
 1

Parallel Pattern Detection for Architectural Improvements

Jason A. Poovey
Georgia Institute of Technology

japoovey@gatech.edu

Brian P. Railing
Georgia Institute of Technology

brian.railing@gatech.edu

Thomas M. Conte
Georgia Institute of Technology

conte@gatech.edu

Abstract
 With the shift in general purpose computing to
increasingly parallel architectures comes a need for
clever architectures to achieve high parallelism on
previously sequential or poorly parallelized code. In
order to fully utilize the many-core systems of the
present and future, a shift must occur in architecture
design philosophy to understanding how the parallel
programming process affects design decisions.
 Parallel patterns provide a way to create
parallel code for a wide variety of algorithms.
Additionally they provide a convenient classification
mechanism that is both understandable to
programmers and that exhibit similar behaviors that
can be architecturally exploited. In this work we
explore the capabilities of pattern driven dynamic
architectures as well as detection mechanisms useful
for dynamic and static parallel pattern recognition.

1. Introduction
 The past decade has brought about a major shift
in the primary architecture for general purpose
computing. As single-threaded performance
becomes increasingly more power intensive, there is
a significant shift towards multi-/many- core
architectures. These architectures provide the benefit
of lower power with high performance for highly
parallel applications. However, in order to fully
utilize many cores, a shift must occur in architecture
design philosophy through new programming
paradigms and an increased understanding of the
parallel program behavior.
 Classifying parallel code in a way that is both
understandable to the programmer and useful to low-
level designers is a non-trivial task. Recent works in
parallel programming patterns [1-3] provide great
potential for program classifications that maintain
common behaviors exploitable by architects. These
patterns span many layers of the design process [1];
however, the algorithmic level patterns provide a
good median between the program structure and its
low level behaviors. Algorithmic parallel patterns
refer to the basic code structure in terms of sharing
behavior and thread behavior. For example, many
scientific applications such as n-body simulations
employ the pattern of geometric decomposition,
which takes a set of data and splits it up among
processing threads. These threads still communicate

but sparingly enough to allow speedup from the
parallelization.
 As parallel programming becomes more well-
understood, the method of programming via patterns
is becoming increasingly popular [3, 4]. Therefore, it
is highly reasonable that parallel programmers will
have natural insights into the algorithmic structure of
their code. Moreover, architects can leverage the
properties of these patterns to create adaptable
architectures tuned to the various patterns. For
example, in a pipeline pattern, data migrates between
stages, as opposed to an embarrassingly parallel
problem where data largely remains private to each
thread. Therefore, in the case of a pipeline pattern,
the architecture with knowledge that the program is
using a pipeline may choose to perform optimizations
such as running the program on a streaming
processor or using a more optimal coherence protocol
such as MI.
 In this work we will lay the groundwork for a
novel method for detecting parallel patterns statically
through the use of programmer “insights” as well as
dynamically through run-time performance counters.
Our results will show that for a set of micro-
benchmarks our detection mechanisms are successful
in finding patterns in un-annotated parallel code.
These results will demonstrate that our current set of
metrics provide potential for a robust pattern
detection system that could drive many architectural
optimizations.

2. Algorithmic Parallel Patterns

Figure 1 - Algorithmic Parallel Patterns

 Several efforts have been made to standardize
parallel programming patterns [1, 2]. These efforts
codify the standards and characteristics in a manner
similar to the programming patterns used in the
software engineering community for object-oriented
programming. What these standards reveal are six
main patterns, defined in [1] and are shown in Figure

Task Parallelism

Divide and
Conquer

Geometric
Decomposition

Recursive Data

Pipeline

Organize by Tasks Organize by
Data Decomposition

Organize by
Flow of Data

Event Based
Coordination

 2

1, each with unique architectural characteristics to
exploit.
 The parallel programming patterns are grouped
based on the type of conceptual parallelization
performed. When the problem consists of a group of
independent tasks or task groups to be run in parallel,
the parallel pattern employed is task parallelism.
Task parallelism has limited to no sharing, and a
embarrassingly parallel problems are a large
subclass of this group. When there is a problem task
that naturally subdivides into several smaller tasks
that can be done in parallel, then the divide and
conquer pattern is applied. Divide and Conquer
splits tasks until a work “threshold” is met and the
subtask works on a subset of the data serially.
 Many parallel problems are solved through the
decomposition of data by creating threads to work on
the data in parallel. The two standard patterns for
data parallelization are geometric decomposition and
recursive data. The geometric decomposition pattern
operates on data in a regular structure, such as an
array, that is split into sub-structures operated on in
parallel. This pattern is typically characterized by
sharing between threads, particularly threads with
neighboring data. If the data is not in a regular
structure, but rather a structure such as a graph, data
decomposition parallelization is done via the
recursive data pattern. This pattern creates
parallelism by doing redundant work to decrease
communication between threads. For example, an
algorithm to find every node’s root requires a full
graph traversal. A recursive data approach would
create a thread for every node in the graph and
perform a graph-climbing algorithm independently
for each node. This causes some nodes’ depths to be
calculated more than once, but has performance gains
due to the enhanced parallelism.
 As programmers continue to shift legacy
sequential code to a parallel domain, an increasingly
common parallel pattern used is the pipeline pattern
[4, 5]. This pattern is performed by taking a flow of
data through tasks and splitting it into pipeline stages.
The parallelism is achieved by keeping all stages full
with data such that each stage can operate
simultaneously. Moreover, not all pipeline parallel
workloads are completely feed-forward pipelines.
Simulations, such as discrete event simulations,
leverage the pipeline pattern but with more complex
interactions between stages. This style of freeform
pipeline is sometimes referred to as event-based
coordination, but can also be thought of as a
generalized pipeline.

3. Architectural Implications of Parallel
Patterns

 Understanding the parallel pattern used in an
application can be very useful for performance
improvement. Although the algorithms and details of
programs of the same pattern may differ, each pattern
has some unique behaviors that have distinct
architectural implications.
 Recently, thread scheduling and balancing has
become an increasingly hot topic in architecture
conferences [6-10]. The main research thrust is to
estimate thread criticality and either provide extra
resources to the critical thread or save power by
reducing resources for non-critical threads. In [11]
we showed how patterns exhibit unique thread
behaviors that lend themselves to different criticality
metrics. We found that some patterns are more
amenable to task balancing based on computational
complexity, others prefer to use the raw instruction
counts, and some applications want little task
balancing except when threads spawn and exit.
When parallel patterns were used to determine the
optimal thread balancing mechanism, our results
showed significant gains over prior non-pattern based
selection schemes.
 In addition to thread balancing, patterns could be
used to guide coherence protocol design and network
design. In patterns with a heavy amount of migratory
data, such as the pipeline pattern, it is likely to be
more beneficial to use a simpler protocol such as MI
to reduce message counts. The reason is that as data
moves through the parallel pipeline it may be first
read by the next pipeline stage then written which
would require coherence messages to transition the
block to S then M in an M(O)(E)SI protocol.
 Other recent works have proposed asymmetric
networks that have varying buffer widths throughout
the chip [12] or using network latency slack to
prioritize packets [13]. Patterns with high degrees of
inter-thread communication such as geometric
decomposition would benefit more from intelligent
thread placement such as placing high
communication threads on the higher bandwidth
nodes. Additionally, in some patterns, different data
classifications should have different priority (e.g.
migratory data is highly important in the pipeline
pattern).
 Finally, heterogeneous architectures are an
increasingly popular architectural paradigm [6, 8, 14-
16]. Some techniques such as thread balancing target
single-ISA asymmetry. But in heterogeneous
architectures there may exist multiple architectures
and multiple ISAs. By understanding the pattern of
the running application, one could conceivably
optimize a compiler or run-time to place the

 3

workload on the optimal architecture [17]. For
example, task parallel workloads with many threads
would be more suitable for a GPU; whereas a
pipeline would be better served on a general
streaming processor.

4. Parallel Pattern Detection Techniques

As has been shown, parallel pattern detection enables
many architectural optimizations. This section will
define some metrics of interest that are useful for
parallel pattern detection. Solutions for dynamic and
static collection and analysis are also explored.

4.1. Metrics of Interest
 Sharing patterns have been used in past studies
for hardware optimization [18]. Additionally,
parallel design patterns each tend to use a unique set
of sharing patterns. This is both useful for detection
and optimization. Researchers have defined many
classes of sharing patterns; however, in this study we
focus primarily on read-only, producer/consumer,
migratory, and private. Figure 2 illustrates the parallel
pattern tendencies for each sharing pattern.

Figure 2 - Parallel Pattern Sharing Behaviors

 Private data is common to patterns without much
sharing, such as task parallel and recursive data. In a
task parallel application the algorithm is typically
embarrassingly parallel, which means each thread is
largely independent. Recursive data reduces sharing
by performing redundant work in each thread.
Migratory data is common to pipeline and event
based coordination. In these patterns, threads are
pinned to various stages in a process and data
migrates between threads. Finally, producer /
consumer sharing is common in patterns with widely
shared data such as geometric decomposition.
 For pattern detection, sharing behavior is
observed for each address in the system. On a “write
permission” request, the system records the address
as being produced by a thread, a “read permission” is
recorded as a consumption. The classification rules
for each address are shown in Figure 3.
 In addition to sharing behavior, patterns are also
defined by their thread behavior. Patterns such as
divide and conquer or recursive data have unique
thread behaviors that provide a signature pattern.
Divide and conquer is characterized by a rising

number of threads during the divide phase, some
period of leveling for computation, followed by a
declining phase as the results are joined. Recursive
data, however, begins with many threads and slowly
ramps down as the different threads finish execution.

 In order to measure thread behavior we monitor
thread creation and suspension/exit events. Over the
course of a phase or program the average absolute
slope of the active threads over time is calculated. In
addition the number of rising and falling events are
counted and added to the evaluation.
 In addition to thread spawn/exit behavior, thread
imbalance is unique between patterns. For example,
geometric decomposition is typically SIMD or
SPMD programming that is more balanced than a
recursive data pattern. To measure the imbalance, the
number of dynamic instructions per thread is
measured to calculate the average number of
instructions per thread. If most of the threads have
dynamic instruction counts within one standard
deviation of the mean, the workload is considered
balanced. Otherwise it is considered unbalanced.
 We also investigated the PC (Program Counter)
uniqueness between threads. This test looks at
whether a SPMD or SIMD style programming
method was used. The PCs accessed by each thread
are counted, and if most PCs are unique this suggests
a non-SPMD style pattern such as pipeline. This is
measured by measuring for each PC accessed how
many threads used that PC. Patterns such as pipeline
will have unique PCs for each thread, whereas
geometric decomposition will share PCs with most
threads.
 The final metric investigated in this work is
thread complexity. In [11] we leveraged the
differences in thread complexity to perform thread
balancing for some patterns. In addition to thread
balancing, these metrics also provide a good
indication of the program’s pattern. These metrics
include the average dependence depth and length of
the dynamic instructions. [11] discusses the
algorithms and hardware structures for calculating
these metrics.

4.2. Online Detection Mechanisms
 The analysis and metrics in Section 4.1 have
been collected using a detailed architecture simulator.
Some of the data such as a global count of all PCs
and a count of producers/consumers for all addresses

Task
Parallelism

Divide and
Conquer

Geometric
Decomposition

Recursive
Data

Pipeline Event-based
Coordination

Read-Only
!!! ! !!!

Migratory
!! !!! !! !!!! !!!!

Producer/
Consumer !! !!!!

Private
!!!! ! ! !!!! ! !

§ If #consumers == #producers == 1 then Private
§ If #consumers > #producers then Producer/Consumer
§ If #consumers <= #producers then Migratory

Figure 3 - Sharing Pattern Classification Rules for each
Cache Line

 4

would be very costly to directly implement in
hardware. In this section we will discuss some ideas
for how these metrics could be translated into real
hardware mechanisms.
 Since sharing behavior is measured using
permission requests via the coherence protocol a
logical place to measure the producer/consumer
relationship is at the directory. For a 32-core
machine, 6 bits per entry could be added to maintain
the producer/consumer count.1 The information
would be lost on evicted entries, but as long as the
working set largely remains on chip, a directory only
measurement would provide accurate results.
 Thread behavior metrics require a repository of
information on thread spawn/exit and balance
information. Rather than providing hardware
counters an alternative is to instrument the threading
code such as pthread_create() in order to monitor this
behavior through a run-time monitor. The run-time
monitor will then collect all metrics and provide
feedback to the hardware on optimizations to enable
or disable based upon the pattern detected.
Additionally, in future research, the monitor will
include the ability to detect program phases so as to
reset the pattern detection process.

4.3. Program Invariants for Detection
 Understanding the pattern and performance
implications cannot be confined to the knowledge
available at runtime, as some of the information may
be too difficult to detect or otherwise obscured by
program behaviors. By extending our scope of
usable inputs to include the program’s source itself,
we can consider the insights that are lost between
source and execution. Thus, insights can provide a
static mechanism to enhance parallel pattern
detection.

1 To maintain a range of -32 to +32

 Programmer insights are notionally a
combination of asserts, pragmas, and invariants. By
encompassing these distinct notations in the term
“insight”, we are able to leverage both the properties
that must be true as well as the properties that may be
true. The intention is not an attempt to statically
analyze the raw code, but rather leverage what the
programmer says the code should be doing. This
again allows two usages: first, to verify that the
application is behaving how the programmer
intended. And second, to further optimize the final
application by using the insights for pattern detection.
In this work, parallel insights are split into four
categories: data sharing, thread communication,
general threading and synchronization / concurrency.
The first three strongly relate to the parallel pattern
metrics in Section 4.1 and can aid in the detection
and implementation of patterns. The last category is a
look at some insights from past work focused on
concurrency bugs that could possibly be leveraged
for pattern detection.
 In parallel programs, the developer has insight
into how the data is intended to be shared. Providing
this insight to the compiler / runtime is therefore
reasonable and in fact some of these notations are
already present in existing frameworks. We consider
four sharing types: read-only, migratory, shared, and
private. With these, a programmer can express how
individual allocations are used within the parallel
patterns.
 OpenMP [19] provides notations for some of
these types with data sharing attribute clauses that
can specify data as shared or private. However, the
OpenMP clauses do not extend to general data
allocations. We propose extending variable
classification insights to include specifying data as
migratory or read-only.
 Data sharing also relates to communication
patterns between threads. So beyond determining

Figure 4 - Results of Parallel Pattern Detection

 5

what data are shared, we can also have insight as to
with whom each datum is shared. While a
programmer may have trouble expressing exactly
which threads will be in communication, sometimes
the degree of sharing is clear. Overall, the level of
communication may be of several categories: none
(terminal thread or minimal communication), few
(algorithmically defined), and many (data
dependent). Furthermore, knowing the direction of
communication is also valuable, whether it be in, out,
or bidirectional. These insights could be as simple as
specifying for a variable not only if it is shared, but
with how many threads and through labels specifying
thread ids. Also when specifying a shared variable,
certain threads can be labeled as receivers or senders
for that variable.
 As discussed earlier, another aspect of pattern
detection is measuring the number of active threads
over time. This can be done by statically analyzing
insights such as thread creation or join (i.e.
pthread_create() or pthread_join()). Additionally, if
insights are made available to the programmer to
specify task interaction, a static task graph can be
created and analyzed for thread behavior. Combining
all of these proposed static insights with the dynamic
approaches enhances the accuracy of overall pattern
detection.
 Past work on parallel insights has focused on
finding and addressing potential concurrency bugs.
While the focus of this paper has been on the
performance of correct algorithms, these works are
nonetheless related in a notational sense. In [20],
Burnim et al., proposes deterministic sections that are
then checked by the run-time for whether different
thread interleavings have different results. DeFuse
[21] proposes several types of determinism invariants
that are leveraged for finding concurrency bugs.
 One trade-off in concurrency is between
different lock types. In past experience, a
programmer would potentially instrument a lock or
just “know” the level of contention and types of
access required for an individual element of shared
data. However, as the platform changes
(architecture, core count, etc.), the optimal lock type
might also change. Therefore, the compiler / runtime
can also benefit from a series of common lock
insights like level of contention, types of access
(reader versus writer), and relation to other critical
sections. Future work will investigate leveraging
existing insights to also better understand the
relationship to pattern behavior.

5. Experiments
 To show how pattern detection can be effective,
experiments have been run to investigate detection
accuracy. First a set of representative
microbenchmarks was created that are considered
“golden copies” of the pattern behavior. These
benchmarks are short programs that consist of the
basic structure of the parallel pattern. Simulations
were run to collect the metrics discussed in
Section 4.1 for these microbenchmarks that revealed
a set of diverse characteristics for each benchmark.
For example, pipeline was characterized by using
largely migratory data, whereas geometric
decomposition uses producer/consumer relationships.
Divide and Conquer was unique mostly in thread
behavior such as its spawn/exit events.
 After collection of results for the
microbenchmarks, some real benchmarks were
evaluated to detect their parallel pattern. The same
metrics from Section 4.1 were collected and a
weighted comparison to the results of the
microbenchmarks was performed. Repeated
experiments were used to determine the weightings.
Figure 4 illustrates some detailed results of the
weighted comparisons.
 In this figure a rating is achieved for each of the
benchmarks similarity to each pattern. Blackscholes
from the PARSEC suite [22] is shown to be mostly
task parallel. This coincides with what was expected.
Blackscholes simply performs stock option pricing
on many independent stocks in parallel, which is task
parallel. A second geometric decomposition
workload written by another programmer with
another algorithm was detected easily as the correct
pattern. Barnes from the SPLASH-2 benchmark set
[23] is a geometrically decomposed n-body
simulation using the Barnes-Hut algorithm. Our
detection mechanism is able to correctly find the
geometric decomposition in this workload. Future
work such as extending the use of static analysis
discussed in Section 4.3 will assist in detection for
the Combined benchmark. In this benchmark a
pipeline algorithm was combined with a divide and
conquer which resulted in a mixed result. Table 1
summarizes the results of using pattern detection for
the full PARSEC benchmark suite. We found that
using this technique we can achieve 50% accuracy in
pattern detection. Through the use of phase detection
and boundaries from static and dynamic analysis,
these results will improve with future work.

!"#$%&$'(")& !(*+,-#$% $#..)#" *)*/0 1)--),
2-)*3$,)* !"#$%&"'"(()(!"#$%&"'"(()(!"#$%&"'"(()(*)+,'#-.)%/"0" &-1)(-2)
4.(5. !"#$%&"'"(()(3)45)0'-+%/)+4514#-0-42 !"#$%&"'"(()(&-1)(-2) &-1)(-2)

1"/3*#.36#,) &,-)#6$"/&,)- &5#0,3(.& 789: &&$#
2-)*3$,)* 3)45)0'-+%/)+4514#-0-42 &-1)(-2) &-1)(-2) &-1)(-2) !"#$%&"'"(()(
4.(5. 3)45)0'-+%/)+4514#-0-42 !"#$%&"'"(()(!"#$%&"'"(()(&-1)(-2) *)+,'#-.)%/"0"

Table 1 - Parsec Prediction Results

 6

References

[1] T. G. Mattson, B. A. Sanders, and B. L.
Massingill, Patterns for Parallel Programming:
Addison-Wesley, 2004.
[2] J. L. Ortega-Arjona, Patterns for Parallel
Software Design. West Sussex: Wiley, 2010.
[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.
Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick,
"The Landscape of Parallel Computing Research: A
View from Berkeley," University of California,
Berkeley, Berkeley, CA, Technical ReportDec 2006.
[4] M. A. Suleman, M. K. Qureshi, Khubaib,
and Y. N. Patt, "Feedback-directed pipeline
parallelism," presented at the Proceedings of the
19th international conference on Parallel
architectures and compilation techniques, Vienna,
Austria, 2010.
[5] W. Thies, V. Chandrasekhar, and S.
Amarasinghe, "A Practical Approach to Exploiting
Coarse-Grained Pipeline Parallelism in C
Programs," presented at the Proceedings of the 40th
Annual IEEE/ACM International Symposium on
Microarchitecture, 2007.
[6] J. C. Saez, M. Prieto, A. Fedorova, and S.
Blagodurov, "A comprehensive scheduler for
asymmetric multicore systems," presented at the
Proceedings of the 5th European conference on
Computer systems, Paris, France, 2010.
[7] T. Li, D. Baumberger, D. A. Koufaty, and S.
Hahn, "Efficient operating system scheduling for
performance-asymmetric multi-core architectures,"
presented at the Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, Reno, Nevada, 2007.
[8] N. B. Lakshminarayana, J. Lee, and H. Kim,
"Age based scheduling for asymmetric
multiprocessors," presented at the Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis, Portland, Oregon,
2009.
[9] L. De Giusti, E. Luque, F. Chichizola, M.
Naiouf, and A. De Giusti, "AMTHA: An Algorithm
for Automatically Mapping Tasks to Processors in
Heterogeneous Multiprocessor Architectures," in
Computer Science and Information Engineering,
2009 WRI World Congress on, 2009, pp. 481-485.
[10] A. Bhattacharjee and M. Martonosi,
"Thread criticality predictors for dynamic
performance, power, and resource management in
chip multiprocessors," presented at the Proceedings
of the 36th annual international symposium on
Computer architecture, Austin, TX, USA, 2009.
[11] J. A. Poovey, M. C. Rosier, and T. M. Conte,
"Pattern-Aware Dynamic Thread Mapping
Mechanisms for Asymmetric Manycore

Architectures," Georgia Institute of Technology
Technical Report 2011.
[12] Z. Guz, I. h. Walter, E. Bolotin, I. Cidon, R.
Ginosar, and A. Kolodny, "Efficient link capacity and
QoS design for network-on-chip," presented at the
Proceedings of the conference on Design, automation
and test in Europe: Proceedings, Munich, Germany,
2006.
[13] R. Das, O. Mutlu, T. Moscibroda, and C. R.
Das, "Aergia: exploiting packet latency slack in on-
chip networks," presented at the Proceedings of the
37th annual international symposium on Computer
architecture, Saint-Malo, France, 2010.
[14] M. Pericas, A. Cristal, F. J. Cazorla, R.
Gonzalez, D. A. Jimenez, and M. Valero, "A Flexible
Heterogeneous Multi-Core Architecture," presented
at the Proceedings of the 16th International
Conference on Parallel Architecture and
Compilation Techniques, 2007.
[15] R. J. O. Figueiredo and J. A. B. Fortes,
"Impact of heterogeneity on DSM performance," in
High-Performance Computer Architecture, 2000.
HPCA-6. Proceedings. Sixth International
Symposium on, 2000, pp. 26-35.
[16] L. Chin and L. Sau-Ming, "An adaptive load
balancing algorithm for heterogeneous distributed
systems with multiple task classes," in Distributed
Computing Systems, 1996., Proceedings of the 16th
International Conference on, 1996, pp. 629-636.
[17] G. F. Diamos, A. R. Kerr, S. Yalamanchili,
and N. Clark, "Ocelot: a dynamic optimization
framework for bulk-synchronous applications in
heterogeneous systems," presented at the
Proceedings of the 19th international conference on
Parallel architectures and compilation techniques,
Vienna, Austria, 2010.
[18] J. K. Bennett, J. B. Carter, and W.
Zwaenepoel, "Munin: distributed shared memory
based on type-specific memory coherence,"
SIGPLAN Not., vol. 25, pp. 168-176, 1990.
[19] (2008, OpenMP Application Program
Interface v3.0. Available:
http://www.openmp.org/mp-documents/spec30.pdf
[20] J. Burnim and K. Sen, "Asserting and
checking determinism for multithreaded programs,"
Commun. ACM, vol. 53, pp. 97-105, 2009.
[21] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W.
Chen, and W. Zheng, "Do I use the wrong
definition?: DeFuse: definition-use invariants for
detecting concurrency and sequential bugs,"
presented at the Proceedings of the ACM
international conference on Object oriented
programming systems languages and applications,
Reno/Tahoe, Nevada, USA, 2010.
[22] C. Bienia, S. Kumar, J. P. Singh, and K. Li,
"The PARSEC benchmark suite: characterization and

 7

architectural implications," presented at the
Proceedings of the 17th international conference on
Parallel architectures and compilation techniques,
Toronto, Ontario, Canada, 2008.
[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh,
and A. Gupta, "The SPLASH-2 programs:
characterization and methodological
considerations," SIGARCH Comput. Archit. News,
vol. 23, pp. 24-36, 1995.

