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Abstract 

Resource allocation is the dynamic allocation and 
de-allocation of processor cores, memory pages, and 
various categories of bandwidth to client sub-
computations (e.g processes within an operating 
system) that compete for those resources.  
Historically, resource allocation has been rather 
unsystematic, and now the assumptions underlying 
the traditional strategies no longer hold.  The 
existence of parallel software and multiple 
heterogeneous processor cores, the requirement to 
maintain quality of service agreements and 
responsiveness, and the need to limit power and 
energy consumption (especially in mobile systems) 
are inadequately addressed by the status quo.   A 
new approach to resource allocation is described 
that addresses all of these needs and that can be 
framed as a convex optimization problem; the result 
is that an optimal solution will exist and be unique 
with no local extrema.  As a result, rational, fast, and 
fully incremental solutions to the resource allocation 
problem become feasible. 

1 Introduction 

Resource allocation is one of the primary functions 
for operating system software and has becoming 
increasingly important for client systems as well as 
servers and data centers due to an increased 
emphasis on energy efficiency, stringent user 
expectations of application responsiveness, and a 
growing diversity of resources.  “Resource 
allocation” as the term is used here means the 
dynamic allocation and de-allocation by an 
operating system of processor cores, memory pages, 
cache, and various categories of bandwidth to 
computations that compete for those resources. 
Given a finite set of available resources, the 
 
 
 
 
 
 
 
  

operating system must decide how best to allocate 
resources to minimize a metric of responsiveness.  
(Some systems may use other optimization criteria, 
e.g. maximizing throughput, but for this work we 
concentrate on responsiveness.) 

This definition naturally establishes resource 
allocation as a type of constrained optimization 
problem; however, historically resource allocation 
solutions have been rather unsystematic [Corb, 
RuSI].  Responsiveness has been described by a 
single value (usually called a “priority”) associated 
with a thread of computation and adjusted within 
the operating system by a variety of ad-hoc 
mechanisms.  Memory allocation has usually 
employed independent machinery, and other 
resources such as I/O or network bandwidth have 
been deemed so abundant as to require no explicit 
management at all. 

The assumptions underlying allocation strategies of 
this sort no longer hold, especially for emerging 
client systems.  First, applications increasingly differ 
in their ability to exploit multiple processor cores 
and other resources, and these differences are 
independent of their relative responsiveness 
requirements.  Second, the value of application 
responsiveness is highly nonlinear for an increasing 
variety of “Quality-Of-Service” (QOS) applications 
like streaming media or gaming; for these 
applications, responsiveness is approximately two-
valued depending on whether performance is 
adequate or not.  Third, power and battery energy 
have become key resources, e.g. in mobile 
computing, and available battery energy is itself a 
component of responsiveness and the user 
experience. 

We present PACORA, a resource allocation system 
that constructs the resource allocation problem as a 
convex optimization problem. PACORA creates 
simplified models of application performance 
through measurement and uses these models along 
with information about the applications’ 
responsiveness requirements and importance and 
the system battery life to determine the optimal 
resource allocation. 
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In the following sections, we describe PACORA in 
greater detail.  We will focus primarily on PACORA 
for client systems rather than servers or data 
centers, but all of the principles here are largely 
applicable in these other domains as well. 

2 PACORA Overview 

The PACORA framework is a general framework for 
allocating a variety of different resources to 
applications in the system.  Resources can be 
bandwidth, the quantity of cache, memory pages, or 
different execution units and cpus.  PACORA will 
perform best on systems with strong performance 
isolation among resources; however, it is 
still applicable to current, more limited systems for 
making allocation decisions. 

The resource allocation approach taken by PACORA 
attempts to address the resource management 
problem as follows: 

1. The process is the entity to which the operating 
system allocates resources.  Micro-management 
of the resources within a process is generally 
application dependent and should be under the 
control of components of the runtime 
environment such as a user-mode work 
scheduler for processor cores or a memory 
garbage collector for memory pages.  

2. The objective function to be minimized is the 
total penalty, which is the sum of the penalties 
of the runnable processes p. Penalty 
minimization is done on-line and continuously. 

3. The penalty of a process is described by a 
function rather than a single value, and its 
argument, the runtime, is an appropriate 
measure of process responsiveness. For 
example, the runtime of a process might be: the 
time from a mouse click to its result; the time 
from a service request to its response; the time 
from job launch to job completion; or the time to 
execute a specified amount of work. 

4. The runtime of a process is measured or 
predicted from its history of resource usage. 

A succinct mathematical formulation of this 
resource allocation scheme is the following: 

Minimize  pPπp(p(ap,1…ap,n)) 
Subject to:  pP ap,r  Ar for r = 1…n 
   ap,r   0 for all pP and r = 1…n 

Here πp is the penalty function for process p, p is its 
runtime function, Ar is the total amount of resource r 
available, and ap,r is the allocation of resource r  to 
process p.  The optimization problem described 
above is in fact convex, making its use for operating 
system resource management entirely practical. 

3 Resource Management as Convex 
Optimization 

If the penalty functions, runtime functions, and 
resource constraints are arbitrarily, little could be 
done to optimize the total penalty beyond searching 
at random for the best allocation.  However, if 
resource management can be framed as a convex 
optimization problem [BoVa], two benefits accrue: 

1. An optimal solution will exist and be unique, 
with no local extrema; 

2. Fast, incremental solutions will become feasible. 

A constrained optimization problem will be convex 
if both the objective function to be minimized and 
the constraint functions that define its feasible 
points are convex functions. 

A convex optimization problem can be expressed in 
this form: 

Minimize  F0 (x1, x2, …xm) 
Subject to  Fi (x1, x2, …xm)  0, i = 1,…k 
Where  F0, F1, …Fk : Rm  R are all convex. 

A few more facts about convex functions will be 
useful in what follows.  First, a concave function is 
one whose negative is convex.  Clearly, maximization 
of a concave function is equivalent to minimization 
of its convex negative.  An affine function, one whose 
graph is a straight line in two dimensions or a 
hyperplane in n dimensions, is both convex and 
concave.  A non-negative weighted sum or pointwise 
maximum (minimum) of convex (concave) functions 
is convex (concave), as is either kind of function 
composed with an affine function.  The composition 
of a convex non-decreasing (concave non-
increasing) scalar function with a convex function 
remains convex (concave). 

As a consequence, the resource management 
problem posed above can be transformed into a 
convex optimization problem in m = |P|·n variables 
ap,r as long as the penalty functions πp are convex 
non-decreasing and the runtime functions p are 
convex.  Note that the resource constraints are all 
affine and can be rewritten as pP ap,r   Ar   0, r = 1, 
…,n, and ap,r    0. 

4 Penalty Functions 

Penalty functions are generically defined as 
members of a family of such functions so that user 
preferences for a process p (an implicit parameter 
elided in the discussion below) can be implemented 
by assigning values to a few well-understood 
parameters.  As a process grows or diminishes in 
importance, its penalty function can be 
parametrically modified to effect the change.  In a 
client operating system, the instantaneous 



 

management of penalty function modifications 
should be highly automated by the system to avoid 
unduly burdening the user. 

One possible generic penalty function idea is to 
define a family of piecewise linear functions of the 
form π() = max (s · (  d), 0).  Two representative 
graphs are shown below.  

 

The two parameters d and s define the penalty 
function.  To guarantee π is convex and non-
decreasing, s must be non-negative.  The runtime   
is of course non-negative, and it may be sensible (if 
not strictly necessary) to convene that d is also.  A 
service-constrained process has a marked change in 
slope, namely from 0 to s, at the point  = d.  This 
means that any runtime not exceeding d is as 
satisfactory as any other, but a runtime exceeding d 
contributes a penalty.  In the most extreme case s = 
 (implying infinite penalty for the system as a 
whole when  > d).  “Softer” requirements will 
doubtless be the rule.  For processes without service 
constraints one can set d = 0 so that π() = s·.  This 
defines linear behavior with s as the rate of penalty 
increase with runtime.   

The gradient of process penalty with respect to its 
resource allocations ar is useful in controlling the 
optimization process.  Since the objective function is 
convex, descent along the gradient leads toward the 
global minimum.  By the chain rule, each term in the 
gradient π/ar

  = dπ/d · /ar.  The first factor is 
well-defined but discontinuous at  = d with dπ/d = 
if ( d)  0 then 0 else s.  The problem of estimating 
the partial derivatives /ar is discussed below. 

5 Runtime Functions 

Unlike penalty functions, which describe user 
preference, runtime functions measure performance 
as a function of the resource assignment.  Runtime 
will commonly vary with time as a process changes 
“phase” and can make better or worse use of certain 
resources.  To guarantee the objective function is 
convex  must be also, and this is at first glance a 
plausible requirement akin to the proverbial “Law of 
Diminishing Returns”.  An equivalent statement is 
that incrementally changing the allocated quantity 
of a resource results in a runtime that is never 
smaller than one extrapolated from the rate of 

change of the runtime with resources at the current 
resource allocation. 

There are examples of runtime behavior that violate 
convexity.  One example can occur in memory 
allocation, where “plateaus” can be seen: 

 

Typically, these plateaus are caused by algorithm 
adaptations within the application to accommodate 
variable memory availability.  The runtime becomes 
the minimum of two or more functions, one for each 
range of algorithm applicability, and the minimum 
fails to preserve convexity.  The effect of the 
plateaus will be corresponding inflections of penalty 
as shown in the right-hand figure above, and 
multiple solutions to the optimization problem will 
result. 

There are a few ways to sidestep this issue.  One is 
based on the observation that such runtime 
functions will be at least quasiconvex. A variation on 
this idea is to use additional constraints to exclude 
values for memory resource allocation spanning 
multiple plateaus. Finally, one can model the 
measured runtime by a function which is convex and 
does not distort the runtime behavior seriously.   

The partial derivatives /ar or approximations to 
them are useful to estimate the relative runtime 
improvement from each type of resource.  A user-
level runtime that manages allocation internal to the 
process may be a good source of these data.  
Additionally, the resource manager can allocate a 
modest amount of a resource and measure the 
change in runtime. Finally, a parameterized analytic 
model can be constructed and the partial derivatives 
evaluated directly.  This approach is developed more 
fully below. 

6 Managing Power and Battery Energy 

It is useful to designate a “process” to receive 
allocations of all resources that are powered off.  
Ideally, this would include all resources not 
allocated elsewhere.  Process 0 will play this role in 
what follows.  0, the measure of runtime for process 
0, is artificially defined to be the total system power 
consumption.  This function is linear and monotone 
decreasing in its arguments a0,r , i.e. the resources 
assigned to process 0.  The penalty function π0 can 
now be used to keep total system power below the 
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parameter d0 to the extent the penalties of other 
processes cannot overcome it.  Alternatively, the 
slope s0 can be adjusted to reflect the current 
battery charge state: as the battery depletes, s0 can 
increase and force processes with lesser penalty to 
slow or even cease execution as they yield resources 
to be powered off.    

7 Runtime Function Modeling 

While it might be possible to model runtimes by 
recording and interpolating among the values that 
result from assignments of resources to processes, 
this idea has serious potential shortcomings: 

1. The size of the multidimensional runtime 
function tables may be large; 

2. Interpolation in many dimensions is expensive; 
3. The runtime measurements will be “noisy” and 

require smoothing; 
4. Convexity in the resources may be violated; 
5. Gradient estimation may be infeasible. 

An alternative approach is to model the runtime 
functions using analytic expressions that are convex 
by construction.  For example, a runtime might be 
modeled as a weighted sum of terms, one per 
bandwidth resource, where each term is the amount 
of application work needing the resource divided by 
the allocated bandwidth.  One term might represent 
the number of instructions divided by allocated 
instruction execution rate; another might be number 
of storage accesses divided by allocated storage 
bandwidth and so forth.  Such a model will 
automatically be convex in the bandwidth 
allocations because 1/b is convex for positive b and 
because a positively-weighted sum of convex 
functions remains convex.  

Asynchrony and runtime tolerance may make the 
constituent runtimes overlap partly or fully; if the 
latter, then the maximum of the terms might be 
more appropriate than their sum.  The result will 
still be convex, though, as will any other norm on  
the terms including the 2-norm, i.e. the square root 
of the sum of the squares.  This last variation could 
be viewed as a “partially overlapped” compromise 
between the 1-norm (sum) describing no overlap 
and the ∞-norm (max) describing full overlap. 

The “non-bandwidth” resources are not part of this 
model, notably the quantity of memory.  Cache 
allocations, when and if they are technically feasible, 
are also excluded.  The effect of these memory 
resources on runtime is largely indirect, namely to 
exploit temporal locality and thereby reduce the 
consumption of bandwidth.  For example, additional 
memory may reduce the need for storage or 
network bandwidth, and of course more cache 

capacity may reduce the need for memory 
bandwidth.  The effectiveness of memory in 
reducing the need for bandwidth has been studied 
by H. T. Kung [Kung], who developed tight 
asymptotic bounds for certain applications on the 
storage bandwidth amplification resulting from a 
quantity of memory m.  His results apply equally 
well to memory bandwidth amplification due to 
cache size.  For dense matrix factorization and 
eigenproblems, the factor is (m)= m1/2; for explicit 
PDE solution on d-dimensional meshes,  (m)= m1/d; 
for comparison-based sorting and FFTs, (m)= log 
m; and for data-intensive computations with (1) 
work per data element, (m)= 1, i.e. there is no 
amplification of bandwidth. 

A process may exhibit diminished bandwidth 
amplification manifested by reduced improvement 
as memory allocation exceeds the limit of usability.  
This kind of behavior could be modeled by setting 
(m) = min(C1 1(m), C2 2(m)) for suitable positive 
constants C1 and C2, “flattening” the amplification of 
bandwidth for large m. 

Each bandwidth amplification factor might be 
modeled by one of the functions listed above and 
included in the denominator of the appropriate term 
in the runtime function model.  For example, the 
storage term for the model of an out-of-core sort 
might be the quantity of storage data accessed 
divided by the product of the storage bandwidth 
allocation and log m, the amplification factor 
associated with sorting.  Amplification factors for 
each application could be learned from runtime 
measurements by observing the effect of varying the 
memory resource argument while keeping the 
others constant. 

It remains to show that the model including 
bandwidth amplification functions is convex in the 
bandwidth and memory resources bj and mj given 
any of the various j possibilities above.  Since 
norms preserve convexity, this reduces to proving 
each term in the norm is convex.  Notice further that 
w/(b min(c11(m), c22(m))) = max(w/(b  c11(m)), 
w/(b  c22(m))) because all quantities are positive; 
since maximum and scaling by a positive constant 
both preserve convexity, it only remains to show 
1/(b  (m)) is convex in b and m. 
A function is defined to be log-convex if its logarithm 
is convex.  A log-convex function is itself convex 
because exponentiation preserves convexity, and 
the product of log-convex functions is convex 
because the log of the product of two log-convex 
functions is the sum of their logs, each of which is 
convex by hypothesis.  Now b-1 is log-convex for 



 

positive b because –log b is convex, and log  (m)-1 = 
log m-1/d = -1/d log m is convex in a similar vein.  
Finally, log (m)-1 = (log (log m)-1) is convex because 
its second derivative is positive for m  1. 

Summarizing, a runtime function for a process might 
be modeled by the convex function 
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Here the wi are learned parameters of the model (the 
“quantities of work”), the bi  are the allocations of 
the bandwidth resources, the i are the (learned) 
bandwidth amplification functions, and the mi are 
the allocations of the memory or cache resources 
that lead to the corresponding amplifications. 

These assumptions allow the runtime to be modeled 
as the p-norm of the component-wise product of a 
vector d, computed from the resource allocation that 
resulted in the given runtime, with the vector of 
learned parameters w. 

8 Related Work 

Doug Jensen first introduced Time-Utility Functions 
(TUFs) to express time-dependent utility in real-
time scheduling [Jens].  In his approach there is a 
single processor per process and scheduling 
decisions do not depend directly on resource 
allocations.  Nevertheless, the successes of his ideas 
support the validity of our approach, perhaps even 
for real-time scheduling problems. 

Nesbit et al. explore performance and power 
modeling and allocation based on a Virtual Private 
Machine (VPM) abstraction [NMCR].  Feedback from 
global policy to local applications drives satisfaction 
of total resource constraints. The techniques we 
discuss might help guide this configuration pruning 
process in the VPM approach. 

Stephen Boyd and his colleagues and students have 
extended the applicability of convex optimization to 
many arenas not normally thought of as practical 
candidates for optimization at all.  Especially 
relevant is recent work [MaBo] on embedded real-
time convex optimization performed continuously 
and incrementally, as we propose here. 

9 Discussion and Conclusion 

PACORA builds models of application performance 
and attempts to allocate resources to ensure the 
performance is adequate.  We believe that this 
approach matches well with future computing 
environments.  While the runtime models may not 

be completely faithful to application performance in 
all cases, it is unlikely that another approach would 
do any better.  Applications are not always written 
to be deterministic and even deterministic 
applications have sources of non-determinism such 
as varying input data and unpredictable user 
interactions.  Hardware also is a source of 
performance variability due to resource sharing and 
variable core performance. The models provide the 
operating system with an appropriate level of detail 
about application performance, giving good insight 
into how applications respond to resources. 

With so many potential sources of variability it is 
uneconomical to design a system to make hard 
response-time guarantees. Furthermore, for most 
systems it is unnecessary.  Users of both client 
systems and cloud services expect a level of 
responsiveness and consistency, but they may not 
notice if an occasional frame is dropped or a query 
responds a little slowly. We believe that the penalty 
functions strike a good balance between these two 
realities and treat responsiveness as a first class 
citizen by characterizing how costly it is for a 
deadline to be missed. 

We have presented PACORA, a resource allocation 
framework for manycore systems, which treats 
resource allocation as a convex optimization 
problem. PACORA has several strengths as a 
resource allocation framework. First, convex 
optimization is relatively inexpensive and has a 
single extreme point, which makes it affordable to 
do frequently.  Furthermore, the system does not 
have to perform a full convex optimization each 
time, but instead can do a partial gradient descent 
and make incremental steps towards the optimal 
solution.  Penalty function slopes allow the system 
to express relative importance of application 
deadlines, and the runtime intercept encapsulates 
QoS requirements. An additional process can be 
used to represent power and manage battery 
energy.   We believe PACORA's ability to handle a 
diversity of resources, represent QoS requirements, 
and express the importance of battery life make it a 
good match for future systems. 
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