
Balance principles for algorithm-architecture co-design

Kent Czechowski∗, Casey Battaglino†, Chris McClanahan∗,
Aparna Chandramowlishwaran†, Richard Vuduc†

Georgia Institute of Technology
† School of Computational Science and Engineering

∗ School of Computer Science
{kentcz,cbattaglino3,chris.mcclanahan,aparna,richie}@gatech.edu

Abstract
We consider the problem of “co-design,” by which we
mean the problem of how to design computational al-
gorithms for particular hardware architectures and vice-
versa. Our position is that balance principles should
drive the co-design process. A balance principle is a
theoretical constraint equation that explicitly relates al-
gorithm parameters to hardware parameters according to
some figure of merit, such as speed, power, or cost. This
notion originates in the work of Kung (1986); Callahan,
Cocke, and Kennedy (1988); and McCalpin (1995); how-
ever, we reinterpret these classical notions of balance in
a modern context of parallel and I/O-efficient algorithm
design as well as trends in emerging architectures. From
such a principle, we argue that one can better under-
stand algorithm and hardware trends, and furthermore
gain insight into how to improve both algorithms and
hardware. For example, we suggest that although ma-
trix multiply is currently compute-bound, it will in fact
become memory-bound in as few as ten years—even if
last-level caches grow at their current rates. Our overall
aim is to suggest how to co-design rigorously and quan-
titatively while still yielding intuition and insight.

1 Our Position and its Limitations

We seek a formal framework that can explicitly relate
characteristics of an algorithm, such as its inherent par-
allelism or memory behavior, with parameters of an ar-
chitecture, such as the number of cores or cache sizes
or memory latency. We refer to this task as one of
algorithm-architecture co-design. Our goal is to say pre-
cisely and analytically how changes to the architecture
might affect the scaling of a computation, and, con-
versely, identify what classes of computation might exe-
cute efficiently on a given architecture.

Our approach is inspired by the fundamental principle
of machine balance, applied here in the context of mod-
ern architectures and algorithms. “Modern architectures”

could include multicore CPUs or manycore GPU-like
processors; and by modern algorithms, we mean those
analyzed using recent techniques that explicitly count
parallel operations and I/O operations. Given an algo-
rithm analyzed this way and a cost model for some ar-
chitecture, we can estimate compute-time and I/O-time
explicitly. We then connect the algorithm and architec-
ture simply by applying the concept of balance, which
says a computation running on some machine is efficient
if the compute-time dominates the I/O (memory transfer)
time, as suggested originally by Kung (1986) and since
applied by numerous others [13, 28, 32, 38].1 The result
is a constraint equation that binds algorithm and archi-
tecture parameters together; we refer to this constraint as
a balance principle.

Position. Our position is that this simple and classical
idea of balance is an insightful way to understand the
impact of architectural design on algorithms and vice-
versa. We argue this point by giving a detailed example
of how one might derive a balance principle for an algo-
rithm running on a manycore architecture, and analyze
the resulting balance principle to determine the trajectory
of algorithms given current architectural trends. Among
numerous observations,

• we show that balance principles can yield unified
ways of viewing several classical performance en-
gineering principles, such as classical machine bal-
ance, Amdahl’s Law, and Little’s Law;
• we predict that matrix multiply, the prototypi-

cal compute-bound kernel, will actually become
memory-bound in as few as ten years based on cur-
rent architectural trends, even if last-level caches
continue to grow at their historical rates;
• we argue that stacked memory, widely believed to

be capable of largely solving the problem of how

1We depart slightly from traditional conventions of balance, which
ask instead that compute-time equal I/O-time.
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to scale bandwidth with compute capacity, still may
not solve the problem of compute-bound kernels be-
coming increasingly memory-bound;
• we suggest how minimizing I/O-time relative to

computation time will also save power and energy,
thereby obviating the need for “new” principles of
energy- or power-aware algorithm design.

Limitations. Our approach has several weaknesses.
First, our discussion is theoretical. That is, we assume

abstract models for both the algorithms and the archi-
tectures and make numerous simplifying assumptions.
However, as an initial step in formalizing intuition about
how algorithms and architectures need to change, we be-
lieve that an abstract analytical model is a useful start.

Secondly, the specific balance principles we discuss in
this paper still assume “time” as the main figure of merit,
rather than, say, dollar cost. Nevertheless, we emphasize
that time-based balance principles are just one example;
one is free to redefine the figure of merit appropriately to
consider balanced systems in other measures. We discuss
energy based measures specifically in § 3.

Thirdly, what we suggest is a kind of re-packaging of
many known principles, rather than discovering an en-
tirely new principle for co-design. Still, we hope our
synthesis proves useful in related efforts to design better
algorithms and hardware through analytical techniques.

2 Deriving a Balance Principle

Deriving a balance principle consists of three steps.

1. Algorithmically analyze the parallelism.
2. Algorithmically analyze the I/O behavior, or num-

ber of transfers through the memory hierarchy.
3. Combine these two analyses with a cost model for

an abstract machine, to estimate the total cost of
computation vs. the cost of memory accesses.

From the last step, we may then impose the condition for
balance, i.e., that compute-time dominate memory-time.

This process resembles Kung’s approach [28], except
that we (a) consider parallelism explicitly; (b) use richer
algorithmic models that account for more detailed mem-
ory hierarchy costs; and (c) apply the model to analyze
platforms of interest today, such as GPUs. Note that we
use a number of parameters in our model; refer to Fig-
ure 1 and Table 1 as a guide.

Analyzing parallelism. To analyze algorithmic paral-
lelism, we adopt the classical work-depth (work-span)
model [9], which has numerous implementations in real
programming models [11, 18, 24]. In this model, we rep-
resent a computation by a directed acyclic graph (DAG)
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+

Figure 1: (left) A parallel computation in the work-depth
model. (right) An abstract manycore processor with a
large shared fast memory (cache or local-store).

of operations, where edges indicate dependencies, as il-
lustrated in Fig. 1 (left). Given the DAG, we measure
its work, W (n), which is the total number of unit-cost
operations for an input of size n; and its depth or span,
D(n), which is its critical path length measured again
in unit-cost operations. Note that D(n) defines the min-
imum execution time of the computation; W (n)/D(n)
measures the average available parallelism as each criti-
cal path node executes. The ratio D(n)/W (n) is similar
to the concept of a sequential fraction, as one might use
in evaluating Amdahl’s Law [4, 21, 39]. When we de-
sign an algorithm in this model, we try to ensure work-
optimality, which says that W (n) is not asymptotically
worse than the best sequential algorithm, while also try-
ing to maximize W (n)/D(n).

Analyzing I/Os. To analyze the I/O behavior, we adopt
the classical external memory model [3]. In this model,
we assume a sequential processor with a two-level mem-
ory hierarchy consisting of a large but slow memory and
a small fast memory of size Z words; work operations
may only be performed on data that lives in fast mem-
ory. This fast memory may be an automatic cache or a
software-controlled scratchpad; our analysis in this pa-
per is agnostic to this choice. We may further consider
that transfers between slow and fast memory must occur
in discrete transactions (blocks) of size L words. When
we design an algorithm in this model, we again measure
the work, W (n); however, we also measure QZ,L(n),
the number of L-sized transfers between slow and fast
memory for an input of size n. There are several ways to
design either cache-aware or cache-oblivious algorithms
and then analyze QZ,L(n) [3, 19, 22, 40]. In either
case, when we design an algorithm in this model, we
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again aim for work-optimality while also trying to max-
imize the algorithm’s computational intensity, which is
W (n)/ (QZ,L(n) · L). Intensity is the algorithmic ratio
of operations performed to words transferred.

Architecture-specific cost model. The preceding
analyses do not directly model time; for that, we need
to choose an architecture model and define the costs.
For this example, we use Fig. 1 (right) as our abstract
machine, which is intended to represent a generic many-
core system with p cores, each of which can deliver a
maximum of C0 operations per unit time; a fast memory
of size Z words, shared among the cores; and a memory
system whose cost to transferm ·Lwords is α+m ·L/β,
where α is the latency and β is the bandwidth in units
of words per unit time. To estimate the best possible
compute time, Tcomp, we invoke Brent’s theorem [12]:

Tcomp(n; p, C0) =

(
D(n) +

W (n)

p

)
· 1

C0
(1)

where the operations on each core complete at a maxi-
mum rate of C0 operations per unit time.

To model memory time, we need to convert QZ,L(n),
which is a measure of L-sized I/Os for the sequential
case, into Qp;Z,L(n), or the total number of L-sized I/Os
on p threads for the parallel case. One approach is to
invoke recent results detailed by Blelloch et al. that
bound Qp;Z,L(n) in terms of QZ,L(n) [10]. To use
these bounds, we need to select a scheduler, such as a
work-stealing scheduler when the computation is nested-
parallel [2], or a parallel depth-first scheduler [15]. For
now, suppose we have either calculated Qp;Z,L(n) di-
rectly or applied an appropriate bound. To estimate the
memory time cost, Tmem, suppose we charge the full la-
tency α for each node on the critical path and assume
that all Qp;Z,L(n) memory transfers will in the best case
be aggregated and pipelined by the memory system and
thereby be delivered at the peak bandwidth, β. Then,

Tmem(n; p, Z, L, α, β) = α·D(n)+
Qp;Z,L(n) · L

β
. (2)

The balance principle. A balance principle follows
immediately from requiring that Tmem ≤ Tcomp, yield-
ing (dropping n and subscripts for simplicity)

pC0

β︸︷︷︸
balance

1 +
αβ/L

Q/D︸ ︷︷ ︸
Little’s

 ≤ W

QL︸︷︷︸
intensity

1 +
p

W/D︸ ︷︷ ︸
Amdahl’s

 . (3)

Observe that Equ. (3) contains within it many of our in-
tuitive performance engineering principles.

For example, Kung’s classical balance principle [28]
in our notation would have been

pC0

β
≤ W

Qp;Z,L · L
(4)

which says the machine’s inherent balance point (left-
hand side, peak operations to bandwidth) should be no
greater than the algorithm’s inherent computational in-
tensity (right-hand side), measured in units of opera-
tions to words. Indeed, Equ. (4) also appears within our
Equ. (3), but with two additional correction terms. As
it happens, these correction terms correspond exactly to
Little’s Law and a generalization of Amdahl’s Law. The
Little’s Law correction term says that the product of the
machine’s latency and bandwidth must be matched algo-
rithmically by Qp;Z,L/D, which we can interpret as the
average degree of available memory parallelism. Simi-
larly, the Amdahl-like correction term says that the num-
ber of cores must be matched byW/D, which is the algo-
rithm’s inherent average degree of available parallelism.

Examples. The interesting aspect of this formalism is
that given a specific algorithm or class of computations
characterized by W , D, and Qp;Z,L, we can hope to see
the precise relationships among algorithm and architec-
ture characteristics.

For example, consider the multiplication of two n × n
matrices. In this case, it just so happens that we can take
D(n) � W (n) and

Qp;Z,L(n) ≥ W (n)√
2 · L

√
Z/p

,

due to Irony et al. [25].2 Substituting these expressions
into Equ. (3) yields a balance principle specific to matrix
multiply, which when simplified becomes

p · C0

β
≤

√
Z

p
. (5)

What does this relation tell us? If we double cores with
the intent of doubling performance, we can only do so if
we also adjust Z, C0, and/or β by, say, also doubling β
and Z. The balance principle makes the relationship be-
tween architecture parameters for this algorithm precise.

Next, consider the problem of sorting. A deterministic
cache-oblivious algorithm with a work-stealing sched-
uler has a balance constraint of

p · C0

β
≤ O

(
log2

Z

p

)
(6)

2The bound on Q is a lower-bound on an entire class of so-called
two-dimensional algorithms; thus, our analysis applies to the best pos-
sible algorithm in that class.
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t = 0 CPU
NVIDIA doubling

Fermi time 10-year
Parameter C2050 years projection
Peak flops, p · C0 1.03 Tflop/s 1.7 59 Tflop/s
Peak bandwidth, β 144 GB/s 2.8 1.7 TB/s
Latency, α 347.8 ns 10.5∗ 179.7 ns
Transfer size, L 128 Bytes 10.2 256 Bytes
Fast memory, Z 2.7 MB 2.0 83 MB
Cores, p 448 1.87 18k
p · C0/β 7.2 — 34.9√
Z/p 38.6 — 33.5

Table 1: Starting with the NVIDIA Fermi C2050, re-
leased in 2010, we project forward assuming growth
rates that follow the last 30 years of CPU trends, ex-
pressed as the number of years required to double except
for latency∗, for which we show the halving trend. For
Z/p in the last line, we use Z in 4-byte words not bytes.

assuming the W (n) = O (n log n), D(n) = O
(
log2 n

)
,

and QZ,L(n) = (n/L) · logZ n and applying the appro-
priate bound to obtain Qp;Z,L(n) [10]. Unlike matrix
multiply, this balance principle implies that increases in
cache size for sorting have a relatively small effect, and is
therefore a relatively less effective way to maintain bal-
ance. Fast Fourier transforms would be largely similar.

3 Examining Trends

We can also interpret a balance principle in light of ar-
chitectural trends. This section considers such trends in
terms of algorithm, memory, and power and energy.

Example: The shelf-life of balanced matrix multiply.
What is the long-term impact of the recent manycore
shift introduced by GPU systems on matrix multiplica-
tion? Past experience suggests that matrix multiply is
largely compute-bound and will remain so more or less
indefinitely. However, it should not be surprising that the
manycore shift accelerates the pace at which even matrix
multiply will become memory-bound. We estimate this
transition will take place in as few as ten years.

Observe that the abstract manycore system depicted in
Fig. 1 (right) is GPU-like, in the sense that there is a large
shared fast memory and a main memory system designed
to efficiently deliver words in batched transactions. For
example, we could map an NVIDIA Fermi-based archi-
tecture [1] onto this model as follows.

• Take p to be the number of so-called NVIDIA
CUDA cores, with C0 as the per-core fused
multiply-add throughput.

• The fast shared memory size Z as the total capac-
ity of the registers and local-store memory (“shared
memory” in NVIDIA parlance). We choose these
rather than the shared L2 cache because the mem-
ory hierarchy size inversion actually makes the L2
cache smaller than even just the register file [34].
• The parameter L reflects the fact that a GPU mem-

ory system can merge multiple outstanding requests
into fewer transactions. Though it is not needed
for our matrix multiply bound, we could interpret L
as the 128-byte minimum memory transaction size.
Alternatively, we could use some other multiple of a
so-called CUDA warp size, which is akin to a thread
batch (“SIMT”) or the concept of a SIMD vector
width in a traditional architecture description.
• The α and β parameters are taken to be the main

memory latency and peak bandwidth, respectively.

With this mapping, how does Equ. (5), evolve as the GPU
architectures evolve?

To make this extrapolation, we need to make assump-
tions about how the various GPU architectural parame-
ters will change over time. Since there are too few GPU
data points on which to base an extrapolation, we instead
make the following assumption. Although the GPU con-
stitutes a jump in absolute peak performance (cores) and
bandwidth, from this point forward it will still be sub-
ject to the same growth trends in numbers of transistors,
decreases in latency, and increases in bandwidth. Indeed,
since his 2004 paper on why latency lags bandwidth, Pat-
terson’s trends have largely held steady for CPUs [35],
with Moore’s Law for transistor growth expected to con-
tinue through approximately 2020. Thus, we extrapolate
the GPU trends from this point forward, beginning with
the parameters of an NVIDIA Fermi C2050, and project-
ing forward using the CPU trends as summarized in Ta-
ble 1. The result for matrix multiply is shown in Fig. 2,
which suggests that matrix multiply will in fact become
imbalanced in the sense of Equ. (5) by 2020.

Example: Stacked memories. Equation 4 says one
can balance an increase in cores by a similar increase in
bandwidth. Stacked memory promises to deliver just this
type of scaling, by scaling the number of pins or chan-
nels from memory to a processor with the surface area
of the chip rather than its perimeter [30]. Now consider
Equ. (5) and Equ. (6). Stacking will likely work for sort-
ing, since the right-hand side of Equ. (6) depends on p
through the relatively modest log2 Z/p; but not for ma-
trix multiply where Z will still need to increase.

Example: Energy and power. Balancing in time is
also desirable for minimizing power dissipation, because
an imbalanced computation (Tmem ≥ Tcomp) spends cy-
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Figure 2: Extrapolation of the matrix multiply balance
principle, Equ. (5), over time. The red line labeled bal-
ance is the left-hand side Equ. (5); the other line is the
right-hand side.

cles idly waiting for transactions to arrive. Although the
idle power dissipation of cores is relatively low in prac-
tice, the power spent idling begins to overcome power
productively spent as Tmem

Tcomp exceeds Pmax
Pidle

. Minimizing
Qp;Z,L by using an I/O-efficient algorithm is even more
important, because increased communication is both a
major drain of power and a source of imbalance.

4 Related Work

There is an extensive literature on analytical modeling of
parallel algorithms and analyzing I/O [3, 6, 9, 14, 17, 22,
25, 29, 33, 36, 37], any of which might yield different
balance principles from the ones shown here.

The most closely related of these models is the origi-
nal machine balance characterizations of Kung and oth-
ers [13, 28, 32, 38]. We extend the classical notion with
explicit modeling of communication properties of both
the architecture (latency, bandwidth, memory transfer
size) and the algorithm (number of messages).

A second group of models are processor models
based on reinterpretations of Amdahl’s Law [21, 39].
Among other conclusions, these models make the case
for asymmetric multicore processors quantitatively and
intuitively; however, as it was not the primary goal, these
models exclude explicit references to machine communi-
cation or algorithm detail, other than the usual sequential
fraction that appears in classical Amdahl’s Law.

There is increasing interest in co-design models for for
future exascale systems [20]. These analyses suggest the
allowable range of latency and bandwidth parameters re-
quired for scaling on an exascale system. We believe
these analyses could be rewritten as balance principles to

yield additional quantitative and qualitative claims.
Our example is “GPU-like,” though it abstracts away

many of the important details of GPU-specific mod-
els [16, 23, 41]. However, such models depend on the
execution behavior of some code artifact, and so may be
less useful for projections of the kind we consider here.

Lastly, we mention the recent interest in power- and
energy-oriented algorithm models [7, 8, 26, 27, 31].
Based on our brief discussion of energy and power in § 3,
it is not in our minds clear yet whether, from the perspec-
tive of algorithm design, there is really a fundamentally
different approach required other than balancing in time
as we do in this paper.

5 Conclusions and Extensions

Our balance principle analysis joins recent work on ana-
lytical models that try to sketch a path forward for mul-
ticore and manycore systems, such as Amdahl’s Law-
based analysis of Hill and Marty [21]. We believe
the balance-based approach extends the insights of prior
models with a more explicit binding of algorithm and ar-
chitecture characteristics. Indeed, the balance principle
of Equ. (3) yields Amdahl’s Law as one component.

Looking forward, there are a variety of natural exten-
sions, including (i) deriving balance principles for other
machine models, with, say, deeper memory hierarchies,
heterogeneous cores, or distributed memory; (ii) deriv-
ing balance principles for other algorithms, such as the
Berkeley motifs [5]; (iii) consideration of alternative cost
models beyond time; (iv) translating theory into practice
by, for instance, creating balance models from actual pro-
grams, profiles, and/or execution traces.
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