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Abstract

The early transactional memory (TM) programming model and
semantics were inspired by ideas and semantics from database
transactions and today’s state-of-the-art TM systems are not too
removed from them. But today’s TM systems are being used
in modern and emerging parallel applications which are very
different from the database programs that those transaction se-
mantics and programming model were designed for. The dif-
ferences include the nature of the synchronization itself, the
amount of flexibility demanded from the programming model
and the amount of programmer control desired in the program-
ming process. While todays TM systems offer an elegant and
concise conceptual interface they typically offer a rigid set of
semantics to the programmer and are intended to be used only
as black-box components while writing parallel programs. They
provide guarantees of properties such as strict atomicity and
isolation irrespective of whether a program’s semantics require
them and usually at a significant performance cost. In this pa-
per we argue that this rigid view of memory transactions limits
the range of expressibility necessary for supporting some im-
portant parallel programming idioms for some soft-computing
programs. Using three specific behaviors as examples we also
argue that relaxing some of these guarantees and maintaining
the flexibility to support the specific style of synchronization
a program needs can substantially improve expressibility and
parallel performance especially in programs with long-running
transactions which discard significant amounts of work when
they abort.

1 Introduction

The widespread popularity of multi-core processors has made
it necessary to provide programmers with programming mod-
els that enable them to develop parallel programs that are both
correct, efficient and scalable. The Transactional Memory (TM)
model [10] has been widely studied and is touted as an elegant
abstraction to express data synchronization. Such synchroniza-
tion is expressed via specifying atomic blocks of code which
are guaranteed to execute atomically - each atomic block of
code appears to execute at once in during some indivisible in-
stant of time. Therefore in contrast with fine-grained locks pro-
grammers using memory transactions can simply specify where
atomicity is needed instead of also having to specify how to
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achieve it. This programmability advantage is the primary ap-
peal of TM language extensions and systems.

Memory transactions were conceptualized from database
transactions and they retain many of the traits of their database
counterparts - guaranteeing ACID: strong atomicity, consis-
tency, isolation and durability, separating atomicity from the
method for achieving it and so on. However in our opinion
database transactions capture very different computation than
modern real-world parallel programs. DB transactions typically
capture the business logic of commercial or enterprise work-
loads where the ACID properties above are desirable. Con-
trast this with a modern real world parallel program such as a
state-of-the art parallel game engine. It is not clear that sim-
ply using analogues of database transactions to manage data
synchronization in such an application is a prudent idea. Real
DB transactions are oriented around inserting, querying, delet-
ing records and performing some relatively simple operations
on the returned data. Moreover the data schema manipulated by
the user is relatively simple - tables, rows and columns. Many
critical regions in modern parallel programs however implement
much more complex functionality such as constraint or equation
solvers, physical simulation or some non-trivial algorithm. And
these critical regions often turn out to have a significant influ-
ence on overall parallel performance. Furthermore in contrast
with database transactions many of these critical regions have
the programmer interact with complex data structures - e.g., a
scene graph or voxel-octrees in graphics and interactive simu-
lations. The oft-used standard database example of concurrent
deposits and withdrawals from a bank account may be a good
simple representative case for thinking about database transac-
tions and their properties but it does not capture the complexity
and diversity of behavior in modern general purpose parallel
programs.

A simple conceptual and programmatic interface for specify-
ing atomic sections in parallel programs is certainly useful and
memory transactions fit this role. However using the database
notions of atomicity, consistency and isolation as the sole basis
for the transactional programming model limits the diversity of
synchronization idioms that can be expressed using this inter-
face. Consider the following three properties provided by a TM
system:

1. Atomicity: All TM systems provide the atomicity guaran-
tee. In many TM systems when a transaction reads state
that has been overwritten by another concurrent transac-



tion that committed, the reader transaction is aborted and
restarted. This is automatically guaranteed without regard
to whether it is desirable in the context of the program’s
semantics. Of course, this guarantee is important for the
correctness of many programs (indeed this property is ex-
tremely well aligned with the semantics desirable in com-
mon database applications) but for others it may be unnec-
essary and even undesirable.

2. Isolation: A transaction does not have any knowledge of
other concurrent transactions. In combination with the
atomicity property above, this means that the TM model
dictates that the reader transaction should abort regardless
of which specific writer transaction performed the update,
even if such behavior is not required by the programs se-
mantics.

3. No user involvement: Some TM systems allow the user
or the programmer to provide annotations or hints to turn
on or off specific behaviors or algorithms in the TM run-
time such as log compaction, eager or lazy conflict detec-
tion, commit-time or encounter-time locking etc. The ex-
pectation is that the programmer has the best knowledge
of which of these options is most suitable for his program
and will supply the annotations appropriately. However
most TM systems do not allow the programmer to specify
behavior such as specifying meaningful actions on impor-
tant events like aborts and commits or see the transaction’s
state. As far as the program is concerned the state main-
tained by the transaction itself is off-limits. There are good
reasons for this limitations, two of them being preserving
programmability and preserving portability between differ-
ent TM systems. So while this limitation makes it easier
for novice programmers to reason about synchronization,
it also severely limits what kinds of semantics other pro-
grammers can express in their transactions.

In this paper we argue that relaxing these properties is mean-
ingful in some programs and that the apparent simplicity of us-
ing database style transactions does not necessarily make ex-
pressing complex semantics in some modern parallel programs
easier. In the following sections we describe three behaviors
that commonly occur in parallel programs that are not easily
captured by the traditional notions of memory transactions in
that they require some violation of the strict notions of atomic-
ity, consistency, isolation or require user involvement.

2 Relaxed Sharing

There is a large class of real-world programs called soft com-
puting applications which are characterized by several unique
properties [4].

e Approximate nature of results. These applications all
produce an approximation of the actual results rather than
their actual values. This may be because of several rea-
sons. One common reason is that the physical or math-
ematical model expressed in the program requires some
approximation to be computable in a reasonable amount
of time. Other programs such as simulation applications
mimic continuous processes but in a discrete-time fashion
and this introduces some error in the result.

o User-defined correctness. In some cases, the application
programmer can choose to consciously sacrifice accuracy
of the results in order for the program to meet some execu-
tion characteristics such as soft real-time deadlines. He or
she may be able to control parameters that directly deter-
mine the amount of error in the results produced. Examples
of such parameters include thresholds in approximations,
the granularity of ticks in time-stepped simulations, cutoff
distances and radii in physical simulations etc.

e Tolerance for Imprecision and Uncertainty. Soft com-
puting applications to some extent are tolerant of impreci-
sion in inputs and some program values. Many such appli-
cations are designed to work with input streams and pro-
gram values which are inherently noisy, imprecise or unre-
liable. Examples of such programs include pattern recog-
nition systems, object-tracking systems and other machine
learning applications.

In many such soft computing applications [12, 9, 18, 11], the
values produced into shared variables in critical sections, un-
dergo transformations that change them very little in relative
terms [8, 5, 6, 2]. Relatedly they also exhibit the Approximate
Store Value Locality phenomenon [4] - a significant portion of
writes to shared variables in critical sections end up writing a
value that is very close to the value already present at that mem-
ory address. The closeness of the values before and after the
write is of course

Some reasons for this behavior in these programs are:

o Similarity in input data: Many real-world input data sets
contain a substantial number of input values that are simi-
lar.

o Iterative refinement: Many critical sections occur inside
loops where the results computed in the loop body are syn-
chronized with the global state at the end of each iteration.
If the results computed are similar or approximately simi-
lar for two consecutive iterations (i.e., each thread, modi-
fies global state by a relatively small magnitude), then the
store in the critical section that updates global state will
often exhibit the above store locality property.

¢ Finite precision in hardware

2.1 Exploiting Approximate Value Locality

If consecutive updates made to the shared state by a writer trans-
action are relatively small, then the reader may be able to pro-
ceed with the older state without waiting for the newest value,
as happens in normal (precise) synchronization in TMs. This
behavior usually constitutes a violation of the atomicity prop-
erty (it may not violate atomicity if the reader does not make
any subsequent modifications to shared state based on the result
of this read). Whether this violation is safe or desirable is dic-
tated by the program semantics for example, the “approximate
results” properties of soft computing applications above may be
enable them to tolerate this loss of atomicity.

Consider a transactional implementation of the kmeans al-
gorithm [3]. This algorithm takes a set of objects and attempts
to cluster them based on a distance metric. The program starts
by assigning objects randomly to a set of initial clusters. Then



18 T T T T
baseline
16 tau=0.1 ——
0.01
{ 0.001 —&—
0.0001 i
14 0.00001
& 0.000001 —e—
(8]
8§ 121
Q
£
= 10 F
o
2
5
g s8F
>
1]
6 |-
4 F
2
1 2 4 8 16 32

# Threads
(a) Execution time using Relaxed Sharing. 7 refers to the relative threshold

Normalized RMSE

3.5e-06 T T T T
3e-06 | i
/ '
2.5e-06 | - .
2e-06 | g
1.5e-06 | Threshold
0.1
0.01 ——
1e-06 | 0.001 i
/ 0.0001 —&—
,,/ 0.00001
( 0.000001
5e-07 | / g
I
O L L L L
0 10 20 30 40 50

Iterations

(b) Growth of error in results when using Relaxed Sharing. 7 refers to the relative
threshold

Figure 1: kmeans

Algorithm 1 Kmeans

while delta > 0do
delta = 0
for all Object
atomic {
//Reads c—center
// (Reader transaction)
cc = findNearestClusterCenter (1)

}

if mnembership[i] # cc then

\\ill dO

membership[i] = cc
delta += 1
end if
end for
for all Cluster ‘‘c’’ do
atomic {

//Writes c—center
// (Writer transaction)
c—center = computeNewCenter (c)

end for
end while

the new cluster centers are computed by summing the objects
within each cluster. These centers are computed and stored
atomically in a transaction as shown in Algorithm 1. In the
next iteration the distance of each point in a partition from all
the cluster centers is computed. For a random distribution of
initial cluster centers and objects, the relative amount of change
in the position of the cluster centers is quite small over succes-
sive iterations. Therefore, we can exploit the approximate store
locality in the cluster centers and ignore updates to the cluster
center that are small. This can be implemented by applying an
approximate locality threshold 7 to the shared variables holding
the positions of the cluster centers. Consider a thread A that has
read the position of a particular cluster center in order to com-
pute its distance from objects in A’s partition. Now the thread
B that owns this cluster center computes a new cluster center
which may be less than 7 away from the current cluster center
that A has read. Therefore the store executed by B is an ap-
proximately local store and would be marked as such. When
thread A finishes computing the distances of each of its objects
from the old cluster center these distances may be inconsistent.
However if the relative magnitude of this inconsistency is small
A can go ahead with the next step of reassigning objects instead
of aborting and restarting. The parallel performance benefits of
applying such a relaxed sharing technique for kmeans using the
TL2 [7] STM are shown in Figure 1 (a). The baseline refers to
an unmodified version of the program and the 7 refers to the rel-
ative threshold at which two values are considered equal. That
is, if a transactional store in a writer transaction writes the value
v1 to a shared memory location presently containing the value
vp then the new value v; is ignored by the reader transaction if
|vg — v1|/vo < 7. Thus a higher 7 represents a higher degree of
relaxation in the sharing and vice versa. The plotin 1 (b) shows
the growth of the normalized root mean square error (denoted



by RMSE on the Y-axis) in the cluster centers computed by the
threads over the program’s execution (denoted by the iteration
number in the X-axis). This shows that while relaxed sharing of
values introduces an error into the computation and this error ac-
cumulates, this error still grows relatively slowly and smoothly
over the execution of this program.

3 Fine Grained Consistency Rules

The consistency property in database and memory transactions
guarantees that all the shared variables read in a transaction are
consistent as according to some serializable schedule of all the
transactions in the system. However in some programs such
consistency may be required only on a specific set of variables.
That is, some sets of variables are required to be consistent and
the others variables accessed in the transaction are not. Con-
sider the example of a game engine that models a set of mov-
able objects (players, weapons, vehicles, projectiles, particles,
arbitrary objects etc). Each of these game objects is represented
by a program object that has among others, three mutable fields
representing X,y,z positions of the object at an instant. The game
object can be subject to many factors that change its position -
game play factors like user input, movement due to being at-
tached to other bodies in a joint, physical forces like collision
with another body and so on. The program object representing
this game object is shared among all the modules implement-
ing those forces. This program object is (or atleast the fields in
that object are) thus potentially touched by a very large num-
ber of writers. It is also accessed by a large number of readers.
For example, the rendering engine reads the position fields in
order to perform the visibility test and to draw the object into
the graphics frame-buffer. Other readers of these fields could
include physics modules that perform collision detection, and
scripts that trigger events based on the players proximity. How-
ever the position fields need not be accurate on every frame and
all the readers do not need the most up-to-date values to exe-
cute correctly. For example, reading accurate position values
in collision detection may be more important than in triggering
events like special effects. Additionally, the modifications made
by all writers are not equally important and some modifications
can be safely ignored. For example, minor modifications to a
moving particle’s position due to wind or gravity can be safely
ignored from frame to frame. Such semantics are at best clumsy
or at worst not possible to express with current TM program-
ming models. Below we outline one sample mechanism that
can extend the TM programming model to allow a programmer
to specify such semantics.

3.1 Variable Groups

The shared variables that can be accessed transactionally are
divided into abstract consistency groups. The assignment of a
particular variable to a group can be dynamic (during the life-
time of a transaction) and the same variable can be assigned to
multiple groups at once. A consistency group can subscribe to a
set of Consistency Rules that describe the valid operations that
can be performed variables in the group without violating ab-
stract consistency or the consistency required by the semantics
of the program. For example, the X,y,z position fields inside a
reader transaction implementing visualization in the above ex-
ample may be placed in a consistency group that has consistency

rules that permit a particular writer transaction implementing
wind or gravitational forces to modify the fields without forc-
ing an abort on the reader transaction. The same consistency
group can also subscribe to a separate consistency rule that ig-
nores writes from a transaction implementing collision detec-
tion of this body with inactive scenery or with objects that do
not transfer momentum. Our preliminary experiments with such
fine-grained consistency control in a interactive particle simula-
tion engine showed that with these enhancements, transactions
in this program can achieve a peak throughput (rate of transac-
tion commit) of 96% of the theoretical maximum peak through-
put (transactions executing without any concurrency control).

Several of these optimization “tricks” are prevalent on mod-
ern game engines and it is desirable that the choice of the syn-
chronization and concurrency control mechanism does not pre-
vent the ability of programmer to use them or make such seman-
tics prohibitively cumbersome to specify.

4 User specified conflict handling and recovery

A (reader) transaction that reads some value is said to experi-
ence a conflict on that value when a concurrent writer transac-
tion updated that value and then committed. The reader trans-
action can detect such a conflict during the read itself, at some
point later in its execution or when it attempts to commit. Irre-
spective or when this conflict is detected, in most current TM
programming models the reader transaction has no choice but
to abort (see [20], [24], [22] and [21] for proposals that sug-
gest alternate options). This means that all the work performed
so far in the transaction is discarded and the transaction starts
again. For some transactions this can be avoided if the results
and the state of the aborting transaction can be repaired in
which case this transaction can instead “roll-forward” and pro-
ceed with its execution (or re-attempt to commit if the conflict
was detected when it attempted to commit).

A simple example of a transaction that performs a key lookup
on a list is shown in Figure 2. The tm_read and tm_write
calls signify transactional reads and writes of the variable spec-
ified.

Let transaction T1 be executing the code in Figure 2(a) while
a concurrent transaction T2 is modifying the list for example
by inserting new elements into it. During validation T1 will
detect a conflict if it has read p—next for some node p and
T2 has modified p—next to point to a newly inserted node ¢
(and committed). Instead of aborting at that point T1 can use
the new value of p—next and attempt to continue the search
from ¢. This is specified in the recovery action specified by
the user with the OnConflict primitive. This primitive op-
erates as follows. When a conflict is detected the TM runtime
returns the new updated value to the application program in the
container attached to the OnConflict primitive - in this case
n. Then the transaction jumps to the statement immediately
after the declaration of the OnConflict primitive and starts
executing with this new value of n. At a high-level this recov-
ery action says that when a new node is inserted after the node
pointed to by n resulting in a conflict on n—next, the transac-
tion can recover by resuming the lookup at the new node now
pointed to by n—next. In this way T1 can re-use the inter-
mediate result of the computation for finding the key in the list
upto node p. This recovery action also enables the transaction
to recover from node deletions. Additionally, multiple conflicts



1 atomic {
node_t *n = list->head;
3 for(;n;) |
if (n->key == key)
5 break;

n = tm_read(n—->next);
7}
}
(a) Original
1 atomic {
node_t *n =
3 OnConflict (n
for(;n;) {

list->head;
) A

5 if (n->key == key)
break;
7 n = tm_read(n->next);

}
° )
}

(b) With a user specified recovery action

Figure 2: List search
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Figure 3: Execution time of the list search in Figure 2 with and
without the corrective recovery action.

can also be handled seamlessly - the runtime detects one con-
flict at a time and each of these conflicts can trigger the recovery
action in turn. Note that the transaction did not have to be modi-
fied substantially to accommodate this recovery action. Yet this
action transforms the simple lookup transaction into a transac-
tion implementing a non-trivial incremental lookup algorithm.
We implemented a simple synthetic 1ist benchmark that per-
forms transactional lookups, inserts and deletes. The baseline
version of this program uses the TL2 STM system. We then
implemented the recovery action described above in the lookup
algorithm and compared its parallel performance to the baseline
version. This plot is shown in Figure 3.

While this example consisted of small transactions, for large
long-running transactions, the performance advantages due to
such recovery actions could improve overall performance even
more significantly. The usage the recovery action above re-
quired that the transaction reveal some of its internal state to

the application - specifically the node at which the conflict oc-
curred and the new value written by the other transaction. This
is not permitted by current TM programming models as a matter
of both programmability as well as portability. In some cases a
programmer familiar with the algorithm may be able to specify
such recovery actions relatively easily but for complex transac-
tions this might be more challenging. But for simple enough
transactions that experience high-contention, the loss in pro-
grammability is well worth the gain in parallel performance.
As for portability of recovery actions, a standardized interface
across TM models can alleviate this problem (the portability is-
sue is akin to the similar issue for implementing open-nesting
with clear consistent semantics across various TM platforms).

5 Related Work

Techniques such as open nesting [15, 16] and the Galois sys-
tem [17] have been studied extensively. At a high level, the
goal of both these models is to separate physical conflicts from
semantic conflicts since usually only the latter is required for
correctness. Therefore strict physical serializability is traded
for abstract serializability. Abstract Nested Transactions [24]
allow a programmer to specify operations that are likely to be
involved in benign conflicts and which can be re-executed. The
notions of Load Value Locality [2, 14] and Frequent Value Lo-
cality [13] have been studied extensively. Load value locality
refers to the observation that values accessed by loads and stores
have a repetitive nature to them and techniques such as value
prediction exploit this locality to apply optimizations such as
cache prefetching. Frequent value locality analysis on the other
hand describes the values which collectively form the majority
of values in memory at an instant in program execution. Pre-
vious works such as [1] have investigated the problem of mul-
tiple consistency and isolation levels in database transactions.
In [19, 23] the authors explore the performance vs accuracy
trade-off by controlling the floating point precision in a real-
time physics engine. These techniques are closely related to
the relaxed sharing and fine-grained consistency rules described
above. In [21] the authors describe a distributed database trans-
action model in which conflicting database transactions can be
reconciled and allowed to commit in a specific order. Much like
the user-defined recovery actions described in Section 4, this
technique also relies on specialized reconciliation actions to re-
pair the state of the distributed database.

6 Conclusions

In this paper we ask the question whether the database-style TM
semantics and programming models being studied today are ap-
propriate for modern, emerging parallel applications. Specif-
ically we discussed three phenomena ”Approximate Sharing”,
”Fine-Grained Consistency” and “User defined recovery” that
we feel are important to such programs and we discuss the diffi-
culty of using TM programming models to express these idioms.
Programmability, while desirable, should not necessarily result
in restricting the kinds of semantics that can be expressed in par-
allel programs. Several research issues remain to be explored in
this direction in order to answer the question posed but we hope
that this work will serve to provoke further investigation.
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