
Hera-JVM:
Abstracting Processor Heterogeneity

Behind a Virtual Machine

Ross McIlroy and Joe Sventek
University of Glasgow

Department of Computing Science

Carnegie Trust
for the Universities of Scotland

Heterogeneous Multi-Core
Architectures

• CPUs are becoming increasingly Multi-Core

• Should these cores all be identical?
- Specialise cores for particular workloads
- Large core for sequential code, many small cores for

parallel code

• Found in specialist niches currently
- e.g. network processors (Intel IXP), games consoles (Cell)

• Likely to become more common
- On-chip GPUs (AMD Fusion), Intel Larrabee

Developing for HMAs

Application Threads

Developing for HMAs
Main Arch Code Secondary Arch Code

Application Threads

Developing for HMAs

Main Core Secondary Cores

Main Arch Code Secondary Arch Code

Developing for HMAs

Main Core Secondary Cores

Main Arch Code Secondary Arch Code Support Code

Developing for HMAs

Main Core Secondary Cores

Main Arch Code Secondary Arch Code Support Code

Developing for HMAs

Main Core Secondary Cores

Main Arch Code Secondary Arch Code Support Code

Developing for HMAs

Main Core Secondary Cores

Main Arch Code Secondary Arch Code Support Code Libraries

main.o secondary.o

Hera-JVM

• Hide this heterogeneity from the application developer
- Present the illusion of a homogeneous multi-threaded virtual machine
- The same code will run on either core type

• Runtime system is aware of heterogeneous resources
- Can transparently migrate threads between core types based upon

this knowledge

• Provide portable application behaviour hints to enable
runtime system to infer the application’s heterogeneity

- Explicit Code Annotations
- Static Code Analysis / Typing information
- Runtime Monitoring / Profiling

Developing for Hera-JVM

Main Core Secondary Cores

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Developing for Hera-JVM

Main Core Secondary Cores

Integer FloatRandom Memory
Access

Branching
Code

Sequential
Memory Access

Runtime System

Int, Float, Seq
Rand

Rand
Int, Float

Main Core
Costs

Sec. Core
Costs

Application Threads

Cell Processor

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

Runtime System

Java Library

Application

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

SPE Assembler

Runtime System

Java Library

Application

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

SPE Assembler

Low Level
Assembly

Runtime System

Java Library

Application

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

SPE Assembler

Low Level
Assembly

SPE
Compiler

Runtime System

Java Library

Application

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

SPE Assembler

Low Level
Assembly

SPE
Compiler

Runtime System

Java Library

Application

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

SPE Assembler

Low Level
Assembly

SPE
Compiler

Runtime System

Java Library

Application

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

SPE Assembler

Low Level
Assembly

SPE
Compiler

Runtime System

Java Library

Application

A JVM for Two
Architectures

• Built upon JikesRVM

- Java in Java

- PowerPC and x86 support

PPE Assembler

Low Level
Assembly

PPE
Compiler

SPE Assembler

Low Level
Assembly

SPE
Compiler

Runtime System

Java Library

Application

Migration

• A thread can migrate between the PPE and SPE
cores at any method invocation
- Migration is triggered either by an explicit annotation or is

signalled dynamically by the scheduler
- Syscalls and native methods always migrate back to PPE

• Migration from core type A to B:
- Thread “traps” to support code on core A, which saves arguments
- Method JITed for core type B if required
- Migration marker and migration support frame pushed onto stack
- Thread placed on ready queue of core type B

SPE Local Memory
• Instead of a cache, SPEs have 256KB of explicitly

accessible local memory

• Main memory accessed through DMA using MFC
(Memory Flow Controller)

• Setting up many small DMA transfers is costly

Main
MemoryLocal

Memory MFCSPE

Software Caching in a
High Level Language

• Java bytecodes are typed, therefore, we have
high level knowledge of what’s being cached
- Cache an object completely when it is accessed
- Cache arrays in 1KB blocks

• Java memory model only requires coherency
operations at synchronisation points

• Methods are cached in their entirety when
invoked

Hera-JVM Performance

!"

!#$"

%"

%#$"

&"

!"
#!
$%
&

'
()
*+
,-
%$
.&

!"
#!
/(
%!
+&

!"
#,0
&

!"
#"
$)
.+
1(
%,$
&

'
$,
2
3)
&

!"
#4
.&

'
/+
56
0*
7$
&

8(
3&
9%
(1
+%
&

'
$)
.+
:(
%,$
&

:$
"
/%
+!
!&

;
/
+
+
*
0
/
&

;<=&>#!#&<<=&

Single Threaded

SP
E

v.
s.

PP
E

Sp
ee

du
p

Hera-JVM Performance

!"

!#$"

%"

%#$"

&"

!"
#!
$%
&

'
()
*+
,-
%$
.&

!"
#!
/(
%!
+&

!"
#,0
&

!"
#"
$)
.+
1(
%,$
&

'
$,
2
3)
&

!"
#4
.&

'
/+
56
0*
7$
&

8(
3&
9%
(1
+%
&

'
$)
.+
:(
%,$
&

:$
"
/%
+!
!&

;
/
+
+
*
0
/
&

;<=&>#!#&<<=&

Single Threaded

SP
E

v.
s.

PP
E

Sp
ee

du
p

!"

#"

$"

%"

&"

'!"

'#"

()
*(
+,
"

-
./
01
23
,+
4"

()
*(
5.
,(
1"

()
*26
"

()
*)
+/
41
7.
,2+
"

-
+2
89
/"

()
*:
4"

-
51
;<
60
=+
"

>.
9"
?,
.7
1,
"

-
+/
41
@.
,2+
"

@+
)
5,
1(
("

!
"
#
#
$
%
"
&

'&!()*&+,*,&(()&

Hera-JVM Performance
Multi-Threaded

(6 threads)

6
SP

Es
 v

.s
. P

PE
 S

pe
ed

up

Proportion of Execution
Time by Operation

!"# $!"# %!"# &!"# '!"# (!!"#

)*+,-.//#

+,.01234*#

+153.67-*8#

96*1:50#;*458#

<58.0.-#

=-15)>#

?81)@#

A*)16#B.+*-C#

B145#B.+*-C#

Data Cache Hit-Rate

!"#$

!"%$

!"&$

!"'$

!"($

!")$

!"*$

+$

+"+$

!$)$+'$,%$#,$%!$%)$&'$'%$(,$)!$))$*'$+!%$

!
"
#$
%
#&

'
(
)"
**
**
**
**
**
**
**
**

+#
"
,'
-
.
"
*/
%
*0
1
2
3
*4
"
$'
5
,/
6*

7'/'*8')9"*:;<"*+236*

!"#$

!"#%$

!"&$

!"&%$

!"'$

!"'%$

($

!
"
#"
$%
&#
$'
"
#(
$

)*+,-.//$ +,.01234*$ +153.67-*8$

Code Cache Hit-Rate

!"#$

!"%$

!"&$

!"'$

($

("($

!$&$(#$)*$+)$*!$*&$,#$#*$%)$&!$&&$

!
"
#$
%
#&

'
(
)"
**
**
**
**
**
**
**
**
**

+#
"
,'
-
.
"
*/
%
*0
1
2
3
*4
"
$'
5
,/
6*

7%4"*7')8"*9:;"*+236*

!"#$

!"%$

!"&$

!"'$

($

!
"
#$
%
&
'(
)#
'*
+
#"
'

)*+,-.//$ +,.01234*$ +153.67-*8$

Conclusion / Future Work
• Architectures are likely to become more heterogeneous

• This heterogeneity should be taken out of the hands of
non-specialist programmers

• Instead, hide this heterogeneity from the programmer and
provide abstractions to infer a program’s heterogeneity
- E.g. code annotations, runtime monitoring, etc.

• Hera-JVM is a proof of concept of this approach
- Overheads involved in hiding the heterogeneity are tolerable for

most applications

• Next Stage : Fully integrate behaviour tagging with
scheduling / migration decisions

