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Heterogeneous Multi-Core 
Architectures

• CPUs are becoming increasingly Multi-Core

• Should these cores all be identical?
- Specialise cores for particular workloads
- Large core for sequential code, many small cores for 

parallel code

• Found in specialist niches currently 
- e.g. network processors (Intel IXP), games consoles (Cell)

• Likely to become more common 
- On-chip GPUs (AMD Fusion), Intel Larrabee 
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Hera-JVM

• Hide this heterogeneity from the application developer
- Present the illusion of a homogeneous multi-threaded virtual machine
- The same code will run on either core type

• Runtime system is aware of heterogeneous resources
- Can transparently migrate threads between core types based upon 

this knowledge

• Provide portable application behaviour hints to enable 
runtime system to infer the application’s heterogeneity

- Explicit Code Annotations
- Static Code Analysis / Typing information
- Runtime Monitoring / Profiling
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Migration

• A thread can migrate between the PPE and SPE 
cores at any method invocation
- Migration is triggered either by an explicit annotation or is 

signalled dynamically by the scheduler
- Syscalls and native methods always migrate back to PPE

• Migration from core type A to B:
- Thread “traps” to support code on core A, which saves arguments
- Method JITed for core type B if required
- Migration marker and migration support frame pushed onto stack
- Thread placed on ready queue of core type B



SPE Local Memory
• Instead of a cache, SPEs have 256KB of explicitly 

accessible local memory

• Main memory accessed through DMA using MFC 
(Memory Flow Controller)

• Setting up many small DMA transfers is costly

Main 
MemoryLocal

Memory MFCSPE



Software Caching in a    
High Level Language 

• Java bytecodes are typed, therefore, we have 
high level knowledge of what’s being cached
- Cache an object completely when it is accessed
- Cache arrays in 1KB blocks

• Java memory model only requires coherency 
operations at synchronisation points

• Methods are cached in their entirety when 
invoked



Hera-JVM Performance
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Proportion of Execution 
Time by Operation
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Data Cache Hit-Rate
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Code Cache Hit-Rate

!"#$

!"%$

!"&$

!"'$

($

("($

!$&$(#$)*$+)$*!$*&$,#$#*$%)$&!$&&$

!
"
#$
%
#&

'
(
)"
**
**
**
**
**
**
**
**
**

+#
"
,'
-
.
"
*/
%
*0
1
2
3
*4
"
$'
5
,/
6*

7%4"*7')8"*9:;"*+236*

!"#$

!"%$

!"&$

!"'$

($

!
"
#$
%
&
'(
)#
'*
+
#"
'

)*+,-.//$ +,.01234*$ +153.67-*8$



Conclusion / Future Work
• Architectures are likely to become more heterogeneous

• This heterogeneity should be taken out of the hands of 
non-specialist programmers

• Instead, hide this heterogeneity from the programmer and 
provide abstractions to infer a program’s heterogeneity
- E.g. code annotations, runtime monitoring, etc.

• Hera-JVM is a proof of concept of this approach
- Overheads involved in hiding the heterogeneity are tolerable for 

most applications

• Next Stage : Fully integrate behaviour tagging with 
scheduling / migration decisions 


