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Monthly energy statement
considered harmful

® Power is a limiting factor in computing

® 3-year TCO soon to be dominated by
power cost [EPA 2007]

® |nfluences location, technology choices
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Goal of computational efficiency:
Reduce the amount of energy to do useful work




Improve computational efficiency of

FAw N data-intensive computing using an array

Fast Array of VWimpy Nodes of well-balanced low-power systems.
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FAWN

Improve computational efficiency of
data-intensive computing using an array

Fast Array of VWimpy Nodes of well-balanced low-power systems.
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Target: Data-intensive computing

® |arge amounts of data
® Highly-parallelizable

® Fine-grained, independent tasks

Workloads amenable to “scale-out” approach



Qutline

® VWhy FAWN?
® When FAWN!?
® Challenges (How FAWN?)



Why FAWN?

|. Fixed costs make dynamic power scaling difficult
2. FAWN balances system to save energy
3. FAWN targets sweet-spot in efficiency

4. FAWN reduces peak power consumption
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|. Fixed power costs dominate
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2. Balancing to save energy

O CPU/Disk Gap
® How do we balance!

100000000
® Big CPUs clocked
0000000 down?
CPU-to-Disk seek ® Embedded CPUs?

Speed Ratio 1000000 Wh
® Y not use
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Instructions/sec/W in millions

3. Targeting the sweet-spot in efficiency
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Instructions/sec/W in millions

3. Targeting the sweet-spot in efficiency
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Instructions/sec/W in millions

3. Targeting the sweet-spot in efficiency
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3. Targeting the sweet-spot in efficiency
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3. Targeting the sweet-spot in efficiency
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3. Targeting the sweet-spot in efficiency
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Instructions/sec/W in millions

3. Targeting the sweet-spot in efficiency
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4. Reducing peak power consumption

® Provisioning for peak power requires:
|. worst case cooling requirements
2. UPS systems upon power failure

3. power generation and substations

Investment
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What is FAWN good for?

® Random-access workloads (Key-value Lookup)
® Scan-bound workloads (Hadoop, Data Analytics)

® CPU-bound workloads (Compression, Encryption)
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Important metrics

Performance Efficiency
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Random access workloads

FAWN + CF (4W)
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Random access workloads

| 4



Random access workloads
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Random access workloads
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Random access workloads

FAWN is 6-200x more efficient than traditional systems|
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CPU-bound encryption
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CPU-bound encryption

FAWN is 2x more efficient for CPU-bound operations!

B FAWN (5W)
B Traditional + HD (87W)

60 0.8
45 0.6
30 0.4
|5 0.2
0 36 0
Encryption Speed (MB/s) Encryption Efficiency (MB/))

Performance Efficiency

16




When to use FAVVN for
random access workloads?

® Total cost of ownership
® (Capital cost + 3 year power @ $0.10/kWh

® What is the cheapest architecture for serving
random access workloads!?

® Traditional + {Disks, SSD, DRAM}?
e FAWN + {Disks, SSD, DRAM}?

|7



Dataset Size in TB

Architecture with lowest TCO

for random access workloads
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Dataset Size in TB
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FAWN-based systems can provide
lower cost per {GB, QueryRate}
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Challenges

“Each decimal order of magnitude increase in parallelism requires a
major redesign and rewrite of parallel code” - Kathy Yelick

® Algorithms and Architectures at 10x scale
® Dealing with Amdahl’s law

® High performance using low performance nodes
® TJoday’s software may not run out of the box

® Manageability, failures, network designh, power
cost vs. engineering cost

19



Conclusion

FAWN improves the computational efficiency of datacenters
Informed by fundamental system power trends

Challenges: programming for 10x scale, running today’s
software on yesterday’s machines...
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Hot enough for industry

FEBRUARY 24, 2009

Microsoft trying out netbook processors in
datacenters

Though a datacenter would require three times as many netbook
processors, the power requirement would still be lower than that
of typical server processors

MAY 06, 2009

Intel's Atom chip finding its way into
servers

Super Micro and HP are building Atom chips, which were
designed for netbooks and low-costs PCs, into server appliances

MAY 15, 2009

Dell puts low-power netbook chip in new
server

Via Technologies' Nano processors will power Dell's ultra-light
XS11-VX8 servers
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