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Monthly energy statement 
considered harmful

• Power is a limiting factor in computing

• 3-year TCO soon to be dominated by 
power cost [EPA 2007]

• Influences location, technology choices
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Goal of computational efficiency:
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FAWN
Fast Array of Wimpy Nodes

Improve computational efficiency of 
data-intensive computing using an array 
of well-balanced low-power systems.

Understanding Data-Intensive Workloads on FAWN

Iulian Moraru, Lawrence Tan, Vijay Vasudevan
15-849 Low Power Project

Abstract

In this paper, we explore the use of the Fast Array
of Wimpy Nodes (FAWN) architecture for a wide
class of data-intensive workloads. While the bene-
fits of FAWN are highest for I/O-bound workloads
where the CPU cycles of traditional machines are
often wasted, we find that CPU-bound workloads
run on FAWN can be up to six times more efficient
in work done per Joule of energy than traditional
machines.

1 Introduction

Power has become a dominating factor in the cost
of provisioning and operation of large datacenters.
This work focuses on one promising approach to
reduce both average and peak power using a Fast
Array of Wimpy Node (FAWN) architecture [2],
which proposes using a large cluster of low-power
nodes instead of a cluster of traditional, high power
nodes. FAWN (Figure 1) was originally designed to
target mostly I/O-bound workloads, where the ad-
ditional processing capabilities of high-speed pro-
cessors were often wasted. While the FAWN ar-
chitecture has been shown to be significantly more
energy efficient than traditional architectures for
seek-bound workloads [16], an open question is
whether this architecture is well-suited for other
data-intensive workloads common in cluster-based
computing.

Recent work has shown that the FAWN archi-
tecture benefits from fundamental trends in com-
puting and power—running at a lower speed saves
energy, while the low-power processors used in
FAWN are significantly more efficient in work done
per joule [16]. Combined with the inherent paral-
lelism afforded by popular computing frameworks
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Figure 1: FAWN architecture

such as Hadoop [1] and Dryad [9], a FAWN sys-
tem’s improvement in both CPU-I/O balance and
instruction efficiency allows for an increase in over-
all energy efficiency for a much larger class of dat-
acenter workloads.

In this work, we present a taxonomy and analysis
of some primitive data-intensive workloads and op-
erations to understand when FAWN can perform as
well as a traditional cluster architecture and reduce
energy consumption for data centers.

To understand where FAWN improves energy
efficiency for data-intensive computing, we in-
vestigate a wide-range of benchmarks common
in frameworks such as Hadoop [1], finding that
FAWN is between three to ten times more efficient
than a traditional machine in performing operations
such as distributed grep and sort. For more CPU-
bound operations, such as encryption and compres-
sion, FAWN architectures are still between three to
six times more energy efficient. We believe these
two categories of workloads—CPU-bound and I/O-
bound—encompass a large enough range of com-

1

4



FAWN
Fast Array of Wimpy Nodes

Improve computational efficiency of 
data-intensive computing using an array 
of well-balanced low-power systems.

Understanding Data-Intensive Workloads on FAWN

Iulian Moraru, Lawrence Tan, Vijay Vasudevan
15-849 Low Power Project

Abstract

In this paper, we explore the use of the Fast Array
of Wimpy Nodes (FAWN) architecture for a wide
class of data-intensive workloads. While the bene-
fits of FAWN are highest for I/O-bound workloads
where the CPU cycles of traditional machines are
often wasted, we find that CPU-bound workloads
run on FAWN can be up to six times more efficient
in work done per Joule of energy than traditional
machines.

1 Introduction

Power has become a dominating factor in the cost
of provisioning and operation of large datacenters.
This work focuses on one promising approach to
reduce both average and peak power using a Fast
Array of Wimpy Node (FAWN) architecture [2],
which proposes using a large cluster of low-power
nodes instead of a cluster of traditional, high power
nodes. FAWN (Figure 1) was originally designed to
target mostly I/O-bound workloads, where the ad-
ditional processing capabilities of high-speed pro-
cessors were often wasted. While the FAWN ar-
chitecture has been shown to be significantly more
energy efficient than traditional architectures for
seek-bound workloads [16], an open question is
whether this architecture is well-suited for other
data-intensive workloads common in cluster-based
computing.

Recent work has shown that the FAWN archi-
tecture benefits from fundamental trends in com-
puting and power—running at a lower speed saves
energy, while the low-power processors used in
FAWN are significantly more efficient in work done
per joule [16]. Combined with the inherent paral-
lelism afforded by popular computing frameworks

!"#$

%&'

()*

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()*

()* ()*
()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

/001 201

34-5"6"78-,

9&4:&4
+;1<

Figure 1: FAWN architecture
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Target: Data-intensive computing

• Large amounts of data

• Highly-parallelizable

• Fine-grained, independent tasks

Workloads amenable to “scale-out” approach
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Outline

• What is FAWN?

• Why FAWN?

• When FAWN?

• Challenges (How FAWN?)
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Why FAWN?

1. Fixed costs make dynamic power scaling difficult

2. FAWN balances system to save energy

3. FAWN targets sweet-spot in efficiency

4. FAWN reduces peak power consumption

7



1. Fixed power costs dominate
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Figure adapted from Tolia et. al
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• How do we balance?

• Big CPUs clocked 
down?

• Embedded CPUs?

• Why not use 
more disks with 
big CPUs?

9

2. Balancing to save energy
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3. Targeting the sweet-spot in efficiency
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3. Targeting the sweet-spot in efficiency
Fast processors

mask memory wall
at the cost of efficiency
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4. Reducing peak power consumption

• Provisioning for peak power requires:

1. worst case cooling requirements

2. UPS systems upon power failure

3. power generation and substations 

investment
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What is FAWN good for?

• Random-access workloads (Key-value Lookup)

• Scan-bound workloads (Hadoop, Data Analytics)

• CPU-bound workloads (Compression, Encryption)
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Performance Efficiency Density Cost

Important metrics
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time

Perf
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FAWN + CF (4W)

Traditional + HD  (87W)

Traditional + SSD  (83W)

Random access workloads
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Random access workloads



Random access workloads
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Performance Efficiency

FAWN is 6-200x more efficient than traditional systems



CPU-bound encryption

0

15

30

45

60

Encryption Speed (MB/s)

51.15

3.65

FAWN (5W)
Traditional + HD (87W)

AES encryption/decryption of a 
512MB file with a 256-bit key

16

Performance



CPU-bound encryption

0

15

30

45

60

Encryption Speed (MB/s)

51.15

3.65

FAWN (5W)
Traditional + HD (87W)

0

0.2

0.4

0.6

0.8

Encryption Efficiency (MB/J)

0.365

0.73

AES encryption/decryption of a 
512MB file with a 256-bit key

16

Performance Efficiency



CPU-bound encryption

0

15

30

45

60

Encryption Speed (MB/s)

51.15

3.65

FAWN (5W)
Traditional + HD (87W)

0

0.2

0.4

0.6

0.8

Encryption Efficiency (MB/J)

0.365

0.73

AES encryption/decryption of a 
512MB file with a 256-bit key

16

FAWN is 2x more efficient for CPU-bound operations!

Performance Efficiency



When to use FAWN for 
random access workloads?

• Total cost of ownership

• Capital cost + 3 year power @ $0.10/kWh

• What is the cheapest architecture for serving 
random access workloads?

• Traditional + {Disks, SSD, DRAM}?

• FAWN + {Disks, SSD, DRAM}?

17



Architecture with lowest TCO

18

for random access workloads

Ratio of query rate to 
dataset size informs 
storage technology
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Architecture with lowest TCO

18

for random access workloads

FAWN-based systems can provide 
lower cost per {GB, QueryRate}

Ratio of query rate to 
dataset size informs 
storage technology
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Challenges

• Algorithms and Architectures at 10x scale

• Dealing with Amdahl’s law

• High performance using low performance nodes

• Today’s software may not run out of the box

• Manageability, failures, network design, power 
cost vs. engineering cost

19

“Each decimal order of magnitude increase in parallelism requires a 
major redesign and rewrite of parallel code” - Kathy Yelick



Conclusion

• FAWN improves the computational efficiency of datacenters

• Informed by fundamental system power trends

• Challenges: programming for 10x scale, running today’s 
software on yesterday’s machines...
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Hot enough for industry
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