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ABSTRACT
Techniques for characterizing performance and diagnos-
ing problems typically endeavor to minimize perturba-
tion by measurements and data collection. We are mak-
ing a call to do exactly the opposite. In order to charac-
terize the behavior of a system and to perform root-cause
analysis and answer what-if questions, we need to con-
duct active and systematic experiments on our systems,
perhaps at the same time these systems are running. We
argue that in distributed computing frameworks such as
MapReduce, Dryad and Hadoop, the conditions are right
for automatically conducting these experiments. At each
stage there is a large number of nodes doing the same
computation, hence providing a sound statistical popu-
lation. Furthermore, we have the infrastructure in such
systems to isolate and recreate the conditions of a run. In
this paper we propose the missing piece: a blueprint of
the causal interactions that can be used to plan these ex-
periments and perform inferences about the results. Ma-
chine learning and statistical analysis give us the tools
and algorithms for inducing such a causal blueprint from
a combination of passive observations and active inter-
vention.

1. INTRODUCTION
Performance debugging of distributed software sys-

tems on large clusters is notoriously challenging. Slow-
downs are often caused by resource contention between
unrelated applications, and the root cause of the problem
can be transient. Unanticipated skew in the amount of
computation by different instances of the same task, can
be difficult to track down. The same factors mean that
running time prediction is something of a black art and as
a result the utility of capacity planners and performance-
aware schedulers is limited.

We feel that the time is ripe to expand our arsenal
of tools for performance analysis in the context of dis-
tributed computing frameworks like Dryad and MapRe-
duce. We propose active intervention, where the test
subject—a single task, such as a mapper, a reducer, or
a Dryad vertex—is probed in the same environment as
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Figure 1: Part of the causal model for the running time of a task. This
subgraph shows the factors that affect the time taken to read input.
Other subgraphs, not shown, describe computing and writing output.

its live version in a controlled manner. Probing, by re-
running the task in-situ and fixing some variables while
altering others, enables actionable root cause analysis of
performance problems. The experiment is constructed
around a causal model, which acts as a blueprint for the
task by describing its resource demands, how they vary
over time, the interactions between different instances of
the task, and the dependencies between all of these.

An example causal model for a Dryad vertex is shown
in Figure 1. Intuitively, the graph represents that the run-
ning time of a task is partly determined by how quickly
it can read its input data. The time this takes depends
on disk bandwidth and contention. If the data resides on
a remote machine, then network speed, latency and any
congestion also have an impact. Some types of task com-
pute over the input records while reading them, in which
case the number and speed of the CPUs plays a part.

Using a causal model to describe task executions in
this way is analogous to a blueprint for an electrical cir-
cuit, such as the one shown in Figure 2. The blueprint de-
scribes the causal relationships for the circuit, and hence
plays two roles:

1. Given the state of one part of the circuit, it enables
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Figure 2: Blueprint of a digital circuit. The blueprint has two func-
tions: a) to describe a set of causal assumptions and b) to provide an
oracle for intervention.

one to deduce the state of some other part of the
circuit (i.e. the cause of an observed output value,
or the effect of an observed input value).

2. Following intervention to set any of the inputs, it
enables one to infer the values of causally depen-
dent inputs and outputs.

The first capability is used for verifying that the circuit is
working properly, while the second is useful for debug-
ging and finding the root cause of the failure (within the
confines of the circuit), including the malfunctioning of
a gate. So, for example, if we observe that inputs A and
B to gate G2 are both 0, the blueprint enables us to infer,
using algebra, that the output of G4 will also be 0. More-
over, we can also conclude that at least one of the inputs
to G1 was also 0. Suppose now that we explicitly set the
value of input A to 1 by physically injecting the appro-
priate voltage into the circuit. The blueprint tells us that
the value at the output of gate G2 will now be 1, and we
cannot make any inferences on the value of the inputs to
gate G1 (since the value of A is no longer a consequence
of these inputs).

Similarly, the causal model of a Dryad or MapReduce
task allows us to systematically analyse and address per-
formance problems. Given a model such as that in Fig-
ure 1, we can actively intervene by varying any of the ac-
cessible variables (from the congestion at the disk, to the
CPU utilization and the rate of data-in) while re-running
the task in a sandbox.

Active intervention contrasts with standard techniques
for performance analysis, which typically monitor be-
havior passively to avoid perturbing the measurements
and/or adversely affecting the performance of the system
itself. Our approach makes use of passive measurements,
in particular to construct the causal model, but augments
current practices with a powerful, experiment-based ap-
proach. This not only helps to find the root-cause of
a performance problem, but also identifies what adjust-
ments will rectify the problem, with a guarantee that the
changes will have the desired effect.

We are developing our ideas in the context of data-
parallel distributed computing systems, e.g. Dryad or

MapReduce. In such systems, applications are expressed
as a dataflow graph that is scheduled at runtime onto the
physical cluster. The input data is partitioned across ma-
chines to enable many identical tasks (e.g. Dryad vertex
or MapReduce mapper or reducer) to execute in paral-
lel. A large cluster will host many jobs at the same time,
with consequent sharing of physical resources and poten-
tial for contention between unrelated programs[1].

The rest of this paper discusses Dryad vertices specif-
ically, although the techniques are readily applicable to
a MapReduce environment as well. At this exploratory
stage we are particularly focused on DryadLINQ pro-
grams[17], in which the majority of vertices correspond
to a well-defined set of operators, thereby simplifying the
challenge of constructing causal models.

2. CAUSAL MODELS
Research into causality discovery and intervention has

been revitalized recently, given the abundance of data in
such fields as artificial intelligence, statistics, economet-
rics and epidemiology. In 1991 Pearl and Verma proved
the limits for which causal relations can be inferred from
passive observation alone[13]. To extend these results,
formalisms were later proposed that develop a mathemat-
ical language to model causal relations, interventions,
and the computational procedures to make inferences[11,
12]. Our modeling technique is inspired by this work.

The formal representation of the model is based on
Bayesian networks, which are very efficient data struc-
tures for the representation of, and reasoning with, prob-
abilistic and statistical information. In fact, there are
many parallels between a circuit blueprint and a Bayesian
network. A Bayesian network is a graph where the nodes
represent the random variables and the relationship be-
tween a child and its parents is described by a proba-
bilistic model. You can think of a Bayesian network as a
blueprint where the inputs and outputs may be real con-
tinuous numbers, and the functional specifications of the
gates are probabilistic1.

Moreover, similar to a blueprint, a Bayesian network
(and our causal models) are modular. As the blueprint
represents a function by the composition of its gates, a
Bayesian network represents a complete probability dis-
tribution given by the product of the relationships be-
tween the children and its parents in the graph. Thus,
given a domain with random variables X1, . . . , Xn, we
formally have that:

P (X1, . . . , Xn) =
∏

i

P (Xi|Pa(Xi)) (1)

where Pa(Xi) denotes the parents of Xi in the graph.
These probabilistic relationships may be a linear regres-
1In a Bayesian network the connectivity in the graph has a for-
mal semantics based on conditional independence[8].



sion between the inputs Xi and the output y =
∑

i aiXi+
ε, where ε is a zero mean Gaussian noise, or a mixture of
Gaussian models, or any of the various non-parametric
models. In our domain, linear models or generalized lin-
ear models will be sufficient to a first approximation.

An additional challenge for us is that unlike in a typ-
ical circuit blueprint, the functional specification of the
causal model is not fully known. Fortunately, the tasks of
a data-driven parallel program have inherent structure (as
we will discuss in the following section), and as a result,
we have a template for the “gates” and their composition
as per Equation 1 in the causal model. The parameters
of these gates can then be statistically fitted from traces
of the task’s resource demands, drawing on a well de-
veloped statistical theory of inducing Bayesian networks
from data, some of which has been already applied to
software systems[4].

Representing the execution behavior of a task in this
way is analogous to the first role of the blueprint, de-
scribed in the previous section. Since it is based on aug-
menting the representational capabilities provided by
Bayesian networks and graphical models, our approach
inherits the same capabilities. Prior art on representing
and reasoning with uncertainty, and on automatically fit-
ting and learning models from data, can be applied. This
includes dynamic models and models with variables that
are not directly observable (such as the Phase variable
discussed in Section 4). Crucially, inference for the state
of some variables given observations of other variables is
performed by known algorithms and with guarantees of
soundness.

The second role of the blueprint, enabling inference
given active intervention, was formalized relatively re-
cently by Judea Pearl[12]. The operations are similar to
those we perform on a circuit blueprint when we apply
voltage, and involve a transformation of the Bayesian
network to one in which the algorithms for inference
from observation will work. The approach provides a
simple way to identify the controlling variables and model
the immediate impact of intervention (or perturbation) on
the variables of interest, in a single formalism.

3. APPLYING THE MODELS
There are many interesting characteristics of Bayesian

networks, explained and exploited in numerous papers
and real applications. The main one that concerns us here
is that, much as in the electrical circuit blueprint, we can
specify and learn from data each one of the relationships
between inputs and outputs (parent and children in the
graph) modularly and independently following the same
composition as in Equation 1.

Thus, for example, we can specify that in the graph of
Figure 1 “Reading time” (rt) is related to its inputs “Data
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Figure 3: Adding another vertex with a local disk.

size” (s), “Rate data_in” (r), “CPU” (c) as

rt = s ∗ r + s ∗ c ∗ A + ε (2)

Where A (one of the parameters) is the amount of com-
pute demanded by the vertex while it is reading, and ε is a
zero-mean Gaussian noise, whose variance σ is the other
parameter. The read and compute rates are expressed per
byte of input, and the result will be reading time in sec-
onds. Note that the parameters A, ε and σ are fitted with
standard linear regression techniques and the probabilis-
tic relation between rt and its parent is a Gaussian with
mean equal to s∗ r+s∗ c∗A and variance σ. More gen-
erally, such equations can be thought of as the expected
“operational laws” for the performance of these systems.

Once we have defined the graphical structure and the
operational laws for the model, an execution of the task
in its parallel distributed environment, typically involv-
ing many replicas, will provide enough data to fit the
parameters using standard regression. We anticipate that
this can be done online with an explicit experiment: most
of the platforms addressed in this paper already provide
infrastructure to collect statistics from each node in the
cluster, including CPU utilization, virtual memory, and
bytes read and written (e.g. the Artemis monitoring sys-
tem for Dryad[5]). Note that the uncertainty expressed
in the parameter ε represents errors in measurement and
errors due to modeling—we are not modeling all the pos-
sible inputs to each gate, and the time granularity may
imply some degree of approximation.

The causal model can now drive active intervention
as an experimental process in which values of causally
relevant nodes are systematically varied to observe the
effects on the output of interest. This is conceptually
similar to physically injecting a voltage so as to fix an
input in an electrical circuit. We envisage re-executing a
vertex in a sandbox, but in-situ on the cluster2, supported
by the ability to artificially induce the desired values for

2Re-execution is straightforward using Dryad’s built-in fault
tolerance mechanisms.



the inputs. We will then be able to perform the same in-
ferences as in a regular Bayesian network with the fixed
variable set to the appropriate value, and use the results
for “what-if” questions, root-cause diagnosis, and model
refinement.

As an example of active intervention, consider the two
nodes displayed in Figure 3. One has a local disk, which
is shared with the other node that accesses the disk re-
motely. Assume that we want to find out the running time
of the remote node if both are reading from the disk at
the same time, under various modes of network conges-
tion. The model would guide the set up of the simulation.
The vertex would be sandboxed and its “Disk conges-
tion” and other state variables set appropriately. We then
re-execute the vertex, simulating various degrees of net-
work congestion, and measure the dependent variables.
This not only lets us estimate running time under differ-
ent conditions, but also lets us gather the data necessary
to refine the models for further online experiments. In
this case, the resulting information might be effectively
used by the scheduler or by the programmer to change
allocation, data partition, or even the algorithm.

4. TASK PHASES
The phase of a vertex, which is an implicit variable

in our causal models, arises from its pattern of reading
input, computing over it, and writing output. As a ver-
tex transitions from one phase to another, the bottleneck
resource changes and hence the factor that determines
the rate of progress. For instance, while in a comput-
ing phase a vertex might be CPU or memory-bound, but
while writing its output the bottleneck becomes the rate
at which the vertex can write to its local disk. By in-
corporating the phase, the causal model reflects the fact
that contention on a resource will have different impact
depending on which phase it occurs in.

Consider the select operator, which is the Dryad-
LINQ equivalent of Map in MapReduce. select takes
a stream of input records, applies the the same function to
each record, and writes the output. The top graph of Fig-
ure 4 shows the cumulative data read and written against
time (in seconds) for a select vertex processing 1GB
of data. The middle plot shows the cumulative CPU sec-
onds consumed by the process, and the bottom the av-
erage number of runnable threads, which gives an indi-
cation of the vertex’s potential for concurrent execution.
Vertical lines show the phase boundaries, which in this
case are very clear transitions and provide evidence that
these phases are readily identifiable.

The phase variable is not directly observable and so
must be inferred from the rest of the variables in the
model. We address this problem by noting that the dy-
namics of these phases are naturally expressed with a
Hidden Markov Model (HMM). The phase is the only
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Figure 4: Cumulative resource usage vs time by a select ver-
tex. The upper graph shows I/O GB, the middle CPU seconds
and the bottom the degree of concurrency. The inferred phase
boundaries are marked as dotted vertical lines and delimit dis-
tinct behavioral modes.

hidden state, while visible behavior such as the CPU uti-
lization, memory consumption, and rate of the data flow-
ing in/out provide the evidence for state transition. This
is a relatively low dimensional problem3 for which there
are standard techniques such as Expectation Maximiza-
tion [14].

5. RELATED WORK
MapReduce and Dryad are popular platforms and there

is a corresponding degree of interest in enhancing the
performance analysis capabilities for them. The typical
debugging approach uses a combination of online moni-
toring and after-the-fact log analysis[5], while schedulers
have been proposed that attempt to balance fairness with
locality[6, 18]. Efforts to multiplex tasks from differ-
ent jobs on the same physical computer, such as Hadoop
On Demand, highlight the need for performance-aware
scheduling. Mantri[1] mitigates the effects of outliers in
a MapReduce cluster by using passive observations to
decide whether the underlying cause is likely to be the
network, the machine or skewed data partitions. All these
scenarios would benefit from the performance models
that we can obtain using active intervention.

The mechanisms behind our approach have been used
in other systems: the idea of controlled perturbation was
tried in Triage[15], which is a system for diagnosing fail-
ures in server applications using sandboxed reexecution
at the end-user’s site. The ‘Look Who’s Talking’ frame-
work infers dependencies between VMs on a cluster us-
ing just the VMs’ CPU usage[2]. It perturbs some ran-
domly chosen VMs by capping their CPU utilization in
order to check and refine the inferred clusters. The
3Relative to say, speech recognition, which is another problem
solved by HMMs.



WebProphet system deliberately alters the timing of ob-
ject load times in web pages to predict the impact of op-
timizations[9].

“Phases” of dominant resource activity are exploited
in Ganesha[10], a fault-diagnosis tool for Hadoop that
uses Expectation Maximisation to learn performance
counter distributions and hence pinpoint the source node
of a poorly performing MapReduce job.

There is a considerable amount of work on either build-
ing “observers” for a control loop or exciting the system
with specific inputs to (automatically) build a model of
the response with a control objective in mind[3]. As we
explained earlier, our objective (performance analysis)
and methods (representing a task’s behavior with a causal
model) are very different. Finally, our work shares some
similarity with the work on the discovery of likely invari-
ants described in [7]. The main differences are that we
assume a lot more structure in our models, in particular
a parameterized functional schema for the performance
dependencies in the vertices, and we actively intervene
on the system in order to gather specific data to properly
fit the parameters in these functions.

6. CONCLUSION
Our belief that systematic active intervention for data-

parallel systems is now feasible stems from three ob-
servations. Firstly, the mathematical approach required
for causal modeling techniques has recently been devel-
oped[12]. Secondly, the applications of MapReduce and
Dryad are highly structured, and typically run on largely
homogeneous clusters. Thus the tasks in these jobs have
a known set of external factors that affect the computa-
tion, and it is feasible to systematically vary them. Also,
one run provides a statistically rich sample population as
the same code is executed many times. Finally, the large-
scale cluster environment makes it practical to probe a
task on the same hardware as its original instantiation
and hence recreate the original execution environment
with a much higher degree of fidelity.

The approach we have described complements the
prevalent passive monitoring methodology that has been
developed in the past two decades, while enabling an-
swers to what-if and related questions that require inter-
vention in the form of active experimentation. We rely
on passive monitoring to collect the data necessary for
(a) fitting the parameters of the models and (b) identify-
ing the cases that need further experimentation in order to
find the root cause of the problems observed. The fitting
of the parameters is done by using standard techniques
from statistics such as regression and Expectation Maxi-
mization[14, 16]. To both direct the interventions and ex-
tract quantitative conclusions from the experiments, we
rely on the algebra proposed in Pearl[12], which enables
the rewriting of each intervention (the setting of a vari-

able in the model) into a transformation on a Bayesian
network. Once this is obtained we simply execute the
well known algorithms on the Bayesian network for in-
ference.

By taking into account the impact of different compu-
tational phases and different levels of congestion and re-
source utilization, we hope to be able to provide concrete
answers to what-if questions about the performance and
running time of vertices. We contend that only through
this approach can we arrive at accurate information for
performance analysis and effective resource utilization
in large clusters where confounding factors escape char-
acterization through passive monitoring alone.
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