Migration without Virtualization

Michael A. Kozuch, Michael Kaminsky, Michael P. Ryan
Intel Research Pittsburgh

Abstract

Migrating a live, running operating system from one ma-
chine to another has proven to be an invaluable tool over
the past few years. Today, however, the only way to mi-
grate an OS is to run it in virtual machine, thereby incur-
ring the disadvantages of virtualization (e.g., virtualized
devices often do not keep pace with the latest hardware).
This paper proposes a new infrastructure for operating
systems to allow direct migration from one physical ma-
chine to another physical machine—even if the hardware
on the target machine differs from the source. We believe
that this approach can be viable and practical as many
modern operating systems already provide the initial sup-
port necessary through their hibernate and suspend power
management infrastructures.

1 Introduction

In 2001, Chen and Noble made a case for virtualization
by proposing three example services [3]. One of their
examples—environment migration—has since become
commonplace and an essential feature in many environ-
ments.

Although Chen and Noble refer to environment mi-
gration in the context of moving a user’s environment
from one client machine to another, similar techniques
have been used to move computation within a data cen-
ter [4, 7]. Migration within a server room provides a
number of advantages. For example, administrators might
want to migrate heavily communicating machines near
each other to reduce network load, migrate an environ-
ment from a failing machine, migrate computation from
an under-powered machine to a more powerful one as
load increases, or migrate environments to consolidate
computation onto fewer data center racks to enable some
racks to be powered down completely.

In recent years, many of us have accepted the argument
that virtualization is the best solution for environment
migration, prima facie. Of course, prior to the interest
in virtualization, several proposals were put forward to
enable process migration [5, 2, 8]. This paper asks: why
not build the migration infrastructure directly into the
operating system?

1.1 Why not process migration?

Moving computation from one platform to another by us-
ing process migration has been well-studied [5, 2]. How-
ever, effecting a practical process migration system has
proven challenging because, while the OS isolates user
processes from the platform, applications tend to have
many connections to the OS that are tricky to migrate
(e.g. sockets, file descriptors, etc.). Additionally, pro-
cesses may interact with other processes through shared
memory, etc. Although recent work has proposed a so-
lution that includes the notion of process domains [8],
migration between two machines still requires (1) a pri-
ori partitioning of processes into domains, (2) extensive
system support, and (3) that the OS images and libraries
be virtually identical on the two machines.

Rather than migrate a domain of running processes
from off of an operating system, we propose to migrate
the OS (with the processes) from the hardware.

1.2 Why not virtualization?

The typical solution for migrating a running OS from one
platform to another is to leverage virtualization technol-
ogy [10, 4]. However, this technique requires an extra
layer of abstraction that introduces several disadvantages:

e Capability Lag. VMMs typically expose “lowest
common denominator” virtual devices to enhance
portability. These devices typically fail to expose the
highest performance features of the physical devices
present. Further, to take full advantage of physical
devices, up to three modules must work in concert:
the device driver in the VMM, the virtual device
model in the VMM, and the device driver in the
guest OS. The difficulty inherent in ensuring this
stack works together to provide efficient access to
the device implies a high probability that a system
performs less than optimally.

e Software Management. Although virtualization
proponents claim that VMMs are sufficiently small
to introduce little additional complexity into soft-
ware management, virtualization typically does not
reduce the total number of software components run-
ning on a system. Hence, there are more lines of
code to manage, more patches to apply, etc.

40 M Physical L]
VM w/ PV NIC -

35 VM L]
k=
o 30] *

(]
5 .
< 25 .
=
S "R
= 20]
[*
*

815
o)

10

m
5
0
0 1 2 3 4 5 6 7 8 9 10

Number of compute nodes

Figure 1: Performance of DPRSim2, an MPI-based
parallel application, when running (i) on physical
hardware, (ii) in a virtual machine with a para-
virtualized NIC, and (iii) in a virtual machine with
fully virtualized NIC. The compute nodes are conven-
tional rack-mounted, 8-core, Linux 2.6 servers with
1 Gbit/s Ethernet.

e Performance. In many applications, virtualized per-
formance is within an acceptable margin of native
performance, and therefore, the additional layers of
software introduced through virtualization are toler-
ated, but there are also cases where it is not [9]. For
example, Figure | shows the performance overhead
that virtualization imposes on a parallel robotics sim-
ulator [!]. The application is based on MPI and
makes frequent calls to barrier primitives. Running
in a standard VM configuration, it suffers a 40%
slowdown; even with a para-virtualized NIC, the
slowdown is still 25%.

1.3 Our Proposal: OS Migration

This paper proposes a set of operating system modifi-
cations to allow live migration of a running OS to new
hardware without virtualization. That is, our basic goal
is to take an OS running on the bare hardware of one
machine and move it to another physical machine. The
hardware on the target machine may differ from that of the
source machine; furthermore, the migration must be “live’
in the sense that user-space processes running prior to
migration must continue running after migration. That is,
rebooting is unacceptable. However, as shown in Figure 2,
the OS migration process will re-initialize the state of the
devices (and other relevant parts of the OS) to handle
any difference between the source and target platforms.
Furthermore, many modern operating systems already
provide initial support for this process through their hiber-
nate and suspend power management infrastructures.

s

User Space User Space User Space
0S oS oS
Device Device Device
Drivers Drivers Drivers
Process Virtual Machine (01
Migration Migration Migration

Figure 2: Shading indicates what migrates in process,
VM, and OS migration.

2 Design Space for Migration

We can divide operating system migration into three cat-
egories based on the target machine (where the OS is
migrating to). Similarly, we can categorize migration
based on the amount of state encapsulated and the time
scale associated with migration.

Target Platform Migration involves moving the operat-
ing system from a source machine to a target machine.
The greater the difference between the source and target
machines’ hardware platforms, the greater the complexity
in moving the OS. We identify three basic scenarios:

e Same machine. One could imagine a migration
where the source and target machines not only have
the same hardware but are literally the same machine.
This migration scenario essentially describes what
happens during hibernation in today’s operating sys-
tems.

o Different machine; same hardware. The next cat-
egory is where the target machine is physically a
different machine, but it has the same hardware as
the source. Here, the complications come from non-
deterministic aspects of the boot process (e.g., the
BIOS and/or the OS might enumerate the devices in
a different order or use different IRQs).

¢ Different machine; different hardware. The most
complex migration, not surprisingly, is when the
source and target hardware differ. Here, the migra-
tion process must somehow encapsulate the state on
the source in a device-independent way, move it to
the target machine, and map that state to the new set
of devices (where possible). We discuss this scenario
at length in Section 3.

Time scale and encapsulation A second aspect of the
migration design space is the time scale over which the
migration takes place and how much state (if any) it en-
capsulates. We identify four points in this axis of the
design space:

e Shutdown/reboot. The most basic form of “migra-
tion” is simply to shutdown the source OS and re-
boot it on the target machine. If the operating system
kernel has drivers for the target machine’s hardware,
the only requirement is to move the disk to the target
machine. In many cases, the disk might be available
on the network (e.g., the machine is in a data center
and boots from a network drive). This type of mi-
gration works trivially today but discards all of the
active state that we would like to keep.

e Hibernation. The next point in the spectrum is to
migrate the running operating system environment
to the target machine without discarding state. Hiber-
nation, available in most modern operating system,
involves saving the entire system state to disk and
re-loading that state on resume. Today, however, hi-
bernation is designed to work on the same machine,
though extending hibernate/resume to a different tar-
get machine with the same hardware is probably a
relatively simple extension. Hibernation, however,
does not work across different hardware profiles; fur-
thermore, hibernation is not live—the assumption is
that certain state (e.g., network connections) will not
exist after resume.

e Suspend. Suspend to RAM involves putting the de-
vices and operating system into a low power state.
Today, suspend only works on the same machine,
and like hibernation, suspend assumes that the hard-
ware remains the same. Both suspend and hibernate
explicitly freeze all processes before activating their
respective modes.

e Live. Live migration implies moving the operating
system from the source to the target without explic-
itly telling the OS to freeze processes. Live migra-
tion is used in several virtualization environments
to move guest VMs from one VMM to another—
usually with a downtime of less than a second. In
virtualization, however, migration only works when
the source and target VMMs present the same hard-
ware profile. We hope to enable live migration from
a source to a target where the hardware profiles are
different.

In summary, several of the points in this design space
are already possible today: “migration” from and to the
same machine is already possible using standard OS
power managements facilities. Migrating an OS to a dif-
ferent machine with the same hardware might be possible
today through hibernation (rebooting is also possible, but
uninteresting). Live migration from a source to a target
even with the same hardware is not possible today, let
alone different hardware—which is our goal.

We note that migration through virtualization actually
collapses the first axis of the design space. The two “dif-
ferent machine” scenarios do not occur because the VMM

presents exactly the same hardware profile to the OS re-
gardless of the underlying physical machine. With virtual-
ization, live migration is possible today, but suffers from
the limitations discussed in Section 1.2.

3 Migration-Enabled OS

In this section, we explore what changes must be intro-
duced into a modern OS such as Linux to enable migra-
tion. We first visit the challenges that must be overcome
and then our proposed solutions.

3.1 Challenges

At the beginning of the migration process, the source
machine is running the operating system and programs
that must be moved. The target machine is off or in
a state that can be controllably rebooted. In such an
environment, five problems must be solved in order to
perform a successful migration.

Lack of Receiver The target machine must have an op-
erating environment that allows the source machine to
transmit machine state to it and to transition into the oper-
ating system once received.

Dynamic shutdown/startup The source machine needs
to be able to cleanly shutdown any devices that may be
attached to it. In addition, the target machine must be
able to initialize or reinitialize any devices into a state that
corresponds to the state of a matching device on the source
machine. Note that this is not hotplugging; the kernel
serves notice that a migration event is pending, so device
drivers are given an opportunity to cleanly shutdown and
initialize devices.

Device state abstraction If the source and target ma-
chines have hardware devices that differ, even slightly,
the two systems will need to negotiate a way to map the
source machine’s hardware resources into those of the
target machine. Current systems that suspend, resume,
and migrate do not offer direct solutions to this prob-
lem. VMM s hide differences in hardware platforms, and
software suspend and hibernation on present operating
systems assume that the same machine will be there at
resume. In Linux, for example, it is not possible to sim-
ply swap a network card between software suspend and
resume without manually disabling the PCI device before
suspension and forcing a bus scan after resume. Both of
these techniques rely on the identical presentation of the
underlying hardware.

Self-migration In order to perform a live migration from
the operating system, it is necessary to obtain a consistent
view of the entire system from within it. If, for example,
the pre-copying algorithm [11] is used, then the pages

that are used by the system to prepare and transmit dirty
pages to the target are impossible to freeze and transmit.

Post-migration patchup Once the state of the source
system has been transferred to the target, it is necessary
to fix or patchup some of the system state in order to
have it match the source system. For example, the target
machine’s Ethernet card’s MAC address might need to be
updated to match that of the source in order to migrate
active network connections from the source machine.

3.2 Solutions

Lack of Receiver One straightforward way for the target
machine to receive the source system’s state is to use a
bootstrap kernel. This kernel could come from a central
repository of kernels or some other form of boot-loader,
such as PXE booting. Once it receives the source ma-
chine’s kernel, the bootstrap kernel can switch into it
using kexec. The target machine could even download the
source machine state through a user-space process using a
mechanism that is similar to user-space software suspend
in Linux.

Dynamic shutdown/startup Devices on the source and
target machine can be shutdown and initialized by leverag-
ing the currently existing suspend and resume calls in the
Linux kernel. It may, however, be necessary to update the
routines implemented by a device driver to support resum-
ing from a partially initialized state (e.g., when a network
card is used to receive the source machine’s state).

Device state abstraction Migrating from one device to
another requires a mapping between them. This mapping
can be achieved by providing a uniform device descrip-
tor for each class of device. For example, network card
drivers could implement export () and import ()
routines that export and import descriptions of the de-
vice that other drivers of the same class could interpret
(e.g., the MAC address and the MTU size set for the card).
The procedure might work as follows:

e Export. During the process of migrating, the source
machine calls pdev->export (), which returns
a data object that contains information about the de-
vice exported by the device driver, saving the output
from this call for transmission to the target machine.

e Suspend. The source machine completes trans-
mitting its state to the target and calls pdev->
suspend ().

e Import. The target machine calls pdev->
import () with the data object that was returned
by export () on the source machine, populating
its internal data structures and fields with the infor-
mation.

e Resume. The target calls pdev—->resume (), ini-
tializing the device to a state that matches the data
in the device driver’s internal structures.

As mentioned above, it may be necessary to update
the resume routine to support resuming from a partially
initialized state. It is also possible to extend device class
structures (i.e., net_device) to contain this informa-
tion, but it would be necessary for device drivers to be
updated to properly interface with this new structure in
order for such a scheme to work.

Self-migration To facilitate migration, we propose that
the OS categorize memory pages according to four types:
(a) kernel code and read-only data structures, (b) device
independent kernel data structures (including the process
tables and page tables), (c) device-dependent data struc-
tures, and (d) user-space memory. Category (a) may be
re-established on the target machine either by shipping
it to a bootstrap kernel or by delivering a copy from an-
other machine using PXE, as proposed above. Both (b)
and (d) can use the previously mentioned pre-copying
algorithm—either leveraging the newly-installed kernel
at the target or a bootstrap kernel. Category (c) involves
transferring the exported device state and then importing
it during the post-migration patchup. Similar to [0], a
consistent final view of the system may be achieved by
performing resend-on-write followed by a copy-on-write.

Post-migration patchup The patchup performed at the
target host is largely accomplished by the pair of calls to
import and resume, which populate device driver struc-
tures and reinitialize devices to a known state. It will also
be necessary to merge device dependent state and device
independent state in some core kernel data structures as a
final step before resuming execution.

3.3 Assumptions

Our design for server migration is based upon a number
of assumptions. First, because OS images may resume
on any machine in the cluster, we assume each image
contains the necessary device drivers for each physical
platform. Second, the OS must be modified to enable the
identification of the different page types identified under
Self-migration, above. For example, Linux might expose
a new version of kmalloc() that accepts a typing parame-
ter. Finally, we’ve assumed that no devices are visible in
user-space (i.e. the OS abstracts the platform). In practice
this might not be true. For example, we’ve assumed that
the source and target processors are from the same vendor,
but there may still be ISA differences (e.g. vector SIMD
instructions). Another example is user-space-visible de-
vice names (e.g., network and block devices). In such
cases, there are several coping strategies. Some features
could be encapsulated in libraries or device drivers that

expose an abstracted interface allowing migration, the
OS can refuse to migrate to a less-featured platform, the
OS could trap on faults and migrate to a more featured
machine, or OSes could choose a limited feature-set on
which to standardize.

3.4 Special devices

Resizing memory In order to support resizing memory,
we propose using some of the mechanisms that are already
in place to minimize the size of a software suspend image.
This includes flushing the buffer cache and swapping out
(if possible) pages to disk.

Number of processors If the number of processors is dif-
ferent on the target machine than on the source machine,
the kernel can migrate processes as necessary. Modern
operating systems, such as Linux, already support this
capability through CPU hotplugging.

4 Discussion

Additional benefits We believe that this architecture can
also provide several additional benefits. For example,
besides migrating an OS from one physical machine to
another, one could use OS migration to move from phys-
ical to virtual or vice versa. The VMM simply presents
a hardware platform like a physical machine would. Mi-
grating from physical to virtual is particularly useful in
data center settings when an administrator wants to con-
solidate resources. He or she could use OS migration to
move a set of OS images running on independent physical
machines onto a single (presumably, more powerful) host
to save power when the machines are largely idle.

Likewise, an administrator of a compute cluster might
encourage users to run virtual most of the time to max-
imize flexibility, but occasionally migrate to a physical
node in order to run performance benchmarks or, in the
case of a service, to handle a flash crowd.

Disadvantages As noted in Section 1, Chen and Noble
identify two benefits of virtualization in addition to en-
vironment migration: secure logging and intrusion pre-
vent/detection. These benefits, however, stem from the
virtualization infrastructure itself and are not related to
VM-based migration.

Migration through virtualization does, however, pro-
vide consolidation as an additional side benefit. Our OS
migration does not directly support consolidation since
it inherently pairs one OS per machine. As noted above,
however, OS migration can support consolidation by al-
lowing the OS to migrate from a physical to virtual ma-
chine, which can then be consolidated.

Another potential disadvantage of our OS migration
proposal is complexity. Virtualization has the benefit

that it automatically provides migration for unmodified
guest operating systems whereas OS migration requires a
modest, but new OS migration infrastructure. Once the
initial hooks are available, though, one could imagine—
like suspend/resume—that migration would become a
commonly-supported OS feature.

5 Conclusion

The ability to migrate a running operating system to an-
other machine with different hardware has several benefits.
This paper proposes an operating system infrastructure to
enable such a migration without virtualization. The power
management infrastructure found in modern OSes already
provides a number of hooks that help make migration
feasible with manageable OS changes.

Acknowledgments

We thank Michael Ashley-Rollman and Babu Pillai for
help with DPRSim, as well as Dave Andersen and our
reviewers for their helpful comments.

References

[1] DPRSim: The Dynamic Physical Rendering Simulator. http://
www.pittsburgh.intel-research.net/dprweb/.

[2] A. Barak. The mosix multicomputer operating system for high
performance cluster computing. Journal of Future Generation
Computer Systems, 13:361-372, 1998.

[3] P. M. Chen and B. D. Noble. When virtual is better than real. In
HorOS, 2001.

[4] C.Clark, K. Fraser, S. H, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI,
2005.

[5] F. Douglis and J. Ousterhout. Transparent process migration:
Design alternatives and the sprite implementation. Software—
Practice and Experience, 21:757-785, 1991.

[6] J. G. Hansen and E. Jul. Self-migration of operating systems. In
ACM SIGOPS European workshop, 2004.

[7] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration
for virtual machines. In USENIX ATC, 2005.

[8] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of zap: A system for migrating computing envi-
ronments. In OSDI, 2002.

[9] P.Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Perfor-
mance evaluation of virtualization technologies for server consoli-
dation. Technical Report HPL-2007-59R1, HP Labs, 2007.

[10] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers. In
0SDI, 2002.

[11] M. M. Theimer, K. A. Lantz, and D. R. Cheriton. Preemptable
remote execution facilities for the v-system. In SOSP, 1985.

http://www.pittsburgh.intel-research.net/dprweb/
http://www.pittsburgh.intel-research.net/dprweb/

	Introduction
	Why not process migration?
	Why not virtualization?
	Our Proposal: OS Migration

	Design Space for Migration
	Migration-Enabled OS
	Challenges
	Solutions
	Assumptions
	Special devices

	Discussion
	Conclusion

