
FAWNdamentally
Power-efficient Clusters

Vijay Vasudevan, Jason Franklin, David Andersen,
Amar Phanishayee, Lawrence Tan, Michael Kaminsky*, Iulian Moraru

Carnegie Mellon University, *Intel Research Pittsburgh

1May 20, 2009

Monthly energy statement
considered harmful

• Power is a limiting factor in computing

• 3-year TCO soon to be dominated by
power cost [EPA 2007]

• Influences location, technology choices

2

Approaches to saving power

3

Infrastructure
Efficiency

Dynamic Power
Scaling

Computational
Efficiency

Power generation
Power distribution

Cooling

Sleeping when idle
Rate adaptation

VM consolidation

FAWN

Approaches to saving power

3

Infrastructure
Efficiency

Dynamic Power
Scaling

Computational
Efficiency

Power generation
Power distribution

Cooling

Sleeping when idle
Rate adaptation

VM consolidation

FAWN

Goal of computational efficiency:
Reduce the amount of energy to do useful work

FAWN
Fast Array of Wimpy Nodes

Improve computational efficiency of
data-intensive computing using an array
of well-balanced low-power systems.

Understanding Data-Intensive Workloads on FAWN

Iulian Moraru, Lawrence Tan, Vijay Vasudevan
15-849 Low Power Project

Abstract

In this paper, we explore the use of the Fast Array
of Wimpy Nodes (FAWN) architecture for a wide
class of data-intensive workloads. While the bene-
fits of FAWN are highest for I/O-bound workloads
where the CPU cycles of traditional machines are
often wasted, we find that CPU-bound workloads
run on FAWN can be up to six times more efficient
in work done per Joule of energy than traditional
machines.

1 Introduction

Power has become a dominating factor in the cost
of provisioning and operation of large datacenters.
This work focuses on one promising approach to
reduce both average and peak power using a Fast
Array of Wimpy Node (FAWN) architecture [2],
which proposes using a large cluster of low-power
nodes instead of a cluster of traditional, high power
nodes. FAWN (Figure 1) was originally designed to
target mostly I/O-bound workloads, where the ad-
ditional processing capabilities of high-speed pro-
cessors were often wasted. While the FAWN ar-
chitecture has been shown to be significantly more
energy efficient than traditional architectures for
seek-bound workloads [16], an open question is
whether this architecture is well-suited for other
data-intensive workloads common in cluster-based
computing.

Recent work has shown that the FAWN archi-
tecture benefits from fundamental trends in com-
puting and power—running at a lower speed saves
energy, while the low-power processors used in
FAWN are significantly more efficient in work done
per joule [16]. Combined with the inherent paral-
lelism afforded by popular computing frameworks

!"#$

%&'

()*

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()*

()* ()*
()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

/001 201

34-5"6"78-,

9&4:&4
+;1<

Figure 1: FAWN architecture

such as Hadoop [1] and Dryad [9], a FAWN sys-
tem’s improvement in both CPU-I/O balance and
instruction efficiency allows for an increase in over-
all energy efficiency for a much larger class of dat-
acenter workloads.

In this work, we present a taxonomy and analysis
of some primitive data-intensive workloads and op-
erations to understand when FAWN can perform as
well as a traditional cluster architecture and reduce
energy consumption for data centers.

To understand where FAWN improves energy
efficiency for data-intensive computing, we in-
vestigate a wide-range of benchmarks common
in frameworks such as Hadoop [1], finding that
FAWN is between three to ten times more efficient
than a traditional machine in performing operations
such as distributed grep and sort. For more CPU-
bound operations, such as encryption and compres-
sion, FAWN architectures are still between three to
six times more energy efficient. We believe these
two categories of workloads—CPU-bound and I/O-
bound—encompass a large enough range of com-

1

4

FAWN
Fast Array of Wimpy Nodes

Improve computational efficiency of
data-intensive computing using an array
of well-balanced low-power systems.

Understanding Data-Intensive Workloads on FAWN

Iulian Moraru, Lawrence Tan, Vijay Vasudevan
15-849 Low Power Project

Abstract

In this paper, we explore the use of the Fast Array
of Wimpy Nodes (FAWN) architecture for a wide
class of data-intensive workloads. While the bene-
fits of FAWN are highest for I/O-bound workloads
where the CPU cycles of traditional machines are
often wasted, we find that CPU-bound workloads
run on FAWN can be up to six times more efficient
in work done per Joule of energy than traditional
machines.

1 Introduction

Power has become a dominating factor in the cost
of provisioning and operation of large datacenters.
This work focuses on one promising approach to
reduce both average and peak power using a Fast
Array of Wimpy Node (FAWN) architecture [2],
which proposes using a large cluster of low-power
nodes instead of a cluster of traditional, high power
nodes. FAWN (Figure 1) was originally designed to
target mostly I/O-bound workloads, where the ad-
ditional processing capabilities of high-speed pro-
cessors were often wasted. While the FAWN ar-
chitecture has been shown to be significantly more
energy efficient than traditional architectures for
seek-bound workloads [16], an open question is
whether this architecture is well-suited for other
data-intensive workloads common in cluster-based
computing.

Recent work has shown that the FAWN archi-
tecture benefits from fundamental trends in com-
puting and power—running at a lower speed saves
energy, while the low-power processors used in
FAWN are significantly more efficient in work done
per joule [16]. Combined with the inherent paral-
lelism afforded by popular computing frameworks

!"#$

%&'

()*

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()*

()* ()*
()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

()* %&' +,-#.

/001 201

34-5"6"78-,

9&4:&4
+;1<

Figure 1: FAWN architecture

such as Hadoop [1] and Dryad [9], a FAWN sys-
tem’s improvement in both CPU-I/O balance and
instruction efficiency allows for an increase in over-
all energy efficiency for a much larger class of dat-
acenter workloads.

In this work, we present a taxonomy and analysis
of some primitive data-intensive workloads and op-
erations to understand when FAWN can perform as
well as a traditional cluster architecture and reduce
energy consumption for data centers.

To understand where FAWN improves energy
efficiency for data-intensive computing, we in-
vestigate a wide-range of benchmarks common
in frameworks such as Hadoop [1], finding that
FAWN is between three to ten times more efficient
than a traditional machine in performing operations
such as distributed grep and sort. For more CPU-
bound operations, such as encryption and compres-
sion, FAWN architectures are still between three to
six times more energy efficient. We believe these
two categories of workloads—CPU-bound and I/O-
bound—encompass a large enough range of com-

1

4

AMD Geode
256MB DRAM

4GB CompactFlash

Target: Data-intensive computing

• Large amounts of data

• Highly-parallelizable

• Fine-grained, independent tasks

Workloads amenable to “scale-out” approach

5

Outline

• What is FAWN?

• Why FAWN?

• When FAWN?

• Challenges (How FAWN?)

6

Why FAWN?

1. Fixed costs make dynamic power scaling difficult

2. FAWN balances system to save energy

3. FAWN targets sweet-spot in efficiency

4. FAWN reduces peak power consumption

7

1. Fixed power costs dominate

8

Figure adapted from Tolia et. al
HotPower 08

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 20 40 60 80 100

Po
w

er
 (W

)

System Utilization(%)

No DVFS
DVFS

Ideal

Power (W)

1. Fixed power costs dominate

8

Figure adapted from Tolia et. al
HotPower 08

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 20 40 60 80 100

Po
w

er
 (W

)

System Utilization(%)

No DVFS
DVFS

70% of peak power
at 0% utilization!

Ideal

Power (W)

1. Fixed power costs dominate

8

Figure adapted from Tolia et. al
HotPower 08

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 20 40 60 80 100

Po
w

er
 (W

)

System Utilization(%)

No DVFS
DVFS

70% of peak power
at 0% utilization!

}Fixed power costs

Ideal

Power (W)

• How do we balance?

• Big CPUs clocked
down?

• Embedded CPUs?

• Why not use
more disks with
big CPUs?

9

2. Balancing to save energy

10000

100000

1000000

10000000

100000000

1980 1985 1990 1995 2000 2005

CPU/Disk Gap

Year

CPU-to-Disk seek
Speed Ratio

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
s
tr

u
c
ti
o
n

s
/s

e
c
/W

 i
n

 m
il
li
o
n
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Speed vs. Efficiency

10

3. Targeting the sweet-spot in efficiency

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
s
tr

u
c
ti
o
n

s
/s

e
c
/W

 i
n

 m
il
li
o
n
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Speed vs. Efficiency

10

3. Targeting the sweet-spot in efficiency
Fast processors

mask memory wall
at the cost of efficiency

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
s
tr

u
c
ti
o
n

s
/s

e
c
/W

 i
n

 m
il
li
o
n
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Speed vs. Efficiency

10

3. Targeting the sweet-spot in efficiency
Fast processors

mask memory wall
at the cost of efficiency

Speed vs. Efficiency

10

3. Targeting the sweet-spot in efficiency

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
st

ru
ct

io
ns

/s
ec

/W
 in

 m
illi

on
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Fast processors
mask memory wall

at the cost of efficiency

Speed vs. Efficiency

10

3. Targeting the sweet-spot in efficiency

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
st

ru
ct

io
ns

/s
ec

/W
 in

 m
illi

on
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Fast processors
mask memory wall

at the cost of efficiency

Speed vs. Efficiency

10

3. Targeting the sweet-spot in efficiency

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
st

ru
ct

io
ns

/s
ec

/W
 in

 m
illi

on
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Fast processors
mask memory wall

at the cost of efficiency

Fixed power costs can
dominate efficiency
for slow processors

Speed vs. Efficiency

10

3. Targeting the sweet-spot in efficiency

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
st

ru
ct

io
ns

/s
ec

/W
 in

 m
illi

on
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Fast processors
mask memory wall

at the cost of efficiency

Fixed power costs can
dominate efficiency
for slow processors

FAWN targets sweet spot
in processor efficiency when

including fixed costs

4. Reducing peak power consumption

• Provisioning for peak power requires:

1. worst case cooling requirements

2. UPS systems upon power failure

3. power generation and substations

investment

11

4. Reducing peak power consumption

• Provisioning for peak power requires:

1. worst case cooling requirements

2. UPS systems upon power failure

3. power generation and substations

investment

11

4. Reducing peak power consumption

• Provisioning for peak power requires:

1. worst case cooling requirements

2. UPS systems upon power failure

3. power generation and substations

investment

11

4. Reducing peak power consumption

• Provisioning for peak power requires:

1. worst case cooling requirements

2. UPS systems upon power failure

3. power generation and substations

investment

11

What is FAWN good for?

• Random-access workloads (Key-value Lookup)

• Scan-bound workloads (Hadoop, Data Analytics)

• CPU-bound workloads (Compression, Encryption)

12

Performance Efficiency Density Cost

Important metrics

Work
time

Perf
Watt

Perf
$

Perf
Volume

13

14

FAWN + CF (4W)

Traditional + HD (87W)

Traditional + SSD (83W)

Random access workloads

14

Random access workloads

Random access workloads

0

1500

3000

4500

6000

Queries/sec

5800

177

1697

FAWN (4W)
Traditional + HD (87W)
Traditional + SSD (83W)

15

Performance

Random access workloads

0

1500

3000

4500

6000

Queries/sec

5800

177

1697

FAWN (4W)
Traditional + HD (87W)
Traditional + SSD (83W)

0

125

250

375

500

Queries/Joule

69.882.034

424.25

15

Performance Efficiency

Random access workloads

0

1500

3000

4500

6000

Queries/sec

5800

177

1697

FAWN (4W)
Traditional + HD (87W)
Traditional + SSD (83W)

0

125

250

375

500

Queries/Joule

69.882.034

424.25

15

Performance Efficiency

FAWN is 6-200x more efficient than traditional systems

CPU-bound encryption

0

15

30

45

60

Encryption Speed (MB/s)

51.15

3.65

FAWN (5W)
Traditional + HD (87W)

AES encryption/decryption of a
512MB file with a 256-bit key

16

Performance

CPU-bound encryption

0

15

30

45

60

Encryption Speed (MB/s)

51.15

3.65

FAWN (5W)
Traditional + HD (87W)

0

0.2

0.4

0.6

0.8

Encryption Efficiency (MB/J)

0.365

0.73

AES encryption/decryption of a
512MB file with a 256-bit key

16

Performance Efficiency

CPU-bound encryption

0

15

30

45

60

Encryption Speed (MB/s)

51.15

3.65

FAWN (5W)
Traditional + HD (87W)

0

0.2

0.4

0.6

0.8

Encryption Efficiency (MB/J)

0.365

0.73

AES encryption/decryption of a
512MB file with a 256-bit key

16

FAWN is 2x more efficient for CPU-bound operations!

Performance Efficiency

When to use FAWN for
random access workloads?

• Total cost of ownership

• Capital cost + 3 year power @ $0.10/kWh

• What is the cheapest architecture for serving
random access workloads?

• Traditional + {Disks, SSD, DRAM}?

• FAWN + {Disks, SSD, DRAM}?

17

Architecture with lowest TCO

18

for random access workloads

Ratio of query rate to
dataset size informs
storage technology

!"#$

!$

!$"

!$""

!$"""

!$""""

!"#$!$!$" !$"" !$"""

%
&
'&
(
)
'!
*
+,
)
!+
-
!.
/

01)23!4&')!56+77+8-(9():;

!"
#$
%&%
'(
#)
*+
*,
-.
/

0.12*+*,%34

0.12*+*55,

0.12*+*,-./

Architecture with lowest TCO

18

for random access workloads

Ratio of query rate to
dataset size informs
storage technology

!"#$

!$

!$"

!$""

!$"""

!$""""

!"#$!$!$" !$"" !$"""

%
&
'&
(
)
'!
*
+,
)
!+
-
!.
/

01)23!4&')!56+77+8-(9():;

!"
#$
%&%
'(
#)
*+
*,
-.
/

0.12*+*,%34

0.12*+*55,

0.12*+*,-./

Architecture with lowest TCO

18

for random access workloads

Ratio of query rate to
dataset size informs
storage technology

!"#$

!$

!$"

!$""

!$"""

!$""""

!"#$!$!$" !$"" !$"""

%
&
'&
(
)
'!
*
+,
)
!+
-
!.
/

01)23!4&')!56+77+8-(9():;

!"
#$
%&%
'(
#)
*+
*,
-.
/

0.12*+*,%34

0.12*+*55,

0.12*+*,-./

Architecture with lowest TCO

18

for random access workloads

FAWN-based systems can provide
lower cost per {GB, QueryRate}

Ratio of query rate to
dataset size informs
storage technology

!"#$

!$

!$"

!$""

!$"""

!$""""

!"#$!$!$" !$"" !$"""

%
&
'&
(
)
'!
*
+,
)
!+
-
!.
/

01)23!4&')!56+77+8-(9():;

!"
#$
%&%
'(
#)
*+
*,
-.
/

0.12*+*,%34

0.12*+*55,

0.12*+*,-./

Challenges

• Algorithms and Architectures at 10x scale

• Dealing with Amdahl’s law

• High performance using low performance nodes

• Today’s software may not run out of the box

• Manageability, failures, network design, power
cost vs. engineering cost

19

“Each decimal order of magnitude increase in parallelism requires a
major redesign and rewrite of parallel code” - Kathy Yelick

Conclusion

• FAWN improves the computational efficiency of datacenters

• Informed by fundamental system power trends

• Challenges: programming for 10x scale, running today’s
software on yesterday’s machines...

20

Hot enough for industry

21

