

PACORA: Performance Aware Convex Optimization
for Resource Allocation

Sarah L. Bird, University of California-Berkeley <slbird@eecs.berkeley.edu>

Burton J. Smith, Microsoft <burtons@microsoft.com>

Abstract

Resource allocation is the dynamic allocation and
de-allocation of processor cores, memory pages, and
various categories of bandwidth to client sub-
computations (e.g processes within an operating
system) that compete for those resources.
Historically, resource allocation has been rather
unsystematic, and now the assumptions underlying
the traditional strategies no longer hold. The
existence of parallel software and multiple
heterogeneous processor cores, the requirement to
maintain quality of service agreements and
responsiveness, and the need to limit power and
energy consumption (especially in mobile systems)
are inadequately addressed by the status quo. A
new approach to resource allocation is described
that addresses all of these needs and that can be
framed as a convex optimization problem; the result
is that an optimal solution will exist and be unique
with no local extrema. As a result, rational, fast, and
fully incremental solutions to the resource allocation
problem become feasible.

1 Introduction

Resource allocation is one of the primary functions
for operating system software and has becoming
increasingly important for client systems as well as
servers and data centers due to an increased
emphasis on energy efficiency, stringent user
expectations of application responsiveness, and a
growing diversity of resources. “Resource
allocation” as the term is used here means the
dynamic allocation and de-allocation by an
operating system of processor cores, memory pages,
cache, and various categories of bandwidth to
computations that compete for those resources.
Given a finite set of available resources, the

operating system must decide how best to allocate
resources to minimize a metric of responsiveness.
(Some systems may use other optimization criteria,
e.g. maximizing throughput, but for this work we
concentrate on responsiveness.)

This definition naturally establishes resource
allocation as a type of constrained optimization
problem; however, historically resource allocation
solutions have been rather unsystematic [Corb,
RuSI]. Responsiveness has been described by a
single value (usually called a “priority”) associated
with a thread of computation and adjusted within
the operating system by a variety of ad-hoc
mechanisms. Memory allocation has usually
employed independent machinery, and other
resources such as I/O or network bandwidth have
been deemed so abundant as to require no explicit
management at all.

The assumptions underlying allocation strategies of
this sort no longer hold, especially for emerging
client systems. First, applications increasingly differ
in their ability to exploit multiple processor cores
and other resources, and these differences are
independent of their relative responsiveness
requirements. Second, the value of application
responsiveness is highly nonlinear for an increasing
variety of “Quality-Of-Service” (QOS) applications
like streaming media or gaming; for these
applications, responsiveness is approximately two-
valued depending on whether performance is
adequate or not. Third, power and battery energy
have become key resources, e.g. in mobile
computing, and available battery energy is itself a
component of responsiveness and the user
experience.

We present PACORA, a resource allocation system
that constructs the resource allocation problem as a
convex optimization problem. PACORA creates
simplified models of application performance
through measurement and uses these models along
with information about the applications’
responsiveness requirements and importance and
the system battery life to determine the optimal
resource allocation.

This research was supported by Microsoft
(Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). Additional
support comes from Par Lab affiliates National
Instruments, NEC, Nokia, NVIDIA, and Samsung.

In the following sections, we describe PACORA in
greater detail. We will focus primarily on PACORA
for client systems rather than servers or data
centers, but all of the principles here are largely
applicable in these other domains as well.

2 PACORA Overview

The PACORA framework is a general framework for
allocating a variety of different resources to
applications in the system. Resources can be
bandwidth, the quantity of cache, memory pages, or
different execution units and cpus. PACORA will
perform best on systems with strong performance
isolation among resources; however, it is
still applicable to current, more limited systems for
making allocation decisions.

The resource allocation approach taken by PACORA
attempts to address the resource management
problem as follows:

1. The process is the entity to which the operating
system allocates resources. Micro-management
of the resources within a process is generally
application dependent and should be under the
control of components of the runtime
environment such as a user-mode work
scheduler for processor cores or a memory
garbage collector for memory pages.

2. The objective function to be minimized is the
total penalty, which is the sum of the penalties
of the runnable processes p. Penalty
minimization is done on-line and continuously.

3. The penalty of a process is described by a
function rather than a single value, and its
argument, the runtime, is an appropriate
measure of process responsiveness. For
example, the runtime of a process might be: the
time from a mouse click to its result; the time
from a service request to its response; the time
from job launch to job completion; or the time to
execute a specified amount of work.

4. The runtime of a process is measured or
predicted from its history of resource usage.

A succinct mathematical formulation of this
resource allocation scheme is the following:

Minimize pPπp(p(ap,1…ap,n))
Subject to: pP ap,r  Ar for r = 1…n
 ap,r  0 for all pP and r = 1…n

Here πp is the penalty function for process p, p is its
runtime function, Ar is the total amount of resource r
available, and ap,r is the allocation of resource r to
process p. The optimization problem described
above is in fact convex, making its use for operating
system resource management entirely practical.

3 Resource Management as Convex
Optimization

If the penalty functions, runtime functions, and
resource constraints are arbitrarily, little could be
done to optimize the total penalty beyond searching
at random for the best allocation. However, if
resource management can be framed as a convex
optimization problem [BoVa], two benefits accrue:

1. An optimal solution will exist and be unique,
with no local extrema;

2. Fast, incremental solutions will become feasible.

A constrained optimization problem will be convex
if both the objective function to be minimized and
the constraint functions that define its feasible
points are convex functions.

A convex optimization problem can be expressed in
this form:

Minimize F0 (x1, x2, …xm)
Subject to Fi (x1, x2, …xm)  0, i = 1,…k
Where F0, F1, …Fk : Rm  R are all convex.

A few more facts about convex functions will be
useful in what follows. First, a concave function is
one whose negative is convex. Clearly, maximization
of a concave function is equivalent to minimization
of its convex negative. An affine function, one whose
graph is a straight line in two dimensions or a
hyperplane in n dimensions, is both convex and
concave. A non-negative weighted sum or pointwise
maximum (minimum) of convex (concave) functions
is convex (concave), as is either kind of function
composed with an affine function. The composition
of a convex non-decreasing (concave non-
increasing) scalar function with a convex function
remains convex (concave).

As a consequence, the resource management
problem posed above can be transformed into a
convex optimization problem in m = |P|·n variables
ap,r as long as the penalty functions πp are convex
non-decreasing and the runtime functions p are
convex. Note that the resource constraints are all
affine and can be rewritten as pP ap,r  Ar  0, r = 1,
…,n, and ap,r  0.

4 Penalty Functions

Penalty functions are generically defined as
members of a family of such functions so that user
preferences for a process p (an implicit parameter
elided in the discussion below) can be implemented
by assigning values to a few well-understood
parameters. As a process grows or diminishes in
importance, its penalty function can be
parametrically modified to effect the change. In a
client operating system, the instantaneous

management of penalty function modifications
should be highly automated by the system to avoid
unduly burdening the user.

One possible generic penalty function idea is to
define a family of piecewise linear functions of the
form π() = max (s · (  d), 0). Two representative
graphs are shown below.

The two parameters d and s define the penalty
function. To guarantee π is convex and non-
decreasing, s must be non-negative. The runtime 
is of course non-negative, and it may be sensible (if
not strictly necessary) to convene that d is also. A
service-constrained process has a marked change in
slope, namely from 0 to s, at the point  = d. This
means that any runtime not exceeding d is as
satisfactory as any other, but a runtime exceeding d
contributes a penalty. In the most extreme case s =
 (implying infinite penalty for the system as a
whole when  > d). “Softer” requirements will
doubtless be the rule. For processes without service
constraints one can set d = 0 so that π() = s·. This
defines linear behavior with s as the rate of penalty
increase with runtime.

The gradient of process penalty with respect to its
resource allocations ar is useful in controlling the
optimization process. Since the objective function is
convex, descent along the gradient leads toward the
global minimum. By the chain rule, each term in the
gradient π/ar

 = dπ/d · /ar. The first factor is
well-defined but discontinuous at  = d with dπ/d =
if ( d)  0 then 0 else s. The problem of estimating
the partial derivatives /ar is discussed below.

5 Runtime Functions

Unlike penalty functions, which describe user
preference, runtime functions measure performance
as a function of the resource assignment. Runtime
will commonly vary with time as a process changes
“phase” and can make better or worse use of certain
resources. To guarantee the objective function is
convex  must be also, and this is at first glance a
plausible requirement akin to the proverbial “Law of
Diminishing Returns”. An equivalent statement is
that incrementally changing the allocated quantity
of a resource results in a runtime that is never
smaller than one extrapolated from the rate of

change of the runtime with resources at the current
resource allocation.

There are examples of runtime behavior that violate
convexity. One example can occur in memory
allocation, where “plateaus” can be seen:

Typically, these plateaus are caused by algorithm
adaptations within the application to accommodate
variable memory availability. The runtime becomes
the minimum of two or more functions, one for each
range of algorithm applicability, and the minimum
fails to preserve convexity. The effect of the
plateaus will be corresponding inflections of penalty
as shown in the right-hand figure above, and
multiple solutions to the optimization problem will
result.

There are a few ways to sidestep this issue. One is
based on the observation that such runtime
functions will be at least quasiconvex. A variation on
this idea is to use additional constraints to exclude
values for memory resource allocation spanning
multiple plateaus. Finally, one can model the
measured runtime by a function which is convex and
does not distort the runtime behavior seriously.

The partial derivatives /ar or approximations to
them are useful to estimate the relative runtime
improvement from each type of resource. A user-
level runtime that manages allocation internal to the
process may be a good source of these data.
Additionally, the resource manager can allocate a
modest amount of a resource and measure the
change in runtime. Finally, a parameterized analytic
model can be constructed and the partial derivatives
evaluated directly. This approach is developed more
fully below.

6 Managing Power and Battery Energy

It is useful to designate a “process” to receive
allocations of all resources that are powered off.
Ideally, this would include all resources not
allocated elsewhere. Process 0 will play this role in
what follows. 0, the measure of runtime for process
0, is artificially defined to be the total system power
consumption. This function is linear and monotone
decreasing in its arguments a0,r , i.e. the resources
assigned to process 0. The penalty function π0 can
now be used to keep total system power below the

π

 d

slope s
π

 d = 0

slope s



d

-1(d) Memory

π()

Memory

parameter d0 to the extent the penalties of other
processes cannot overcome it. Alternatively, the
slope s0 can be adjusted to reflect the current
battery charge state: as the battery depletes, s0 can
increase and force processes with lesser penalty to
slow or even cease execution as they yield resources
to be powered off.

7 Runtime Function Modeling

While it might be possible to model runtimes by
recording and interpolating among the values that
result from assignments of resources to processes,
this idea has serious potential shortcomings:

1. The size of the multidimensional runtime
function tables may be large;

2. Interpolation in many dimensions is expensive;
3. The runtime measurements will be “noisy” and

require smoothing;
4. Convexity in the resources may be violated;
5. Gradient estimation may be infeasible.

An alternative approach is to model the runtime
functions using analytic expressions that are convex
by construction. For example, a runtime might be
modeled as a weighted sum of terms, one per
bandwidth resource, where each term is the amount
of application work needing the resource divided by
the allocated bandwidth. One term might represent
the number of instructions divided by allocated
instruction execution rate; another might be number
of storage accesses divided by allocated storage
bandwidth and so forth. Such a model will
automatically be convex in the bandwidth
allocations because 1/b is convex for positive b and
because a positively-weighted sum of convex
functions remains convex.

Asynchrony and runtime tolerance may make the
constituent runtimes overlap partly or fully; if the
latter, then the maximum of the terms might be
more appropriate than their sum. The result will
still be convex, though, as will any other norm on
the terms including the 2-norm, i.e. the square root
of the sum of the squares. This last variation could
be viewed as a “partially overlapped” compromise
between the 1-norm (sum) describing no overlap
and the ∞-norm (max) describing full overlap.

The “non-bandwidth” resources are not part of this
model, notably the quantity of memory. Cache
allocations, when and if they are technically feasible,
are also excluded. The effect of these memory
resources on runtime is largely indirect, namely to
exploit temporal locality and thereby reduce the
consumption of bandwidth. For example, additional
memory may reduce the need for storage or
network bandwidth, and of course more cache

capacity may reduce the need for memory
bandwidth. The effectiveness of memory in
reducing the need for bandwidth has been studied
by H. T. Kung [Kung], who developed tight
asymptotic bounds for certain applications on the
storage bandwidth amplification resulting from a
quantity of memory m. His results apply equally
well to memory bandwidth amplification due to
cache size. For dense matrix factorization and
eigenproblems, the factor is (m)= m1/2; for explicit
PDE solution on d-dimensional meshes,  (m)= m1/d;
for comparison-based sorting and FFTs, (m)= log
m; and for data-intensive computations with (1)
work per data element, (m)= 1, i.e. there is no
amplification of bandwidth.

A process may exhibit diminished bandwidth
amplification manifested by reduced improvement
as memory allocation exceeds the limit of usability.
This kind of behavior could be modeled by setting
(m) = min(C1 1(m), C2 2(m)) for suitable positive
constants C1 and C2, “flattening” the amplification of
bandwidth for large m.

Each bandwidth amplification factor might be
modeled by one of the functions listed above and
included in the denominator of the appropriate term
in the runtime function model. For example, the
storage term for the model of an out-of-core sort
might be the quantity of storage data accessed
divided by the product of the storage bandwidth
allocation and log m, the amplification factor
associated with sorting. Amplification factors for
each application could be learned from runtime
measurements by observing the effect of varying the
memory resource argument while keeping the
others constant.

It remains to show that the model including
bandwidth amplification functions is convex in the
bandwidth and memory resources bj and mj given
any of the various j possibilities above. Since
norms preserve convexity, this reduces to proving
each term in the norm is convex. Notice further that
w/(b min(c11(m), c22(m))) = max(w/(b c11(m)),
w/(b c22(m))) because all quantities are positive;
since maximum and scaling by a positive constant
both preserve convexity, it only remains to show
1/(b (m)) is convex in b and m.
A function is defined to be log-convex if its logarithm
is convex. A log-convex function is itself convex
because exponentiation preserves convexity, and
the product of log-convex functions is convex
because the log of the product of two log-convex
functions is the sum of their logs, each of which is
convex by hypothesis. Now b-1 is log-convex for

positive b because –log b is convex, and log  (m)-1 =
log m-1/d = -1/d log m is convex in a similar vein.
Finally, log (m)-1 = (log (log m)-1) is convex because
its second derivative is positive for m  1.

Summarizing, a runtime function for a process might
be modeled by the convex function

  () √∑(

  ()
)

 ‖

 ()
‖

 ‖ ‖

Here the wi are learned parameters of the model (the
“quantities of work”), the bi are the allocations of
the bandwidth resources, the i are the (learned)
bandwidth amplification functions, and the mi are
the allocations of the memory or cache resources
that lead to the corresponding amplifications.

These assumptions allow the runtime to be modeled
as the p-norm of the component-wise product of a
vector d, computed from the resource allocation that
resulted in the given runtime, with the vector of
learned parameters w.

8 Related Work

Doug Jensen first introduced Time-Utility Functions
(TUFs) to express time-dependent utility in real-
time scheduling [Jens]. In his approach there is a
single processor per process and scheduling
decisions do not depend directly on resource
allocations. Nevertheless, the successes of his ideas
support the validity of our approach, perhaps even
for real-time scheduling problems.

Nesbit et al. explore performance and power
modeling and allocation based on a Virtual Private
Machine (VPM) abstraction [NMCR]. Feedback from
global policy to local applications drives satisfaction
of total resource constraints. The techniques we
discuss might help guide this configuration pruning
process in the VPM approach.

Stephen Boyd and his colleagues and students have
extended the applicability of convex optimization to
many arenas not normally thought of as practical
candidates for optimization at all. Especially
relevant is recent work [MaBo] on embedded real-
time convex optimization performed continuously
and incrementally, as we propose here.

9 Discussion and Conclusion

PACORA builds models of application performance
and attempts to allocate resources to ensure the
performance is adequate. We believe that this
approach matches well with future computing
environments. While the runtime models may not

be completely faithful to application performance in
all cases, it is unlikely that another approach would
do any better. Applications are not always written
to be deterministic and even deterministic
applications have sources of non-determinism such
as varying input data and unpredictable user
interactions. Hardware also is a source of
performance variability due to resource sharing and
variable core performance. The models provide the
operating system with an appropriate level of detail
about application performance, giving good insight
into how applications respond to resources.

With so many potential sources of variability it is
uneconomical to design a system to make hard
response-time guarantees. Furthermore, for most
systems it is unnecessary. Users of both client
systems and cloud services expect a level of
responsiveness and consistency, but they may not
notice if an occasional frame is dropped or a query
responds a little slowly. We believe that the penalty
functions strike a good balance between these two
realities and treat responsiveness as a first class
citizen by characterizing how costly it is for a
deadline to be missed.

We have presented PACORA, a resource allocation
framework for manycore systems, which treats
resource allocation as a convex optimization
problem. PACORA has several strengths as a
resource allocation framework. First, convex
optimization is relatively inexpensive and has a
single extreme point, which makes it affordable to
do frequently. Furthermore, the system does not
have to perform a full convex optimization each
time, but instead can do a partial gradient descent
and make incremental steps towards the optimal
solution. Penalty function slopes allow the system
to express relative importance of application
deadlines, and the runtime intercept encapsulates
QoS requirements. An additional process can be
used to represent power and manage battery
energy. We believe PACORA's ability to handle a
diversity of resources, represent QoS requirements,
and express the importance of battery life make it a
good match for future systems.

10 Acknowledgements

We would like to thank Juan Colmenares, John
Kubiatowicz, Dave Patterson, Krste Asanovic and the
rest of the ParLab Architecture and Operating
Systems groups for their continual support and
guidance as we develop and refine the ideas in
PACORA. We would also like to thank the many
Microsoft Windows operating system developers
who have shared their knowledge with us.

References

[BoVa] Boyd, Stephen and Lieven Vandenberghe,
Convex Optimization. Cambridge University Press,
2004. http://www.stanford.edu/~boyd/cvxbook/.

[Corb] Corbató, F. J. et al., The Compatible Time-
Sharing System: A Programmer’s Guide. MIT Press,
1963.

[Jens] Jensen, E. Douglas, Utility Accrual Real-Time
Scheduling Under Variable Cost Functions. IEEE
Transactions on Computers 56(3):385-401, 2007.

 [Kung] Kung, H. T. Memory Requirements for
Balanced Computer Architectures. Proceedings of
the 13th International Symposium on Computer
Architecture , pp.49-54, 1986.

[MaBo] Mattingley, Jacob and Stephen Boyd,
Automatic Code Generation for Real-Time Convex
Optimization. To appear in Convex Optimization in
Signal Processing and Communications, Y. Eldar and
D. P. Palomar, Eds. Cambridge University Press,
2009.

[NMCR] Nesbit, K. J., M. Moreto, F. J. Cazorla, A.
Ramirez, M. Valero, and J. E. Smith. Multicore
Resource Management. IEEE Micro 28(3):6–16,
2008.

[RuSI] Russinovich, Mark and David Solomon with
Alex Ionescu, Windows Internals, Fifth Edition.
Microsoft Press, 2009.

http://www.stanford.edu/~boyd/cvxbook/

