of Table I
shows that speedup is good regardless of the device type
combination. However, using a combination of CPU and
GPU does not achieve extra performance as the amount
of data handed to the CPU is vanishingly small. Second,
dynamic reconfiguration clearly works and is surprisingly
cheap: in 7 to 11 reconfigurations an optimum is found as
Table II shows. Although a single benchmark that cannot be
representative for all applications is used to guide initial data
placement, the heuristics always find the configurations that
yield the best performance (most often a GPU-only config-
uration). This is due to the GPUs being far faster than the
CPUs so that the CPUs have proportionally little to nothing
to do under our naive compilation model. In all cases, the
“grow” heuristics had to try more device sets (8 to 11 vs. 7 to
8) to find the optimal configuration (see Table II). The reason
is that “grow” has fewer opportunities to quickly abort and
backtrack as it slowly climbs to better performance. The
“shink” heuristics, in contrast, starts with good performance
and quickly backtracks when seeing worse performance
compared to the initial GPU+CPU combination. The small
differences in final run-time performance between the times
in Table I and Table II are due to the message passing library
and threading system jitter. A single tuning round takes in
the order of 0.1 to 0.5 milliseconds and does not seriously
affect the total run time.

Finally, all applications needed the allocation block ex-
tension (Sec. II) to cooperatively allocate individual arrays.
Without the annotation, the applications would not work.

A. Edge detection

Edge detection is a fundamental image processing prob-
lem. Edges in images are characterized by an intensity
change from one pixel of an image to the adjacent pixel.

Table II: Application performance (in seconds) using adap-
tive reconfiguration.

GROW best time grow (sec) # tried grow sets
Edge Detection 0.02 9
Matrix Multiply 19.20 11
M.M. + Nest 0.78 10
Black Scholes 0.43 10
SFE (Constructor) 1.90 8
SHRINK best time shrink (sec) # tried shrink sets
Edge Detection 0.02 8
Matrix Multiply 19.40 7
M.M. + Nest 0.74 7
Black Scholes 0.46 7
SFE (Constructor) 1.70 7

The Sobel edge detector [6] uses a gradient approximation.
The superlinear speedup we see in this benchmark is because
of the memory bandwidth bottleneck that is overcome when
adding more GPUs.

The compiler detects that the image can be implemented
and spread over the devices by using a partitioned array
class. Both “grow” and “shrink” heuristics (Table II) find the
same optimal device set (which they do for all applications
tested modulo a little application performance jitter).

B. Matrix Multiply

This benchmark implements a naive (non-blocking) ma-
trix multiplication. We use 5000× 5000 matrices of integer
elements and perform the matrix multiplication in a loop
100 times. We also measure performance with OpenMP’s
collapse clause applied that collapses the two nested loops
into a single larger loop. See the lines in the tables marked
with ’M.M. + Nest’.

All matrices are stored as replicated arrays as (from the
point of view of the compiler) random access occurs to each.
After each iteration we therefore need to unify the matrix
replicas (Sec. IV-B) by broadcasting diffs both within and
between machines.

Speedup is good in all cases as the network bandwidth
is not exhausted. Without nested loops, the system shows a
slight advantage to using both CPUs and GPUs simultane-
ously (as the GPUs are not fully loaded).

Adaptive reconfiguration of the non-nested version finds
the optimal device set at 8 CPUs and 16 GPUs after only 7
shrink steps.

C. Black Scholes

The Black Scholes model [7] uses a partial differential
equation to predict the prices of European options. This
benchmark calculates the prices for an option-call and
option-put in parallel. All data is stored in one dimensional,
partitioned float arrays of the same size. The prices are
calculated in a single parallel-for loop.

The application shows a reasonable speedup on the CPUs
(3.8 on 8 CPUs). Going from 2 GPUs to 8 GPUs shows

less speedup (1.8) as the network latency starts to hinder
performance over the short run-times. Again adaptive re-
configuration finds the optimal device set.

D. Secure Function Evaluation (SFE)

SFE [8] is a cryptographic protocol that enables the secure
evaluation of an arbitrary boolean circuit between several
parties on private inputs. SFE has high memory and compute
requirements for creating and evaluating of a circuit.

SFE shows good speedup when using CPUs (7.1 using
8 machines) and when going from 2 GPUs to 8 GPUs (a
speedup of 10.1). The combination of CPUs and GPUs is
slower than only using GPUs because the CPU receives
chunks that are too big compared to their SFE performance.
This could potentially be avoided by running multiple
benchmarks at program start-up to measure relative device
performances. The benchmark that is most similar to the
program’s kernels should then dictate array partitioning.

VII. RELATED WORK

A number of new languages have recently been proposed
for high-performance, high-productivity computing, for ex-
ample X10 [9] and Chapel [10]. To increase performance,
these languages have built-in support for locality but are
thus far unable to run in environments with several different
compute devices. In this paper we propose minimal language
extensions (OpenMP) and a combination of array classes
and compiler analysis to allow efficient, locality aware
computing. The ideas in this paper can of course also be
applied to implementations of these new languages.

A number of OpenMP implementations allow transfor-
mation to Cuda code, e.g. [11], [12]. Neither of these,
however, supports multiple GPUs or multiple machines i.e.
clusters. Their focus is instead either on supporting the
full OpenMP standard or on generating optimized Cuda
code. Our system instead focuses on multi-GPU and multi-
machine use combined with finding optimal sets of devices
to use.

Zippy [13] ports the Global Arrays programming model
to allow GPU use. A global array is a distributed array that
partitions its elements over multiple GPUs. The array object
then has a fixed set of methods to operate on the arrays.
Our system abstracts from the array objects and allows the
programmer to write normal Java code. With our adaptive
optimization the system dynamically finds the near optimal
set of devices to use and also partitions arrays automatically.

Instead of array packages that span all compute devices,
Cudasa [14] provides a DSM where the GPUs are explic-
itly programmed. Here the Cuda programming model is
extended with task annotations to allow cluster computing.
GPUs and tasks have to be explicitly programmed in Cudasa.
Our system abstracts from tasks and GPUs completely and
creates a full DSM.

In [15] an asymmetric DSM system is presented where
the host CPU can page-in GPU memory on demand (a host’s
page fault translates to a page allocation and a GPU-to-
host memory copy). The asymmetry is that the GPUs cannot
page-in host memory to their memory. Our system does not
require such explicit GPU ↔ CPU copies.

CONCLUSION

We have described a system that (1) allows transparent use
of multiple GPUs and machines from OpenMP, (2) partitions
arrays based on accelerator speed, and (3) dynamically
adapts the set of compute devices to reach an optimal con-
figuration of CPUs and GPUs. On a cluster with 8 CPUs and
16 GPUs we archive good speedups (up to 200x compared to
the performance of a single CPU). Reconfiguration requires
only a few (7–8) autotuning iterations to find the optimal
set using a “shrink” heuristics which is better than “grow”.
Some small benchmarks run at program start-up provide a
good basis for device specific data partitioning.

REFERENCES

[1] OpenMP Architecture Review Board, OpenMP C and C++
Application Program Interface, Version 2.0, March 2002.
[Online]. Available: http://www.openmp.org/

[2] G. Dotzler, R. Veldema, M. Klemm, and M. Philippsen,
“jCudaMP: OpenMP/Java on CUDA,” in Third Intl. Workshop
on Multicore Software Engineering (IWMSE10), Cape Town,
South Africa, May 2010, pp. 10–17.

[3] Michael Klemm, Matthias Bezold, Ronald Veldema, and
Michael Philippsen, “JaMP: An Implementation of OpenMP
for a Java DSM,” in Proc. 12th Workshop on Compilers for
Parallel Computers (CPC), A Coruna, Spain, Jan. 2006, pp.
242–255.

[4] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and
T. S. Woodall, “Open MPI: Goals, concept, and design of a
next generation MPI implementation,” in Proc. 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary, Sept.
2004, pp. 97–104.

[5] D. B. Jackson, Q. Snell, and M. J. Clement, “Core Algorithms
of the Maui Scheduler,” in Revised Papers from the 7th
Intl. Workshop on Job Scheduling Strategies for Parallel
Processing, ser. JSSPP ’01, Cambridge, MA, June 2001, pp.
87–102.

[6] R. C. Gonzalez and R. E. Woods, Digital Image Processing.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1992.

[7] F. Black and M. Scholes, “The pricing of options
and corporate liabilities,” Political Economy, vol. 81,
no. 3, pp. 637–54, 1973. [Online]. Available:
http://ideas.repec.org/a/ucp/jpolec/v81y1973i3p637-54.html

[8] A. C. Yao, “How to generate and exchange secrets,” in
IEEE Symp. on Foundations of Computer Science (FOCS’86),
Toronto, ON, Canada, Oct. 1986, pp. 162–167.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an
object-oriented approach to non-uniform cluster computing,”
in Proc. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’05), San Diego, CA,
Oct. 2005, pp. 519–538.

[10] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel
Programmability and the Chapel Language,” Intl. J. High
Perform. Comput. Appl., vol. 21, no. 3, pp. 291–312, 2007.

[11] S. Ohshima, S. Hirasawa, and H. Honda, “OMPCUDA:
OpenMP Execution Framework for CUDA Based on Omni
OpenMP Compiler,” Lecture Notes in Computer Science, vol.
6132, pp. 161–173, 2010.

[12] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU:
a compiler framework for automatic translation and optimiza-
tion,” in Proc. 14th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming (PPoPP ’09), Raleigh, NC,
Feb. 2009, pp. 101–110.

[13] Z. Fan, F. Qiu, and A. E. Kaufman, “Zippy: A Framework for
Computation and Visualization on a GPU Cluster,” Comput.
Graph. Forum, vol. 27, no. 2, pp. 341–350, 2008.

[14] M. Strengert, C. Müller, C. Dachsbacher, and T. Ertl, “CUD-
ASA: Compute Unified Device and Systems Architecture,” in
Eurographics Symp. on Parallel Graphics and Visualization
(EGPGV08), Crete, Greece, April 2008, pp. 49–56.

[15] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and
W.-m. W. Hwu, “An Asymmetric Distributed Shared Mem-
ory Model for Heterogeneous Parallel Systems,” SIGARCH
Comput. Archit. News, vol. 38, no. 1, pp. 347–358, 2010.

