
Cutting MapReduce Cost with Spot Market

Huan Liu
Accenture Technology Labs
huan.liu@accenture.com

Abstract

Spot market provides the ideal mechanism to leverage
idle CPU resources and smooth out the computation de-
mands. Unfortunately, few applications can take ad-
vantage of spot market because they cannot handle sud-
den terminations. We describe Spot Cloud MapReduce,
the first MapReduce implementation that can fully take
advantage of a spot market. Even if a massive num-
ber of nodes are terminated regularly due to a price in-
crease, Spot Cloud MapReduce can still make computa-
tion progress. We show experimentally that it performs
well and it has very little overhead.

1 Introduction

An infrastructure cloud, such as Amazon EC2, can make
a more efficient use of its infrastructure by aggregating
many computation demands from many users. Through
statistical multiplexing, the peak and trough from indi-
vidual users’ computation demands could be potentially
smoothed out, resulting in a much higher average utiliza-
tion of the infrastructure.

Unfortunately, there is a limit on what can be achieved
with statistical multiplexing alone. Without the ability to
shift user demands, the total computation requests could
still peak when the demands are high. For example, dur-
ing the Christmas shopping season, all retailers would be
requesting computation capacity. Without an incentive
to shift their computation demands, all requests would
pile up at the same time. Figure 1 shows the estimated
number of instances (“instance” is Amazon’s terminol-
ogy for a virtual machine) launched daily in EC2 be-
tween 2007 and 2010 [5]. There are two distinct peaks
around Feb. 2010 and Oct. 2010. Even though we do not
know how many instances are running daily (because we
do not know how many instances are turned off daily),
the graph is an indication that the computation demands
could change dramatically.

Figure 1: Estimated number of instances launched daily
in EC2 between 2007 and 2010.

If we can shift computation demands, there is a greater
potential to smooth out the computation requests, leading
to a more efficient use of the infrastructure. Although it
is difficult to shift real-time applications, such as web
applications which serve real-time user demands, other
applications, such as batch applications, are more elastic
in nature. A batch application, such as a MapReduce[3]
computation, often requires the results by a certain dead-
line, and it could be flexible on when the capacity is pro-
visioned.

A market mechanism is one promising approach to fa-
cilitate demand shifting. A cloud provider expresses the
current utilization through a price signal. A higher price
asks users to hold off their requests if they can wait. Con-
versely, a lower price attracts more usage by giving the
users a price incentive. Amazon EC2 introduced such
a mechanism, called spot market, in Dec. 2009. The
spot market offers a much lower price in exchange for
the ability to turn off an instance anytime when the mar-
ket price is above the bid price.

Although many MapReduce implementations, such as
Hadoop[6], can tolerate failures, they are ill-suited to the
spot market environment. They are designed to tolerate
infrequent machine failures, but they cannot cope with
massive machine terminations caused by a spot price in-
crease. If the primary and backup master nodes fail, no

computation can progress. Even if the master nodes do
not run on spot instances, several simultaneous node ter-
minations could cause all replicas of a data item to be
lost. In addition to data corruption, it is also shown that
adding spot instances to a MapReduce computation can
lengthen the computation time [1].

In this paper, we describe Spot Cloud MapReduce
(Spot CMR), a MapReduce implementation that works
well in a spot market environment. To the best of our
knowledge, it is the first MapReduce implementation that
could tolerate massive node terminations as could be in-
duced in a spot market. It streams intermediate results to
a cloud storage while processing a map task, and when
the instance is terminated, it uses the short time available
in the shutdown process to flush the buffer and commit
the partial results. Thus, it is able to keep on making
computation progress even when the instances are con-
stantly turned off.

2 Cloud MapReduce

Spot Cloud MapReduce is built on top of Cloud MapRe-
duce (CMR)[7], but it extends CMR so that it works well
in a spot market. Before we describe the changes we add
to Cloud MapReduce to make it tolerate large-scale ter-
minations, we first describe the Cloud MapReduce im-
plementation at a high level. For more details, we refer
interested readers to the Cloud MapReduce paper[7].

Cloud MapReduce uses various cloud services, such
as Amazon S3, SQS, SimpleDB, which greatly simplifies
our design. Cloud MapReduce architecture is shown in
Fig. 2. There are several SQS queues: one input queue,
one master reduce queue, one output queue and many
reduce queues.

At the start of a MapReduce job, CMR partitions the
input data intoM splits, where each split will be pro-
cessed by a separate map task. CMR enqueues a split
message for each split in the input queue. Typically the
input data is stored in Amazon S3, and a split message
is simply a list of pointers to files in S3, possibly with
an associated range to specify a subset of a large file. To
facilitate tracking, each split message also has a unique
map ID. While the input queue holds the input, the output
queue holds the results of the MapReduce computation,
i.e., the resulting key-value pairs.

There is only one master reduce queue and it holds
many pointers, one for each reduce queue. Similarly to
the input queue, which is used to assign map tasks, the
master reduce queue is used to assign reduce tasks. There
are a large number of reduce queues. The number of
them, denoted byR, is a configurable parameter that is
set by the user. The reduce queues and the master reduce
queue, as well as the entries in the master reduce queue,

split1

S3

		.

		..

1 2

1 2 3 		.

output KV output KV output KV 		.

Input/Map queue

Reduce queues

Master Reduce queue

Output queue

Map workers

Reduce workers

Information flow

link

SimpleDB

split2 split3

Intermediate KV Intermediate KV

Figure 2: Cloud MapReduce architecture

are created distributedly before the start of the MapRe-
duce job.

A set of map workers, each runs as a separate thread on
an EC2 instance, poll the input queue for work. Amazon
SQS automatically hides a split message after dequeuing
it. The map worker removes the split message from the
queue after it has successfully processed the split; oth-
erwise (i.e., when the map worker failed), the message
would automatically reappear after a visibility timeout.
After a map worker dequeues a split, it parses the input
split for key-value pairs, and it invokes the user-defined
map function for each key-value pair. While processing
an input key-value pair, the user-defined function gener-
ates and emits a set of intermediate key-value pairs.

The MapReduce framework collects the intermediate
key-value pairs from the map function, then writes them
to the reduce queues. A reduce key maps to one of the
reduce queues through a hash function. A default hash
function is provided, but the users could also supply their
own.

CMR uses the network to transfer the intermediate
key-value pairs as soon as they are available, thus it over-
laps data shuffling with map processing. Overlapping
shuffling is used when pipelining MapReduce [2]. Com-
pared to the implementation in [2] where it has to imple-
ment pairwise socket connections and buffering/copying
mechanism, our implementation using queues is much
simpler. Since the map phase is typically long, over-
lap shuffling has the effect of spreading out traffic. This

2

can help alleviate the incast problem [8] [4] (switch
buffer overflow caused by simultaneous transfer of a
large amount of data) if it occurs. In addition, CMR’s
strategy of immediately writing the intermediate results
to the queues is a key enabler for us to tolerate large-
scale terminations as could be induced by the spot mar-
ket. When an instance terminates, there is a minimal
amount of intermediate results remaining locally, and we
can quickly flush out of the buffer while the instance is in
the shutdown procedure. In contrast, other MapReduce
implementations, such as Hadoop[6], hold all intermedi-
ate results locally until the task finishes. If an instance is
terminated, there is not enough time to save the interme-
diate results.

Once the map workers finish their jobs, the reduce
workers start to poll work from the master reduce queue.
Once a reduce worker dequeues a message, it is respon-
sible for processing all data in the reduce queue indicated
by the message. It dequeues messages from the reduce
queue and feeds them into the user-defined reduce func-
tion as an iterator. Just like in other MapReduce imple-
mentations, the user-defined reduce function writes a set
of key-value pairs as the outputs. The reduce workers
collect the outputs and write them to the output queue.
The output queue can be used either as the final output or
as the input to the next MapReduce job.

Besides reading from and writing to the various
queues, the workers also read from and write to Sim-
pleDB to update their status. At the end of either a map
or reduce task, the workers write a commit message to
SimpleDB indicating they have successfully processed
the task. For example, upon successful completion, the
map task commits a (n,m) pair into SimpleDB to indi-
cate that noden has successfully finished processing map
split m. These commit messages are used to determine
if a phase has finished. If there is at least one commit
message for each map (reduce) task, then we know the
map (reduce) stage has finished.

3 Spot Cloud MapReduce

In this section, we describe Spot Cloud MapReduce, a
MapReduce implementation that works well in a spot
market environment. A spot market presents a more se-
vere failure scenario than the typical failure scenarios
a MapReduce implementation is designed for, because
many or all nodes could be terminated at the same time.
Fortunately, a spot market termination is more graceful
than a hardware failure. In a hardware failure, the whole
node may go down suddenly without warning. In con-
trast, in the Amazon spot market, a price increase beyond
the bid price would induce a graceful shutdown where
the whole shutdown scripts are executed.

Spot Cloud MapReduce is built on top of CMR. We

make four changes on top of the CMR implementation.
First, we modify the split message format in the input
queues. For each split, in addition to the map task idm

and the corresponding file location, we also add an off-
setf , which indicates the position in the file split where
we should start processing. At the beginning of the job,
when the input queue is created, all split messages en-
queued have an offset of 0.

The second change allows us to save the intermedi-
ate work when a node is terminated. We take advantage
of the graceful termination in the spot market. When a
shutdown request is received, the shutdown scripts (e.g.,
/etc/rc0.d on some Linux distributions) on the host OS
are executed. We modify the shutdown scripts. When
they are invoked, they first issue a SIGTERM signal
to the MapReduce process so that the MapReduce pro-
cess can saves its states as necessary, then they go to
sleep, never executing the rest of the shutdown scripts.
In our test, the Amazon hypervisor waits for the shut-
down scripts to finish (issuing the halt instruction at the
end), and it waits for up to 2 minutes. If the shutdown
process still has not finished in that time window, the hy-
pervisor forcefully terminates the instance by simulating
a power off event. The shutdown window is too short for
other MapReduce implementations to save all intermedi-
ate data. However, it is more than enough for Spot CMR
since it transfers data to the queues as soon as possible,
and it typically has very little data left in its buffer that
needs to be flushed.

KV1 KV2 KV3 ��.

A Map split

User-

defined

map

function

Output collector

One KV

output
Previous KV

outputs

�...

Reduce queues

Map task

Shutdown

Script

Notify

Sleep

Temporary buffer Staging buffer

Figure 3: Saving intermediate data when a node is termi-
nated.

Fig. 3 shows how Spot CMR processes a map task.
Each map task is given a map split, and the map task
parses the map split and passes each key-value pair to the
user-defined map function in turn. In addition to passing
an input key-value pair, the map task also passes an out-
put collector to the user-defined map function for it to
write its output key-value pairs to. Unlike the CMR im-

3

plementation, the output from one input key-value pair is
first saved in a temporary buffer. When the user-defined
map function finishes the processing of one key-value
pair, its output is appended to a staging buffer which
is then asynchronously uploaded to the reduce queues.
Streaming output data – sending data from the staging
buffer to the reduce queues as soon as possible – is a
unique feature of the CMR implementation. Typically
the staging buffer holds very little data, making it pos-
sible to flush out the data during the shutdown process.
In contrast, other MapReduce implementations hold all
outputs from a map split locally, and they only upload
the outputs after the map split has completed success-
fully. Streaming output data is possible in CMR because
CMR uses filtering at the reduce side to remove duplicate
or invalid outputs (e.g., from failed nodes).

When the map process receives a SIGTERM signal
from the shutdown scripts, it immediately kills the cur-
rent user-defined map function, and it throws away the
partial outputs in the temporary buffer. The process then
begins to flush the staging buffer. In our various tests,
we found that in the shutdown time window, at a mini-
mum, we can flush out tens of megabytes of data. Since
the amount of data in the staging buffer is typically small
(smaller than a few KB), it is enough time to guarantee
that we can flush out the buffer.

The third change we make to CMR is to change the
commit mechanism to allow a partial commit. We use
the following steps in the commit process.

1. Wait for the staging buffer to be successfully
flushed.

2. Send a commit message (n,m, fi, fi+1) to Sim-
pleDB, wheren is the node id,m is the map task
split, fi is the beginning offset when this map task
started, andfi+1 is the offset when the map process
received the SIGTERM signal.fi+1 indicates the
position from where the next map task should re-
sume processing. In Fig. 3,fi+1 = 3 to indicate
that processing should resume from KV3.

3. Add a map split message (m,Fm, fi+1) to the in-
put queue, wherem is the map task id,Fm is the
original input split, andfi+1 is the resume offset.

4. Delete the map split message (m,Fm, fi) from the
input queue.

A node may fail anywhere between the steps, but we
can still guarantee the correct processing. Failing be-
tween step 1 and 2 invalidates the flushed partial re-
sults. Since there is not a commit message, the reduce
processes would ignore those partial results. Failing be-
tween step 2 and 3 would cause duplicate processing. Af-
ter a visibility timeout (Amazon SQS’s feature to tolerate
node failures), the map split message (m,Fm, fi) would

reappear in the input queue and another node would re-
process it. Finally, failing between step 3 and 4 adds an
additional redundant split (m,Fm, fi+1), since the old
split (m,Fm, fi) would be reprocessed again.

The last change we make is to change how we de-
termine if there is a successful commit for a map split.
Since there could be multiple partial commits, we must
make sure that we can find a set of partial commits that
cover the whole range. In other words, we need to find a
set of commit messages (n0,m, f0, f1), (n1,m, f1, f2),
..., (ni,m, fi, fi+1), wheref0 = 0 andfi+1 is one more
than the last key-value pair’s offset. Once the set of par-
tial commits are found, the reduce workers use them to
filter valid intermediate results from the reduce queues.

Our modifications essentially enable Spot CMR to
process the map inputs at a finer key-value pair granu-
larity instead of at the granularity of an input split. In ad-
dition, the boundary between two consecutive map pro-
cessing of one input split is dynamically determined de-
pending on when a node is terminated. Also, there is no
need to periodically save the results and roll back when
node fails as other checkpoint mechanisms require [9],
so the overhead is very low.

Our modifications currently only apply to the map
tasks. There is no easy extension to the reduce tasks
due to a limitation in Amazon. Amazon SQS does not
support FIFO (First In First Out); therefore, even if we
remember the offset in the reduce queue, it may point
to a different key-value pair when we read it again next
time. We are in the process of porting CMR to run on top
of Appistry’s cloud platform so that it can be deployed
in an internal cloud environment. Appistry’s queue sup-
ports FIFO; hence, we will be able to apply the same
techniques we used for the map tasks to the reduce tasks.

4 Experimental results

We evaluate Spot CMR’s performance in Amazon EC2.
A comprehensive evaluation is beyond the scope of the
paper. Instead, we show that Spot CMR can work well
in the spot market environment and that it can signifi-
cantly reduce cost by leveraging spot pricing. Since the
current Spot CMR cannot tolerate many terminations in
the reduce phase, we only use the spot instances in the
map phase, and we use the regular instances in the re-
duce phase for our evaluations.

We first run the Word Count application on a 50GB of
crawled web pages data using 20m1.small instances. We
break the input data into 100 splits of 500MB each. Spot
CMR parses the input files, and passes the line number
as the key and the line content as the value to the user-
defined map function. We simulate a spot market sce-
nario where the price increases every 20 minutes, then
drops right away. As a result, all 20 instances are killed

4

every 20 minutes, and they are then restarted right away.
Spot CMR takes 93.4 minutes to complete the job. In
contrast, if we assume the instances are never turned off
(e.g., when the bid price is much higher), CMR takes
84.2 minutes to complete. Spot CMR introduces a slight
overhead when nodes are constantly terminated, which
includes the time taken: 1) for a Linux OS to boot, 2) for
Spot CMR to start and figure out the current progress,
and 3) for Spot CMR to save the progress when termi-
nated.

Spot MapReduce stores more data (e.g., more com-
mits) in SimpleDB, which could cause a higher query
overhead. With no terminations, CMR consumes 0.012
hours of SimpleDB CPU time as reported by our Ama-
zon billing statement. In comparison, Spot CMR with a
failure every 20 minutes consumes 0.013 hours of Sim-
pleDB CPU. Most of the time is consumed in the reduce
phase when the reduce workers are querying SimpleDB
and are trying to determine if there are enough commits
for all map tasks.

We also compared with Hadoop 0.21.0 on the same
input data. Assuming no failure, Hadoop took about
119.6 minutes to finish. We also compare with the failure
cases. Unfortunately, we cannot terminate a large num-
ber of nodes in Hadoop, not only because a master node
failure is catastrophic, but also because we cannot afford
losing all replicas of a data item. Instead, we randomly
terminate 3 instances and restart them every 10 minutes.
In this case, Hadoop took 187.5 minutes to finish. As
observed in [1], Hadoop’s performance is significantly
impacted in such a dynamic environment.

We then consider the potential cost savings by using
the spot market. We choose a real spot price history in a
period of time between Sep. 9th 1pm and Sep. 10th 2010
in Amazon’s us-east data center, then we simulate and
replay the price changes by manually turn off our nodes
when necessary. We choose this period for evaluation
because the price fluctuates widely going from the lowest
$0.029 to the highest of $0.085. It is shown in Fig. 4.

Figure 4: Spot price history in Amazon EC2 us-east data
center in Sep. 2010.

For Spot CMR, we bid at the lowest price of $0.029.
The total time, including the time waiting for the price
to drop, is 22.4 hours because most of the time is spent
waiting. However, it only costs $1.16. We can also use
Hadoop in the spot market, but bid at a much higher price
to avoid termination in that period. We find that this
approach would cost $2.60, but it comes with a much
quicker turn around time of 119.6 minutes. If we use
regular instances for Hadoop, the cost would be $3.4.
Clearly, Spot CMR costs much less to process a MapRe-
duce job than Hadoop, although the user must be willing
to shift the demands by possibly waiting for a long time.

5 Conclusion

We described the first MapReduce implementation that
could continue making progress even when many nodes
terminate at the same time in a spot market environment.
By adopting a spot market and Spot Cloud MapReduce,
an infrastructure cloud provider could shift computation
demands to increase the overall utilization of its infras-
tructure. Since MapReduce jobs represent a large pro-
portion of batch jobs, the amount of demands that we can
shift, hence the degree of increase in utilization, could be
significant.

References

[1] CHOHAN, N., CASTILLO , C., SPREITZER, M., STEINDER, M.,
TANTAWI , A., AND KRINTZ, C. See spot run: using spot in-
stances for mapreduce workflows. InProceedings of the 2nd
USENIX conference on Hot topics in cloud computing (Berkeley,
CA, USA, 2010), HotCloud’10, USENIX Association, pp. 7–7.

[2] CONDIE, T., CONWAY, N., ALVARO , P., AND HELLERSTEIN,
J. M. Mapreduce online. InProc. NSDI (2010).

[3] DEAN, J.,AND GHEMAWAT, S. Mapreduce: Simplified data pro-
cessing on large clusters. InOSDI’04: Sixth Symposium on Oper-
ating System Design and Implementation (December 2004).

[4] GRIFFITH, R., CHEN, Y., L IU , J., JOSEPH, A., AND KATZ , R.
Understanding tcp incast throughput collapse in datacenter net-
works. InProc. SIGCOMM WREN Workshop (2009).

[5] GUY ROSEN. Estimated EC2 daily usage.
http://www.jackofallclouds.com/2010/12/recounting-ec2/.

[6] Hadoop. http://lucene.apache.org/hadoop.

[7] L IU , H., AND ORBAN, D. Cloud mapreduce: a mapreduce
implementation on top of a cloud operating system. InProc.
IEEE/ACM International Symposium on Cluster Computing and
the Grid (Newport Beach, USA, 2011), CCGRID ’11, IEEE Com-
puter Society.

[8] VASUDEVAN, V., PHANISHAYEE, A., SHAH , H., KREVAT, E., ,
ANDERSEN, D., GANGER, G., GIBSON, G.,AND MUELLER, B.
Safe and effective fine-grained tcp retransmissions for datacenter
communication. InProc. SIGCOMM (2009).

[9] Y I , S., KONDO, D., AND ANDRZEJAK, A. Reducing costs of
spot instances via checkpointing in the amazon elastic compute
cloud. InProc. 3rd IEEE Intl. Conf. on Cloud Computing (2010),
pp. 236–243.

5

